
22MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

theses is greater than or equal to the number of closed parentheses in s.

2. Any proper prefix s of a well-formed propositional formula � might not be a well-formed

propositional formula. By “proper” we understand that s can not be equal to �.

1.4 Natural Deductions and Proofs in the Propositional

Logic

In this section, we will show that the goal of natural deduction is to deduce new information

from facts that we already know, that we call hypotheses or premises. From now on, we

will ignore external parentheses of formulas, whenever they do not introduce ambiguities.

Suppose a set of formulas S = {'1,'2, . . . ,'n} (for some n > 0) is given, and we want

to know if the formula can be obtained from S. We start with a simple reasoning, with

n = 2: Suppose that the formulas '1 and '2 hold. In this case, we can conclude that the

formula '1 ^ '2 also holds (according to the usual meaning of the conjunction). This kind

of reasoning is “natural” and can be represented by a nice mathematical notation as follows:

�1 �2

�1 ^ �2

The formulas above the line are the premises, while the one below the line corresponds to

the conclusion, i.e., the new information inferred from the premises.

Similarly, if we know that '1^'2 is true then so is '1, and also '2. This piece of reasoning

can be represented by the following rules

�1 ^ �2

�1

�1 ^ �2

�2

With these three simple rules we can already prove a basic property of the conjunction:

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 23

the commutativity, i.e. if ' ^ then ^ '. A proof is a tree whose leafs are premises and

whose root is the conclusion. The internal nodes of the tree correspond to applications of

the rules: any internal node is labelled by a formula that is the conclusion of the formulas

labeling its ancestral nodes.

� ^

� ^

�

 ^ �

In the above tree, the hypothesis '^ is used twice, and the conclusion is ^'. In other

words, we have proved that ' ^ ` ^ '. In general, we call an expression of the form

'1,'2, . . . ,'n ` a sequent. The formulas before the symbol ` are the premises, and the

one after, is the conclusion.

The system of natural deduction is composed by a set of inference rules. The idea is that

each connective has an introduction and an elimination rule. Let see how it works for each

connective. As we have seen, for the conjunction, the introduction rule is given by:

�1 �2

�1 ^ �2

(^i)

and two elimination rules:

�1 ^ �2

�1

(^e1)
�1 ^ �2

�2

(^e2)

The last two rules of elimination for the conjunction might be abbreviated as the unique

24MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

rule:

�1 ^ �2

�i (i=1,2)

(^e)

The rules for implication are very intuitive: consider the following sentence

“if it is raining then driving is dangerous”

So, what one might conclude if it is raining? That driving is dangerous, of course. This kind

of reasoning can be represented by an inference rule known as modus ponens (or elimination

of the implication):

� �!

(!e)

In order to introduce the implication � ! one needs to assume the premise of the

implication, �, and prove its conclusion, . The (temporary) assumption � is discharged

once one introduces the implication, as depicted below:

[�]a

...

�!
(!i) a

In this rule [�]a denotes the set of all leaves in the deduction of where the formula � was

assumed. Thus, the label “a” is related with the set of all these assumptions in the derivation

tree of . And the application of the rule (!i) uses this label “a” to denote that all these

assumptions are closed or discharged after the conclusion �! is derived.

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 25

The (!i) rule can also be applied without discharging any assumption: if one knows

then � ! holds, for any �. In this case application of the rule is labelled with (!i) ;.

The use of the empty set symbol as label is justified since a label “a”, as explained before,

is related with the set of all assumptions of � in the derivation tree labelled with a. The

intuition behind this reasoning can be explained by the following example: suppose that we

known that “I cannot fall asleep”, then both “I drink co↵ee implies that I cannot fall asleep”

and “I don’t drink co↵ee implies that I cannot fall asleep” hold. That is, using the previous

notation, one obtains the following derivations, where r and p mean respectively, “I cannot

fall asleep” and “I drink co↵ee”:

r

p ! r
(!i) ;

r

¬p ! r
(!i) ;

Introduction of the implication without discharging premises can be also be derived from

an application of the rule with discharge of assumption as below:

 [�]a

 ^ �

�!
(!i) a

(^e)

(^i)

Application of rules with temporary assumptions can discharge either none or several

occurrences of the assumed formula. For instance, consider the following derivation:

26MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

[�]z

[�! �!]x [�]y

�!
(!e)

(!e)

