
2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 85

2.5 Soundness and Completeness of the Predicate Logic

2.5.1 Soundness of the Predicate Logic

The soundness of predicate logic can be proved following the same idea used for the propo-

sitional logic. Therefore, we need to prove the following theorem:

Theorem 6 (Soundness of the predicate logic). Let Γ be a set of predicate formulas, if Γ ` ϕ

then Γ |= ϕ. In other words, if ϕ is provable from Γ then ϕ is a logical consequence of Γ.

Proof. The proof is by induction on the derivation of Γ ` ϕ similarly to the propositional

case, and hence we focus just on the new rules: (∀e), (∀i), (∃e), (∃i).

If the last rule applied in the proof Γ ` ϕ is (∀e), then ϕ = ψ[x/t] and the premise of

the last rule is ∀xψ as depicted in the following figure, where {γ1, . . . , γn} is the subset of

formulas in Γ used in the derivation.

γ1 . . . γn

UUUUUUUU
iiiiiiii

∀xψ
(∀e)

ψ[x/t]

The subtree rooted by the formula ∀xψ and with open leaves labeled by formulas in Γ,

corresponds to a derivation for the sequent Γ ` ∀xψ, that by induction hypothesis implies

Γ |= ∀xψ. Therefore, for all interpretations that make the formulas in Γ true, also ∀xψ would

be true: I |= Γ implies I |= ∀xψ. The last implies that for all a ∈ D, where D is the domain

of I, I x
a
|= ψ, and in particular, I x

tI
|= ψ. Consequently, I |= ψ[x/t]. Therefore, one has that

for any interpretation I, such that I |= Γ, I |= ψ[x/t], which implies Γ |= ψ[x/t].

If the last rule applied in the proof of Γ ` ϕ is (∀i), then ϕ = ∀xψ and the premise of the

last rule is ψ[x/x0] as depicted in the following figure:

86 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

γ1 . . . γn

VVVVVVV
hhhhhhh

ψ[x/x0]

(∀i)
∀xψ

The subtree rooted by the formula ψ[x/x0] and with open leaves labeled by formulas in

{γ1, . . . , γn} ⊂ Γ, corresponds to a derivation for the sequent Γ ` ψ[x/x0], in which no open

assumption contains the variable x0. This variable can be selected in such a manner that it

does not appear free in any formula of Γ. By induction hypothesis, we have that Γ |= ψ[x/x0].

This implies that all interpretations that make the formulas in Γ true, also make ψ[x/x0] true:

I |= Γ implies I |= ψ[x/x0]. Since x0 does not occurs in Γ, for all a ∈ D, where D is the domain

of I, I x
a
|= Γ and also I x0

a
|= ψ[x/x0] or, equivalently, I x

a
|= ψ. Hence Γ |= ∀xψ.

If the last rule applied in the proof of Γ ` ϕ is (∃i), then ϕ = ∃xψ and the premise of the

last rule is ψ[x/t] as depicted in the following figure, where again {γ1, . . . , γn} is the subset

of formulas of Γ used in the derivation:

γ1 . . . γn

UUUUUUU
iiiiiii

ψ[x/t]

(∃i)
∃xψ

The subtree rooted by the formula ψ[x/t] and with open leaves labeled by formulas of Γ,

corresponds to a derivation of the sequent Γ ` ψ[x/t], that by induction hypothesis implies

Γ |= ψ[x/t]. Therefore, any interpretation I that makes the formulas in Γ true, also makes

ψ[x/t] true. Thus, since I |= ψ[x/t] implies I x
tI
|= ψ, one has that I |= ∃xψ. Therefore,

Γ |= ∃xψ.

Finally, for a derivation of the sequent Γ ` ϕ that finishes with an application of the rule

(∃e), one has as premises the formulas ∃xψ and ϕ. The former labels a root of a subtree with

open leaves labeled by assumptions in {γ1, . . . , γn} ⊂ Γ that corresponds to a derivation for

2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 87

the sequent Γ ` ∃xψ; the later labels a subtree with open leaves in {γ1, . . . , γn} ∪ {ψ[x/x0]}

and corresponds to a derivation for the sequent Γ, ψ[x/x0] ` ϕ, where x0 is a variable that

does not occur free in Γ ∪ {ϕ}, as depicted in the figure below:

γ1 . . . γn [ψ[x/x0]]u γ1 . . . γn

TTTTTTT
jjjjjjj

XXXXXXXXXXXXX
iiiiiiiii

∃xψ ϕ

(∃e) u
ϕ

By induction hypothesis, one has Γ |= ∃xψ and Γ, ψ[x/x0] |= ϕ. The first means that for

any interpretation I such that I |= Γ, I |= ∃xψ. Thus, there exists some a ∈ D, the domain

of I, such that I x
a
|= ψ. Notice also that since x0 does not occur in Γ, one has that I x0

a
|= Γ.

From the second, since I x0

a
|= Γ, ψ[x/x0], one has that I x0

a
|= ϕ. But, since x0 does not

occurs in ϕ, one concludes that I |= ϕ.