�!
(!i) z

�! �!
(!i) y

(�! �!) ! �! �!
(!i) x

In the above example, the temporary assumption � was partially discharged in the first

application of the rule (!i) since only the assumption of the formula � with label z was

discharged, but not the assumption with label y. A logical system that allows this kind

of derivation is said to obey the partial discharge convention. The above derivation can be

solved with a complete discharge of the temporary assumption � as follows:

[�]y

[�! �!]x [�]y

�!
(!e)

(!e)

�!
(!i) ;

�! �!
(!i) y

(�! �!) ! �! �!
(!i) x

A logical system that forbids a partial discharge of temporary assumptions is said to

obey the complete discharge convention. A comparison between the last two proofs suggests

that partial discharges can be replaced by one complete discharge followed by vacuous ones.

This is correct and so these discharge conventions play “little role in standard accounts of

natural deduction”, but it is relevant in type theory for the correspondence between proofs

and �-terms because “di↵erent discharge-labels will correspond to di↵erent terms”. For more

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 27

details, see suggested readings and references on type theory (Chapter 6).

For the disjunction, the introduction rules are given by:

�1

�1 _ �2

(_i1)
�2

�1 _ �2

(_i2)

The first introduction rule means that, if �1 holds, or in other words, if one has a proof of

�1, then �1_�2 also holds, where �2 is any formula. The meaning of the rule (_i2) is similar.

As for the elimination of conjunction rule (^e), these two rules might be abbreviated as a

unique one:

�i (i=1,2)

�1 _ �2

(_i)

As another example of simultaneous discharging of occurrences of an assumption, observe

the derivation for ` (�! ((�_)^(�_'))) in which, by application of the rule of introduction

of implication (!i), two occurrences of the assumption of � are discharged.

(_i)
[�]u

(� _)

[�]u

(� _ ')
(_i)

((� _) ^ (� _ '))
(^i)

(�! ((� _) ^ (� _ ')))
(!i) u

The elimination rule for the disjunction is more subtle because from the fact that �1 _ �2

holds, one does not know if �1, �2 or both �1 and �2 hold. Nevertheless, if a formula � can

be proved from �1 and also from �2 then it can be derived from �1 _ �2. This is the idea

of the elimination rule for the disjunction that is presented below. In this rule, the notation

28MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

[�1]a means that �1 is a temporary assumption, or a hypothesis. Note that the rule scheme

(_e) is labelled with a, b which means that the temporary assumptions are discharged, i.e.,

the assumptions are closed after the rule is applied.

�1 _ �2

[�1]
a

...

�

[�2]
b

...

�

�
(_e) a, b

As an example consider the following reasoning: You know that both co↵ee and tea have

ca↵eine, so if you drink one or the other you will not be able to fall asleep. This reasoning

can be seen as an instance of the disjunction elimination as follows: Let p be a proposition

whose meaning is “I drink co↵ee”, q means “I drink tea” and r means “I cannot fall asleep”.

One can prove r as follows:

p _ q
(!e)

[p]a p ! r

r

[q]b q ! r

r
(!e)

r
(_e) a, b

The above tree has 5 leafs:

1. the hypothesis p _ q

2. the temporary assumption p

3. the fact p ! r whose meaning is “if I drink co↵ee then I will not sleep”.

4. the temporary assumption q

5. The temporary assumption q ! r whose meaning is “if I drink tea then I would not

fall asleep”.

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 29

We need to assume p and q as “temporary” assumptions because we want to show that

r is true independently of which one holds. We know that at least one of these propositions

holds since we have that p _ q holds. Once the rule of elimination of disjunction is applied

these temporary assumptions are discharged.

Exercise 4. Prove that � _ ` _ �, i.e., the disjunction is commutative.

For the negation, the rules are as follows:

[�]a

...

?

¬�
(¬i) a

� ¬�

?
(¬e)

The introduction rule says that if one is able to prove ? (the absurd) from the assumption

�, then ¬� holds. This rule discharges the assumption � concluding ¬�. The elimination

rule states that if one is able to prove both a formula � and its negation ¬� then one can

conclude the absurd ?.

Remark 1. Neither the symbol of negation ¬ nor the symbol > are necessary. > can be

encoded as ? ! ? and negation of a formula � as � ! ?. From this encoding, one can

notice that rule (¬e) is not essential; namely, it corresponds to an application of rule (!e):

� �! ?