Exercise 30. Complete all other cases of the proof of the Theorem 6 of soundness of predicate

logic.

2.5.2 Completeness of the Predicate Logic

The completeness proof for the predicate logic is not a direct extension of the completeness

proof for the propositional logic. The completeness theorem was first proved by Kurt Gödel,

and here we present the general idea of a proof due to Leon Albert Henkin (for nice complete

presentations see references mentioned in the chapter on suggested readings).

The kernel of the proof is based on the fact that every consistent set of formulas is

satisfiable, where consistency of the set Γ means that the absurd is not derivable from Γ:

Definition 28. A set Γ of predicate formulas is consistent if not Γ ` ⊥.

Note that if we assume that every consistent set is satisfiable then the completeness

can be easily obtained as follows:

Theorem 7 (Completeness). Let Γ be a set of predicate formulas. If Γ |= ϕ then Γ ` ϕ.

88 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

Proof. We prove that not Γ ` ϕ implies not Γ |= ϕ. From not Γ ` ϕ one has that Γ ∪ {¬ϕ}

is consistent because if Γ∪{¬ϕ} were inconsistent then Γ∪{¬ϕ} ` ⊥ by definition, and one

could prove ϕ as follows:

Γ, [¬ϕ]a

...

⊥

ϕ
(PBC) a

Therefore, Γ ` ϕ, which contradicts the supposition that not Γ ` ϕ. Now, since Γ ∪ {¬ϕ} is

consistent, by the assumption that consistent sets are satisfiable, we have that Γ ∪ {¬ϕ} is

satisfiable. Therefore, we conclude that not Γ |= ϕ.

Our goal from now on is to prove that every consistent set of formulas is satisfiable.

The idea is, given a consistent set of predicate formulas Γ, to build a model I for Γ, and

since the sole available information is its consistency, this must be done by purely syntactical

means, that is by using the language to build the desired model.

The key concepts in Henkin’s proof are the notion of witnesses of existential formulas and

extension of consistent sets of formulas to maximally consistent sets.

Definition 29 (Witnesses and maximally consistency). Let Γ be a set of formulas

Γ contains witnesses if and only if for every formula of the form ∃xϕ in Γ, there exists a

term t such that Γ ` ∃xϕ→ ϕ[x/t].

Γ is maximally consistent if and only if for each formula ϕ, Γ ` ϕ or Γ ` ¬ϕ.

Notice that from the definition, for any possible extension of a maximally consistent set

Γ, say Γ′ such that Γ ⊆ Γ′, Γ′ = Γ. Maximally consistent sets are also said to be closed for

negation.

The proof is done in two steps, and uses the fact that every subset of a satisfiable set is

also satisfiable:

1. every consistent set can be extended to a maximally consistent set containing witnesses;

2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 89

2. every maximally consistent set containing witnesses has a model.

If Γ does not contain witnesses, these formulas can not be built in a straightforward

manner, since one can not choose any arbitrary term t to be witness of the existential formula

without changing the semantics. Nevertheless, any consistent set can be extended to another

consistent set containing witnesses. The simplest case, is when the language is countable

and the set Γ uses only a finite set of free variables, that is fv(Γ) is finite. Since the set of

existential formulas is also countable and there are infinite unused variable (those that do not

appear free in Γ). Then these variables can be used as witnesses without any conflict. The

other cases are more elaborated and are left as research exercises to the reader (Exercises 32

and 33): the case in which the language is countable, but Γ uses infinitely many free variables

and the case in which the language is not countable.

In the sequel we will treat the simplest case in which the set of constant, function and

predicate symbols occurring in Γ is at most countable and there are only finitely many

variables occurring in Γ. The next two lemmas complete the first part of the proof: a

consistent set might be extended to a maximally consistent set with witnesses. This is done

proving first how variables might be used to include witnesses and then how a consistent set

with witnesses can be extended to a maximally consistent set.

Lemma 4 (Construction of witnesses). Let Γ be a consistent set over a countable language

such that fv(Γ) is finite. There exists an extension Γ′ ⊇ Γ over the same language, such that

Γ′ is consistent and contains witnesses.

Proof. Let ∃x1ϕ1,∃x2ϕ2, . . . be an enumeration of all the existential formulas built over the

language. Let y1, y2, . . . be an enumeration of the variables not occurring free in Γ, and

consider the formulas below, for i > 0:

(∃xiϕi)→ ϕi[xi/yi]

Let Γ0 be defined as Γ, and Γn, for n > 0 be defined as below:

Γn = Γn−1 ∪ {(∃xnϕn)→ ϕn[xn/yn]}

90 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

We will prove the consistence of Γ′ defined as Γ′ =
⋃
n∈N

Γn by induction on n. The base

case is trivial since Γ is consistent by hypothesis. For k > 0, suppose Γk−1 is consistent, but

Γk is not, i.e.

Γk = Γk−1 ∪ {(∃xkϕk)→ ϕk[xk/yk]} ` ⊥ (2.1)

Now consider the following derivation:

(LEM) (∃xkϕk) ∨ ¬(∃xkϕk)

Γk−1 [∃xkϕk]a
∇1
⊥

Γk−1 [¬∃xkϕk]b
∇2
⊥

⊥
(∨e) a b

where

∇1 :

[∃xkϕk]a

Γk−1

[ϕk[xk/yk]]
u

∃xkϕk → ϕk[xk/yk]
(→ i)∅

⊥
(2.1)

⊥
(∃e)u

and

∇2 :

Γk−1

[¬∃xkϕk]b

¬ϕk[xk/yk]→ ¬∃xkϕk

∃xkϕk → ϕk[xk/yk]
(CP)

(→ i)∅

⊥
(2.1)

But this is a proof of Γk−1 ` ⊥ which contradicts the assumption that Γk−1 is consistent.

2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 91

Therefore, Γk is consistent.

In the previous proof, note that if Γi−1 ` ∃xiϕi then it must be the case that Γi `

ϕi[xi/yi] in order to preserve the consistency. Therefore, ϕi[xi/yi] might be added to the set

of formulas, but not its negation, as will be seen in the further construction of maximally

consistent sets.

Now we prove that every maximally consistent set containing witnesses has a model.

Lemma 5 (Lindenbaum). Each consistent set of formulas Γ over a countable language is

contained in a maximally consistent set Γ∗ over the same language.

Proof. Let δ1, δ2, . . . be an enumeration of the formulas built over the language. In order to

build a consistent expansion of Γ we recursively define the family of indexed sets of formulas

Γi as follows:

• Γ0 = Γ

• Γi =

 Γi−1 ∪ {δi}, if Γi−1 ∪ {δi} is consistent;

Γi−1, otherwise.

Now let Γ∗ =
⋃
i∈N

Γi. We claim that Γ∗ is maximally consistent. In fact, if Γ∗ is not

maximally consistent then there exists a formula γ /∈ Γ∗ such that Γ∗∪{γ} is consistent. But

by the above enumeration, there exists k ≥ 1 such that γ = δk, and since Γk−1 ∪ {γ} should

be consistent, δk ∈ Γk+1. Hence δk = γ ∈ Γ∗.

From the previous lemmas (4 and 5), one has that every consistent set of formulas built

over a countable set of symbols and with finitely many free variables can be extended to a

maximally consistent set which contains witnesses. In this manner we complete the first step

of the prove.

Now, we will complete the second step of the proof, that is that any maximally consistent

set that contain witnesses is satisfiable. We start with two auxiliary definitional observations.

Lemma 6. Let Γ be a maximally consistent set of formulas. Then for any formula ϕ either

ϕ ∈ Γ or ¬ϕ ∈ Γ.

92 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

Lemma 7. Let Γ be a maximally consistent set. For any formula ϕ, Γ ` ϕ if, and only if

ϕ ∈ Γ.

Proof. Suppose Γ ` ϕ. From Lemma 6, either ϕ ∈ Γ or ¬ϕ ∈ Γ. If ¬ϕ ∈ Γ then Γ would be

inconsistent:

Γ
∇
ϕ

Γ
∇¬ϕ

⊥ (¬e)

Therefore, ϕ ∈ Γ.

We now define a model, that is called the algebra or structure of terms for the set Γ which

is assumed to be maximally consistent and containing witnesses. The model, denoted as IΓ, is

built from Γ by taking as domain, the set D of all terms built over the countable language of Γ

as given in the definition of terms 13. The designation d for each variable is the same variable

and the interpretation of each non variable term is itself too: tIΓ = t. Notice that since our

predicate language does not deal with equality symbol, different terms are interpreted as

different elements of D. The map m of IΓ maps each n-ary function symbol in the language,

f , in the function f IΓ such that for all terms t1, . . . , tn, (f(t1, . . . , tn))IΓ = f IΓ(tIΓ1 , . . . , t
IΓ
n) =

f(t1, . . . , tn), and for each n-ary predicate symbol p, pIΓ is the relation defined as

(p(t1, . . . , tn))IΓ = pIΓ(tIΓ1 , . . . , t
IΓ
n) if and only if p(t1, . . . , tn) ∈ Γ

With these definitions we have that for any atomic formula ϕ, ϕ ∈ Γ if and only if

IΓ |= ϕ. In addition, according to the interpretation of quantifiers, for any atomic formula

∀x1 . . . ∀xnϕ ∈ Γ if and only if IΓ |= ∀x1 . . . ∀xnϕ and ∃x1 . . . ∃xnϕ ∈ Γ if and only if IΓ |=

∃x1 . . . ∃xnϕ.

Using the assumptions that Γ has witnesses and is maximally consistent, formulas can be

correctly interpreted in IΓ as below.

2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 93

1. ⊥IΓ = F and >IΓ = T

2. ϕIΓ = T, iff ϕ ∈ Γ, for any atomic formula ϕ

3. (¬ϕ)IΓ = T, iff ϕIΓ = F

4. (ϕ ∧ ψ)IΓ = T, iff ϕIΓ = T and ψIΓ = T

5. (ϕ ∨ ψ)IΓ = T, iff ϕIΓ = T or ψIΓ = T

6. (ϕ→ ψ)IΓ = T, iff ϕIΓ = F or ψIΓ = T

7. (∃xϕ)IΓ = T, iff (ϕ[x/t])IΓ = T , for some term t ∈ D

8. (∀xϕ)IΓ = T, iff (ϕ[x/t])IΓ = T , for all t ∈ D.