?
(!e)

Similarly, one can notice that rule (¬i) is neither essential because it corresponds to an

application of rule (!i):

30MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

[�]a

...

?

�! ?
(!i) a

The absurd has no introduction rule, but it has an elimination rule, which corresponds to

the application of rule (¬i) discharging an empty set of assumptions:

?

�
(?e)

The set of rules presented so far (summarized in Table 1.2) represents a fragment of the

propositional calculus known as the intuitionistic propositional calculus, which is consid-

ered as the logical basis of the constructive mathematics. The set of formulas derived from

these rules are known as the intuitionistic propositional logic. Only the essential rules are

presented, omitting for instance rules for introduction of disjunction to the right and elimi-

nation of conjunction to the right, since both the logical operators ^ and _ were proved to

be commutative. Also derived rules are omitted. In particular, the rule (?e) is also known

as the intuitionistic absurdity rule. Eliminating (?e) one obtains the minimal propositional

calculus. The formulas derived from these rules are known as the minimal propositional logic.

Shortly, one can say that the constructive mathematics is the mathematics without the law

of the excluded middle ('_¬'), denoted by (LEM) for short. In this theory one replaces the

phrase “there exists” by “we can construct”, which is particularly interesting for Computer

Science. The law of the excluded middle is also known as the law of the excluded third which

means that no third option is allowed (tertium non datur).

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 31

Remark 2. There exists a fragment of the intuitionistic propositional logic that is of great in-

terest in Computer Science. This is known as the implicational fragment of the propositional

logic, and it contains only the rules (!i) and (!e). The computational interest in this frag-

ment is that it is directly related to type inference in the functional paradigm of programming.

In this paradigm (untyped) programs can be seen as terms of the following language:

t ::= x | (t t) | (�x.t)

where x ranges over a set of term variables, (t u) represents the application of the function

t to the argument u, and (�x.t) represents a function with parameter x and body t. The

construction (�x.t) is called an abstraction. Types are either atomic of functional and their

syntax is given as:

⌧ ::= ⌧ | ⌧ ! ⌧

The type of a variable is annotated as x : ⌧ and a context � is a finite set of type annotations

for variables in which each variable has a unique type.

The simple typing rules for the above language are as follows:

� ` t : A ! B � ` u : A

� ` (t u) : B
(App)

� [{x : A} ` t : B

� ` (�x.t) : A ! B
(Abs)

� ` x : A
(Var), x : A 2 �

Notice that, if one erases the term information on the rule (App), one gets exactly the rule

(!e). Similarly, the type information of the rule (Abs) corresponds to the rule (!i). The

rule (Var) does not correspond to any rule in natural deduction, but to a single assumption

[A]x, that is a derivation of A ` A. As an example, suppose one wants to build a function that

computes the sum of two natural numbers x and y. That x and y are naturals is expressed

through the type annotations x : N and y : N. Thus, supposing one has proved that the

32MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

function add has functional type N ! N ! N under context � = {x : N, y : N}, one can

derive that (add x y) has type N under the same context as follows:

(App)
� ` add : N ! N ! N � ` x : N (Var)

� ` (add x) : N ! N (Var) � ` y : N

� ` ((add x) y) : N
(App)

The abstraction of the function projection of the first argument of a pair of naturals is

built in this language as (�x.(�y.x)) and its type is derived as follows:

(Abs)
(Var) � ` x : N

{x : N} ` (�y.x) : N ! N

` ((�x.(�y.x)) : N ! N ! N
(Abs)

For a detailed presentation on this subject, see the suggested readings and references on

type theory.

The exclusion of (LEM) in the intuitionistic logic means that (' _ ¬') holds only if one

can prove either ' or ¬', while in classical logic, it is taken as an axiom. The classical logic

can be seen as an extension of the intuitionistic logic, and hence there are sequents that are

provable in the former, but not in the latter. The standard example of propositional formula

that is provable in classical logic, but cannot be proved in intuitionistic logic is Peirce’s law:

(('!) ! ') ! '.

It is relevant to stress here that in the classical propositional calculus the rule (?e) can

discharge a non empty set of negative assumptions. This is not the case in the propositional

intuitionistic calculus in which this rule can only be applied without discharging assump-

tions. Thus, the rules for the propositional classical calculus include a new rule for proving

by contradiction, for short (PBC), in which after deriving the absurd one can discharge neg-

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 33

ative assumptions. Essentially, replacing (?e) by (PBC) one obtains the calculus of natural

deduction for the classical propositional logic (see Table 1.3).