Indeed, this interpretation is well-defined only under the assumption that Γ has witnesses

and is maximally consistent. For instance, the item 3 is well-defined since ¬ϕ ∈ Γ if and only

if not ϕ ∈ Γ. For the item 5, if (ϕ ∨ ψ) ∈ Γ and not ϕ ∈ Γ, by maximally consistency one

has that ¬ϕ ∈ Γ; thus, from (ϕ∨ψ) and ¬ϕ, it is possible to derive ψ (by simple application

of rules (∨e) and (¬e) and (⊥e)). Similarly, if we assume (ϕ ∨ ψ) ∈ Γ and not ψ ∈ Γ, we

can derive ϕ. For the item 6, suppose (ϕ → ψ) ∈ Γ and ϕ ∈ Γ, then one can derive ψ (by

application of (→e)); otherwise, if (ϕ → ψ) ∈ Γ and not ψ ∈ Γ, by maximally consistency,

¬ψ ∈ Γ, from which one can infer ¬ϕ (by application of contraposition). For the item 7, if we

assume ∃xϕ ∈ Γ, by the existence of witnesses, there is a term t such that ∃xϕ→ ϕ[x/t] ∈ Γ,

and from these two formulas we can derive ϕ[x/t] (by a simple application of rule (→e)).

Exercise 31. Complete the analysis well-definedness for all the items in the interpretation

of formulas IΓ, for a set Γ that contains witnesses and is maximally complete.

Theorem 8 (Henkin). Let Γ be a maximally consistent set containing witnesses. Then for

all ϕ,

IΓ |= ϕ, if, and only if Γ ` ϕ.

Proof. The proof is done by induction on the structure of ϕ. If ϕ is an atomic formula then

ϕ ∈ Γ iff (ϕ)IΓ = T , by definition.

94 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

If ϕ = ¬ϕ1 then:

¬ϕ1 ∈ Γ ⇐⇒ (because Γ is maximally consistent)

ϕ1 /∈ Γ ⇐⇒ (by induction hypothesis)

not IΓ |= ϕ1 ⇐⇒ (by definition)

IΓ |= ¬ϕ1.

If ϕ = ϕ1 ∧ ϕ2 then:

ϕ1 ∧ ϕ2 ∈ Γ ⇐⇒ (by definition)

ϕ1 ∈ Γ and ϕ2 ∈ Γ ⇐⇒ (by induction hypothesis for both ϕ1 and ϕ2)

IΓ |= ϕ1 and IΓ |= ϕ2 ⇐⇒ (by definition)

IΓ |= ϕ1 ∧ ϕ2.

If ϕ = ϕ1 ∨ ϕ2 then:

ϕ1 ∨ ϕ2 ∈ Γ ⇐⇒ (by definition)

ϕ1 ∈ Γ or ϕ2 ∈ Γ ⇐⇒ (by induction hypothesis for both ϕ1 and ϕ2)

IΓ |= ϕ1 or IΓ |= ϕ2 ⇐⇒ (by definition, no matter the condition holds for ϕ1 or ϕ2)

IΓ |= ϕ1 ∨ ϕ2.

If ϕ = ϕ1 → ϕ2 then we split the proof into two parts. Firstly, we show that ϕ1 → ϕ2 ∈ Γ

implies IΓ |= ϕ1 → ϕ2. We have two subcases:

1. ϕ1 ∈ Γ: In this case, ϕ2 ∈ Γ. In fact, if ϕ2 /∈ Γ then ¬ϕ2 ∈ Γ by the maximality of Γ,

and Γ becomes contradictorily inconsistent:

ϕ1 → ϕ2 ϕ1

ϕ2

(→e)

¬ϕ2

⊥
(¬e)

2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 95

Thus, by induction hypothesis one has:

ϕ1 ∈ Γ and ϕ2 ∈ Γ ⇐⇒ (by induction hypothesis for both ϕ1 and ϕ2)

IΓ |= ϕ1 and IΓ |= ϕ2 =⇒ (by definition)

IΓ |= ϕ1 → ϕ2.

2. ϕ1 /∈ Γ: In this case, ¬ϕ1 ∈ Γ by the maximality of Γ. Therefore,

¬ϕ1 ∈ Γ ⇐⇒ (by induction hypothesis)

IΓ |= ¬ϕ1 ⇐⇒ (by definition)

not IΓ |= ϕ1 =⇒ (by definition)

IΓ |= ϕ1 → ϕ2.

Now we prove that IΓ |= ϕ1 → ϕ2 implies ϕ1 → ϕ2 ∈ Γ. By definition of the semantics of

implication, there are two cases:

1. ϕIΓ1 = F : In this case, we have that (¬ϕ1)IΓ = T , and hence ¬ϕ1 ∈ Γ, by induction

hypothesis. We can now derive ϕ1 → ϕ2 as follows, and conclude by Lemma 7:

¬ϕ1 [ϕ1]a

⊥
(¬e)

ϕ2

(⊥e)

ϕ1 → ϕ2

(→i) a

2. ϕIΓ2 = T : By induction hypothesis ϕ2 ∈ Γ, and we derive ϕ1 → ϕ2 as follows, and

conclude by Lemma 7:

ϕ2

ϕ1 → ϕ2

(→i) ∅

96 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

If ϕ = ∃xϕ1 then:

∃xϕ1 ∈ Γ ⇐⇒ (for some t ∈ D, since Γ contains witnesses)

ϕ1[x/t] ∈ Γ ⇐⇒ (by induction hypothesis)

IΓ |= ϕ1[x/t] ⇐⇒ (by definition)

IΓ |= ∃xϕ1.

If ϕ = ∀xϕ1 then:

∀xϕ1 ∈ Γ ⇐⇒ (otherwise Γ becomes inconsistent as shown below)

ϕ1[x/t] ∈ Γ, for all t ∈ D ⇐⇒ (by induction hypothesis)

IΓ |= ϕ1[x/t], for all t ∈ D ⇐⇒ (by definition)

IΓ |= ∀xϕ1.

For the first equivalence, note that if ∀xϕ1 ∈ Γ then ϕ1[x/t] ∈ Γ, for all term t ∈ D,

otherwise Γ becomes contradictorily inconsistent:

¬ϕ1[x/t]

∀xϕ1

ϕ1[x/t]
(∀e)

⊥
(⊥e)

Using as a model IΓ, it is possible to conclude, in this case, that consistent sets are

satisfiable.

Corollary 2 (Consistency implies satisfiability). If Γ is a consistent set of formulas over a

countable language with a finite set of free variables then Γ is satisfiable.

Proof. Initially, Γ is consistently enlarged obtaining the set Γ′ including witnesses accord-

ing to the construction in Lemma 4; afterwards, Γ′ is closed maximally obtaining the set

(Γ′)∗according to the construction in Lindenbaum’s Lemma (5). This set contains witnesses

2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 97

and is maximally consistent; then, by Henkin’s Theorem (8), IΓ is a model of (Γ′)∗, hence a

model of Γ too.

Exercise 32. (*) Research in the suggested related references how a consistent set built over

a countable set of symbols, but that uses infinite free variables can be extended to a maximal

consistent set with witnesses. The problem, is that in this case there are no new variables that

can be used as witnesses. Thus, one needs to extend the language with new constant symbols

that will act as witnesses, but each time a new constant symbol is added to the language the

set of existential formulas change.

Exercise 33. (*) Research the general case in which the language is not restricted, that is

the case in which Γ is built over a non countable set of symbols.

2.5.3 Compactness Theorem and Löwenheim-Skolem Theorem

The connections between |= and ` as well as between consistence and satisfiability provided

in this section, give rise to other additional important consequences that relate semantic and

syntactic elements of the predicate logic. Here we present two important theorems that are

related with the scope and limits of the expressiveness of predicate logic.

Theorem 9 (Compactness). Given a set Γ of predicate formulas and a formula ϕ, the

following holds

i. Γ |= ϕ if and only if there is a finite set Γ0 ⊆ Γ such that Γ0 |= ϕ

ii. Γ is satisfiable if and only if for all finite set Γ0 ⊆ Γ, Γ0 is satisfiable.

Proof. i. For necessity, if Γ |= ϕ, by completeness one has that there exists a derivation ∇

for Γ ` ϕ. The derivation ∇ uses only a finite subset of assumptions, say Γ0 ⊆ Γ. Thus,

Γ0 ` ϕ and, by correctness, one concludes that Γ0 |= ϕ. For sufficiency, suppose that

Γ0 |= ϕ, for a finite set Γ0 ⊆ Γ. By completeness there exists a derivation ∇ for Γ0 ` ϕ.

But ∇ is also a derivation for Γ ` ϕ; hence, by correctness one concludes that Γ |= ϕ.

98 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

ii. Necessity is proved by contraposition: if Γ0 were unsatisfiable for some finite set Γ0 ⊆ Γ,

then Γ0 would be inconsistent, since consistency implies satisfiability (Corollary 2); thus,

Γ0 ` ⊥, which implies also that Γ ` ⊥ and by correctness that Γ |= ⊥. Hence, Γ would

be unsatisfiable. Sufficiency is proved also by contraposition: if we assume that Γ is

unsatisfiable, then since there exists no model for Γ, Γ |= ⊥ holds. By completeness also,

Γ ` ⊥ and hence, there exists a finite set Γ0 ⊆ Γ, such that Γ0 ` ⊥, which by correctness

implies that Γ0 |= ⊥. Thus, we conclude that Γ0 is unsatisfiable.

The compactness theorem has several applications that are useful for restricting the anal-

ysis of consistency and satisfiability of arbitrary sets of predicate formulas to only finite

subsets. This also has important implications in the possible cardinality of models of sets of

predicate formulas such as the one given in the following theorem.