Table 1.2: Rules of natural deduction for intuitionistic propositional logic

introduction rules elimination rules

'
' ^ (^i) ' ^

' (^e)

'
' _ (_i) ' _

[']u

...
�

[]v

...
�

� (_e) u, v

[']u

...

'!
(!i) u

' '!

(!e)

[']u

...
?
¬' (¬i) u

' ¬'
? (¬e)

?
' (?e)

In general, in order to get classical logic, one can add to the set of rules of Table 1.2 one

of the following rules, where the rules (¬¬e) and (LEM) are called respectively the rule of

elimination of the double negation and rule for the law of middle excluded.

¬¬�

�
(¬¬e)

� _ ¬�
(LEM)

[¬�]a
...

?

�
(PBC) a

34MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

In fact, any two of these rules can be proved from the third one. Assuming (¬¬e) one can

prove (LEM) and (PBC):

[¬(� _ ¬�)]x

[¬(� _ ¬�)]x

[�]u

� _ ¬�
(_i)

?
(¬e)

¬�
(¬i) u

� _ ¬�
(_i)

?
(¬e)

¬¬(� _ ¬�)
(¬i) x

� _ ¬�
(¬¬e)

[¬�]a
...

?

¬¬�
(¬i) a

�
(¬¬e)

One can also prove (LEM) and (¬¬e) from (PBC):

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 35

[¬(� _ ¬�)]a

[¬(� _ ¬�)]a

[¬�]b

(� _ ¬�)
(_i)

?
(¬e)

�
(PBC) b

� _ ¬�
(_i)

?
(¬e)

� _ ¬�
(PBC) a

¬¬� [¬�]a

?
(¬e)

�
(PBC) a

Finally, from (LEM) one can prove (¬¬e) and (PBC):

(LEM)

� _ ¬�

[¬�]a ¬¬�

?
(¬e)

�
(?e)

[�]b

�
(_e) a, b

36MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

(LEM)

� _ ¬� [�]a

[¬�]b
...

?

�
(?e)

�
(_e) a, b

Table 1.3 includes the set of natural deduction rules for the classical propositional logic

where our preference was to add the rule (PBC). Note that the rule (?e) can be removed

from Table 1.3 because it can be deduced directly from (PBC) by an empty discharge.

Exercise 5. Prove that the rule (?e) is not essential, i.e., prove that this rule can be derived

from the rules presented in Table 1.3.

There are several proofs that are useful in many situations. These proofs are pieced

together to build more elaborated pieces of reasoning. For this reason, these proofs will be

added as derived rules in our natural deduction system. The first one, is for the introduction

of the double negation: ' ` ¬¬'.

' [¬']a

?
(¬e)

¬¬'
(¬i) a

The corresponding derived rule is as follows:

�

¬¬�
(¬¬i)

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 37

Table 1.3: Rules of natural deduction for classical propositional logic

introduction rules elimination rules

'
' ^ (^i) ' ^

' (^e)

'
' _ (_i) ' _

[']u

...
�

[]v

...
�

� (_e) u, v

[']u

...

'!
(!i) u

' '!

(!e)

[']u

...
?
¬' (¬i) u

' ¬'
? (¬e)

[¬']u
...
?
'

(PBC) u

Once, a derivation is done, new rules can be included to the set of applicable ones.

Another rule of practical interest is modus tollens, that states that whenever one knows

that � ! and ¬ , ¬� holds. For instance if we know both that “if Aristotle was Indian

then he was Asian” and that “he wasn’t Asian”, then we have that “Aristotle wasn’t Indian”.

Modus tollens, that is (¬), (�!) ` (¬�), can be derived as follows.

38MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

(!e)
[�]x (�!)

 (¬)

?
(¬e)

(¬�)
(¬i) x

Thus, a new derived rule for modus tollens can be added:

(¬) (�!)

(¬�)
(MT)

Another useful derived rules are the contrapositive ones. In particular, proving an implica-

tion (�!) by contraposition consists of proving (¬ ! ¬�) or vice versa. Thus, in order to

use this reasoning mechanism, it is necessary to build derivations for (�!) ` (¬ ! ¬�)

as well as for (¬ ! ¬�) ` (�!). A derivation for the former sequent is presented below.