Theorem 10 (Löwenheim-Skolem). Let Γ be a set of formulas such that for any natural

n ∈ N, there exists a model of Γ with a domain of cardinality at least n. Then Γ has also

infinite models.

Proof. Consider an additional binary predicate symbol E and the formulas ϕn for n > 0,

defined as

∀x E(x, x) ∧ ∃x1,...,xn

n∧
i 6=j;i,j=1

¬E(xi, xj)

For instance, the formulas ϕ1 and ϕ3 are given respectively as ∀xE(x, x) and ∀x E(x, x)∧

∃x1∃x2∃x3 (¬E(x1, x2) ∧ ¬E(x1, x3) ∧ ¬E(x2, x3)).

Notice that ϕn has models of cardinality at least n. It is enough to interpret E just as a

the reflexive relation among the elements of the domain of the interpretation. Thus, pairs of

different elements of the domain do not belong to the interpretation of E.

Let Φ be the set of formulas {ϕn | n ∈ N}. We will prove that all finite subsets of the set

of formulas Γ∪Φ are satisfiable and then by the compactness theorem conclude that Γ∪Φ is

satisfiable too. An interpretation I |= Γ ∪ Φ should have an infinite model, since also I |= Φ

2.5. SOUNDNESS AND COMPLETENESS OF THE PREDICATE LOGIC 99

and all formulas in Φ are true in I only if there are infinitely many elements in the domain

of I.

To prove that any finite set Γ0 ⊂ Γ ∪ Φ is satisfiable, let k be the maximum k such that

ϕk ∈ Γ0. Since Γ has models of arbitrary finite cardinality, let I ′ be a model of Γ with

at least k elements in its domain D. I ′ can be extended in such a manner that the binary

predicate symbol E is interpreted just as the reflexive relation over D. Let I be the extended

interpretation. It is clear that I |= Γ since E is a new symbol and also I |= Γ0 ∩ Φ since the

domain has at least k different elements. Also, since I |= Γ, we have that I |= Γ∩Γ0. Hence,

I |= Γ0 and so we conclude that Γ0 is satisfiable.

Exercise 34. Prove that there is no predicate formula ϕ that holds exclusively for all finite

interpretations.

Exercise 35. Let E be a binary predicate symbol, e a constant and · and -1 be binary and

unary function symbols, respectively. The theory of groups is given by the models of the set

of formulas ΓG:

∀x E(x, x)

∀x,y (E(x, y)→ E(y, x))

∀x,y,z (E(x, y) ∧ E(y, z)→ E(x, z))

∀x E(x · e, x)

∀x E(x · x−1, e)

∀x,y,z E((x · y) · z, x · (y · z))

Notice that according to the three first axioms the symbol E should be interpreted as an

equivalence relation such as the equality. Indeed, the three other axioms are those related with

group theory itself: the fourth one states the existence of an identity element, the fifth one

the inverse function and the sixth one the associativity of the binary operation.

Prove the existence of infinite models by proving that for any n ∈ N, the structure of

arithmetic modulo n is a group of cardinality n. The elements of this structure are all

integers modulo n (i.e. the set {0, 1, . . . , n-1}), with addition and identity element 0.

100 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

Exercise 36. A graph is a structure of the form G = 〈V,E〉, where V is a finite set of

vertices and E ⊂ V × V a set of edges between the vertices. The problem of reachabil-

ity in graphs is the question whether there exists a finite path of consecutive edges, say

(u, u1), (u1, u2), . . . , (un−1, v), between two given nodes u, v ∈ V .

Prove that there is no predicate formula that expresses reachability in graphs.

Hint: the key observation to conclude is that the problem of reachability between two nodes

might be answered positively whenever there exists a path of arbitrary length.

2.6 Undecidability of the Predicate Logic

The gain of expressiveness obtained in predicate logic w.r.t. to the propositional logic comes

at a price. Initially, remember that for a given propositional formula ϕ, one can always answer

whether ϕ is valid or not by analyzing its truth table. This means that there is an algorithm

that receives an arbitrary propositional formula as input and always answers after a finite

amount of time yes, if the given formula is valid; or no, otherwise. The algorithm works as

follows: build the truth table for ϕ and check whether it is true for all interpretations. Note

that this algorithm is not efficient because the (finite) number of possible interpretations

grows exponentially w.r.t. the number of propositional variables occurring in ϕ.

In general, a computational question with a yes or no answer depending on the parameters

is known as a decision problem. A decision problem is said to be decidable whenever there

exists an algorithm that correctly answers yes or no for each instance of the problem, and

when such algorithm does not exist the decision problem is said to be undecidable . Therefore,

we conclude that that validity is decidable in propositional logic.

The natural question that arises at this point is whether validity is decidable or not in

predicate logic. Note that the truth table approach is no longer possible because the number

of different interpretations for a given predicate formula ϕ is not finite. In fact, as stated

in the previous paragraph the gain of expressiveness of the predicate logic comes at a price:

validity is undecidable in predicate logic. This fact is usually known as the undecidability of

predicate logic, and has several important consequences. In fact, it is straightforward from the

2.6. UNDECIDABILITY OF THE PREDICATE LOGIC 101

completeness of predicate logic that provability is also undecidable, i.e. there is no algorithm

that receives a predicate formula ϕ as input and returns yes if ` ϕ, or no if not ` ϕ.

The standard technique for proving the undecidability of the predicate logic consists in

reducing a known undecidable problem to the validity of the predicate logic in such a way

that decidability of validity of the predicate logic entails the decidability of the other problem

leading to a contradiction. In what follows, we consider the word problem for a specific

monoid introduced by G. S. Tseitin, and that is well-known to be undecidable.

A semigroup is an algebraic structure with a binary associative operator · over a given

set A. When in addition the structure has an identity element id it is called a monoid. By

associativity, one understands that for all x, y, z in A, x · (y · z) = (x · y) · z, and for all x ∈ A

the identity satisfies the properties id · x = x and x · id = x. In general, the word problem in

a given semigroup with a given set of equations E (between pairs of elements of A), is the

problem of answering whether two words are equal applying these equations.

By an application of an equation, say u = v in E, one understand an equational transfor-

mation of the form below, where x y are any elements of A.

x · (u · y) = x · (v · y)

Hence, the word problem consists in answering for any pair of elements x, y ∈ A if there

exists a finite chain, possibly of length zero, of applications of equations that transform x in

y:

x ≡ x0
u1=v1= x1

u2=v2= x2
u3=v3= . . .

un=vn= xn ≡ y (2.2)

In the chain above, the notation ≡ is used for syntactic equality and
ui=vi= for highlighting

that the equation applied in the application step is ui = vi.

Tseitin’s monoid is given by the set Σ∗ of words freely generated by the quinary alphabet

Σ = {a, b, c, d, e}. In this structure the binary associative operator is the concatenation of

words and the empty word plays the role of the identity. The set of equations is given below.

For simplicity, we will omit parentheses and the concatenation operator.

102 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

ac = ca

ad = da

bc = cb

bd = db

ce = eca

de = edb

cdca = cdcae

(2.3)

As previously mentioned Tseitin introduced this specific monoid with the congruence

generated by this set of equations and proved that the word problem in this structure is

undecidable.

In order to reduce the above problem to validity of the predicate logic, we choose a

logical language with a constant symbol �, five unary function symbols fa, fb, fc, fd and

fe, and a binary predicate P . The constant � will be interpreted as the empty word, and

each function symbol, say f? for ? ∈ Σ, as the concatenation of the symbol ? to the left

of the term given as argument of f?. For example, the word baaecde will be encoded as

fb(fa(fa(fe(fc(fd(fe(�))))))), which for brevity will be written simply as fbaaecde(�). The

binary predicate P will play the role of equality, i.e. P (x, y) is interpreted as x is equal to y

(modulo the congruence induced by the set of equations above, which would be assumed as

axioms).

Our goal is, given an instance of the word problem x, y ∈ Σ∗ specified above, to build a

formula ϕx,y such that x equals y in this structure if and only if |= ϕx,y. The formula ϕx,y is

of the form

ϕ′ → P (fx(�), fy(�)) (2.4)

where ϕ′ is the following formula:

2.6. UNDECIDABILITY OF THE PREDICATE LOGIC 103

∀x(P (x, x)) ∧

∀x ∀y(P (x, y)→ P (y, x)) ∧

∀x ∀y, ∀z(P (x, y) ∧ P (y, z)→ P (x, z)) ∧

∀x ∀y(P (x, y)→ P (fac(x), fca(y))) ∧

∀x ∀y(P (x, y)→ P (fad(x), fda(y))) ∧

∀x ∀y(P (x, y)→ P (fbc(x), fcb(y))) ∧

∀x ∀y(P (x, y)→ P (fbd(x), fdb(y))) ∧

∀x ∀y(P (x, y)→ P (fce(x), feca(y))) ∧

∀x ∀y(P (x, y)→ P (fde(x), fedb(y))) ∧

∀x ∀y(P (x, y)→ P (fcdca(x), fcdcae(y))) ∧

∀x ∀y(P (x, y)→ P (fa(x), fa(y))) ∧

∀x ∀y(P (x, y)→ P (fb(x), fb(y))) ∧

∀x ∀y(P (x, y)→ P (fc(x), fc(y))) ∧

∀x ∀y(P (x, y)→ P (fd(x), fd(y))) ∧

∀x ∀y(P (x, y)→ P (fe(x), fe(y)))

(2.5)

Suppose |= ϕx,y. Our goal is to find a model for ϕx,y which tells us if there is a solution

to the instance x, y ∈ Σ∗. Consider the interpretation I with domain Σ∗ and such that:

• the constant � is interpreted as the empty word;

• each unary function symbol f?, for ? ∈ Σ, is interpreted as the function f I? : Σ∗ → Σ∗

that appends the symbol ? to the word x ∈ Σ∗ given as argument, i.e. f I? (x) = ?x;

• and the binary predicate P is interpreted as follows:

P (x, y)I if and only if there exists a chain, possibly of length zero, of

applications of the equations (2.3) that transform x into the word y.