�! [�]y

(!e)

[¬]x

?
(¬e)

¬�
(¬i) y

¬ ! ¬�
(!i) x

A derivation of the latter sequent is presented below.

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 39

¬ ! ¬� [¬]y

¬�
(!e)

[�]x

?
(¬e)

(PBC) y

�!
(!i) x

Thus, new derived rules for contraposition, for short (CP), can be given as:

�!

¬ ! ¬�
(CP1)

¬ ! ¬�

�!
(CP2)

A few interesting rules that can be derived from the natural deduction calculus (as given

in Table 1.3) are presented in Table 1.4.

Table 1.4: Derived rules of natural deduction for propositional logic

' _ ¬' (LEM)

¬¬'
' (¬¬e)

'
¬¬' (¬¬i)

 ! ' ¬'
¬ (MT) ?

' (?e)

'!
¬ ! ¬' (CP1)

¬'! ¬
 ! '

(CP2)

Definition 8 (Formulas provable equivalent). Let � and well-formed propositional formu-

las. Whenever, one has that � ` and also that ` �, it is said that � and are provable

equivalent. This is denoted as � a` .

40MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

Notice that �! a` ¬ ! ¬�.

Exercise 6. Build derivations for both versions of contraposition below.

a. ¬ ! � a` ¬�! and

b. ! ¬� a` �! ¬ .

In the sequel, several examples are presented.

Example 5 (Associativity of conjunction and disjunction). Derivations of the associativity

of conjunction and disjunction are presented.

• First, the associativity of conjunction is proved; that is, (� ^ (^ ')) ` ((� ^) ^ '):

(^i)

(^e)
(� ^ (^ '))

�

(� ^ (^ '))

(^ ')
(^e)

(^e)

(� ^)

(� ^ (^ '))

(^ ')
(^e)

'
(^e)

((� ^) ^ ')
(^i)

Exercise 7. As an exercise, prove that ((� ^) ^ ') ` (� ^ (^ ')).

• Second, the associativity of disjunction is proved; that is, (�_ (_')) ` ((�_)_'):

(� _ (_ '))
(_i)

(_i)
[�]x

(� _)

((� _) _ ')
r

((� _) _ ')

((� _) _ ')
(_e) x, y

where r is the derivation below:

1.4. NATURAL DEDUCTIONS AND PROOFS IN THE PROPOSITIONAL LOGIC 41

[(_ ')]y
(_i)

(_i)
[]u

(� _)

((� _) _ ')

[']u

((� _) _ ')
(_i)

((� _) _ ')
(_e) u, v

Exercise 8. As an exercise, prove that ((� _) _ ') ` (� _ (_ ')).

Exercise 9. Classify the derived rules of Table 1.4 discriminating those that belong to the

intuitionistic fragment of propositional logic, and those that are classical. For instance, (CP1)

was proved above using only intuitionistic rules which means that it belongs to the intuition-

istic fragment.

Hint: to prove that a derived rule is not intuitionistic, one can show that using only intu-

itionistic rules and the derived rule a strictly classical rule such as (PBC) , (LEM) or (¬¬e)

can be derived.

Exercise 10. Check whether each variant of contraposition below is either an intuitionistic

or a classical rule.

¬'!

¬ ! '
(CP3)

'! ¬

 ! ¬'
(CP4)

Exercise 11. Similarly, check whether each variant of (MT) below is either an intuitionistic

or a classical rule.

'! ¬

¬'
(MT2)

¬'! ¬

'
(MT3)

¬'! ¬

'
(MT4)

42MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

Exercise 12. Using only the rules for the minimal propositional calculus, i.e. the rules in

Table 1.2 without (?e), give derivations for the following sequents.

a. ¬¬¬� a` ¬�.

b. ¬¬(�!) ` (¬¬�) ! (¬¬).

c. ¬¬(� ^) a` (¬¬�) ^ (¬¬).

d. ¬(� _) a` (¬� ^ ¬).

e. � _ ` ¬(¬� ^ ¬).

f. ` ¬¬(� _ ¬�).

Exercise 13. Using the rules for the intuitionistic propositional calculus, that is the rules in

Table 1.2, give derivations for the following sequents.

a. (¬¬�) ! (¬¬) ` ¬¬(�!). Compare with item b of Exercise 12.

b. ` ¬¬(¬¬�! �).