We claim that I |= ϕ′. Let us consider each case:

104 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

• I |= ∀x(P (x, x)): take the empty chain.

• I |= ∀x ∀y(P (x, y)→ P (y, x)): for any x, y such that I |= P (x, y), take the chain given

for P (x, y) in reverse order.

• I |= ∀x ∀y ∀z(P (x, y) ∧ P (y, z) → P (x, z)): for any x, y, z such that I |= P (x, y) and

I |= P (y, z), append the chains given for P (x, y) and P (y, z).

• I |= ∀x ∀y(P (x, y) → P (fac(x), fca(y))): for any x, y such that I |= P (x, y), take the

chain given for P (x, y) and use this for the chain of equations for acx = acy; then add

an application of the equation ac = ca to obtain cay. A similar justification is given

for all other cases related with equations (2.3), but the last.

• I |= ∀x ∀y(P (x, y)→ P (f?(x), f?(y))) where ? ∈ Σ: for any x, y such that I |= P (x, y),

take the chain given for P (x, y) and use it for the chain for the equation ?x = ?y.

Since I |= ϕx,y and I |= ϕ′, we conclude that I |= P (fx(�), fy(�)). Therefore, the instance

x, y of the word problem has a solution.

Conversely, suppose the instance x, y of the word problem has a solution in Tseitin’s

monoid; i.e., there is a chain of applications of the equations (2.3) from x resulting in the

word y as given in the chain (2.2). We will suppose that this chain is of length n.

We need to show that ϕx,y is valid; i.e., that |= ϕx,y. Let us consider an arbitrary inter-

pretation I ′ over a domain D with an element �I
′
, five unary functions f I

′
a , f I

′

b , f I
′

c , f I
′

d , f I
′

e

and a binary relation P I′ . Since ϕx,y is equal to ϕ′ → P (fu(�), fv(�)), we have to show that

if I ′ |= ϕ′ then I ′ |= P (fu(�), fv(�)).

We proceed by induction in n, the length of the chain of applications of equations (2.3)

for transforming x in y.

IB: case n = 0, we have that x ≡ y and if I ′ |= ϕ′, I ′ |= ∀xP (x, x) which also implies that

I ′ |= P (x, x).

IS: case n > 0, the chain of applications of equations to transform x in y is of the form

x ≡ x0
u1=v1= x1

u2=v2= x2
u3=v3= . . . xn−1

un=vn= xn ≡ y

2.6. UNDECIDABILITY OF THE PREDICATE LOGIC 105

By induction hypothesis we have that I ′ |= P (x, xn−1). If we prove that I ′ |= P (xn−1, y), we

can conclude that I ′ |= P (x, y), since I ′ |= ∀x∀y∀zP (x, y)∧P (y, z)→ P (x, z) because we are

assuming that I ′ |= ϕ′.

Thus, the proof resumes to prove that equalities obtained by one step of application of

equations in (2.3) hold in I ′: in particular if we suppose that un = vn is the equation u = v

in (2.3), xn−1 ≡ wuz and y = wvz, we need to prove that I ′ |= P (fwuz(�), fwvz(�)), which

is done by the following three steps:

1. First, one has that I ′ |= P (fz(�), fz(�)), since I ′ |= ∀xP (x, x).

2. Second, since u = v in (2.3), I ′ |= ∀x∀y(P (x, y) → P (fu(x), fv(y))). Thus, by the

previous item one has that I ′ |= P (fuz(�), fvz(�));

3. Third, I ′ |= P (fwuz(�), fwvz(�)) is obtained from the last item, inductively on the

length of w, since I ′ |= ∀x∀y(P (x, y)→ P (f?(x), f?(y))), for all ? ∈ Σ.

To conclude the undecidability of validity of the predicate logic, if we suppose the contrary,

we will be able to answer for any x, y ∈ Σ∗ if |= P (fx(�), fy(�)) answering consequently if x

equals y in Tseitin’s monoid, which is impossible since the word problem in this structure is

undecidable.

Theorem 11 (Undecidability of the Predicate Logic). Validity in the predicate logic, that is

answering whether for a given formula ϕ, |= ϕ is undecidable.

Notice, that by Gödel completeness theorem undecidability of validity immediately implies

undecidability of derivability in the predicate logic. Indeed, in the above reasoning one can

use the completeness theorem to alternate between validity and derivability.

Exercise 37. Accordingly to the three steps above to prove I ′ |= P (fwuz(�), fwvz(�)), build

a derivation for the sequent ` P (fwuz(�), fwvz(�)). Concretely, prove that:

a. ϕ′ ` P (fz(�), fz(�)), for z ∈ Σ∗;

b. ϕ′, P (fz(�), fz(�)) ` P (fuz(�), fvz(�)), for u = v in the set of equations (2.3);

106 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c© Springer 2017. Authors’ copy

c. ϕ′, P (fuz(�), fvz(�)) ` P (fwuz(�), fwvz(�)), for w ∈ Σ∗;

d. ϕ′ ` P (fwuz(�), fwvz(�)).