Exercise 14. (*) A propositional formula � belongs to the negative fragment if it does not

contain disjunctions and all propositional variables occurring in � are preceded by negation.

Formulas in this fragment have the following syntax.

� ::= (¬v) || ? || (¬�) || (� ^ �) || (�! �), for v 2 V

Prove by induction on �, that for any formula in the negative fragment there are derivations

in the minimal propositional calculus for

` �$ ¬¬�

i.e. prove ` �! ¬¬� and ` ¬¬�! �.

Exercise 15. Give deductions for the following sequents:

1.5. SEMANTICS OF THE PROPOSITIONAL LOGIC 43

a. ¬(¬� ^ ¬) ` � _ .

b. Peirce’s law: ` ((�!) ! �) ! �.

Exercise 16. (*) Let � be a set, and ' be a formula of propositional logic. Prove that if

' has a classical proof from the assumptions in � then ¬¬' has an intuitionistic proof from

the same assumptions. This fact is known as Glivenko’s theorem (1929).

Exercise 17. (*) Consider the negative Gödel translation from classical propositional logic

to intuitionistic propositional logic given by:

• ?n = ?

• pn = ¬¬p, if p is a propositional variable.

• (' ^)n = 'n ^ n

• (' _)n = ¬¬('n _ n)

• ('!)n = 'n ! n

Prove that if � ` ' in classical propositional logic then �n ` 'n in intuitionistic proposi-

tional logic.

Exercise 18. Prove the following sequent, the double negation of Peirce’s law, in the intu-

itionistic propositional logic: ` ¬¬(((�!) ! �) ! �)

1.5 Semantics of the Propositional Logic

Deduction and derivation correspond to mechanical inference of truth. All syntactic deductive

mechanisms that we have seen in the previous section can be blindly followed in order to

prove that a formula of the propositional logic “holds”, but in fact there was not presented a

semantical counterpart of the notion of being provable. In this section we present the simple

semantics of propositional logic.

44MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

In propositional logic the two only possible truth-values are True and False, denoted by

brevity as T and F . No other truth-values are admissible, as it is the case in several other

logical systems (e.g., truth-values as may be true, probably, don’t know, almost true, not yet,

but in the future, etc.).

Definition 9 (Truth values of atomic formula and assignments). In propositional logic the

truth-values of the basic syntactic formula, that are ?, > and variables in V , are given in

the following manner:

• the truth-value of ? is F ;

• the truth-value of > is T ;

• the truth-value of a variable v in the set of variables V , is given trough a propositional

assignment function from V to {T, F}. Thus, given an assignment function d : V !

{T, F}, the truth-value of v 2 V is given by d(v).

The truth-value assignment to propositional variables deserve special attention. Firstly, an

assignment is necessary, because variables neither can be interpreted as true or false without

having fixed an assignment. Secondly, only after one has an assignment, it is possible to

decide whether (the truth-value of) a variable is either true or false. Finally, the true-value

of propositional variables exclusively depends of a unique given assignment function.

Once an assignment function is given, one can determine the truth-value or semantical

interpretation of non atomic propositional formulas according to the following inductive def-

inition.

Definition 10 (Interpretation of propositional formula). Given an assignment d over the set

of variables V , the truth-value or interpretation of a propositional formula ' is determined

inductively as below:

i. If ' = ? or ' = >, one says that ' is F or T , respectively;

ii. if ' = v 2 V , one says that ' is d(v);

1.5. SEMANTICS OF THE PROPOSITIONAL LOGIC 45

iii. if ' = (¬), then its interpretation is given from the interpretation of by the truth-table

below:

 ' = (¬)

T F

F T

iv. if ' = (_ �), then its interpretation is given from the interpretations of and �

according to the truth-table below:

 � ' = (_ �)

T T T

T F T

F T T

F F F

v. if ' = (^ �), then its interpretation is given from the interpretations of and �

according to the truth-table below:

 � ' = (^ �)

T T T

T F F

F T F

F F F

vi. if ' = (! �), then its interpretation is given from the interpretations of and �

46MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

according to the truth-table below:

 � ' = (! �)

T T T

T F F

F T T

F F T

According to this definition, it is possible to determine the truth-value of any propositional

formula under a specific assignment. For instance, to determine that the formula (v ! (¬v))

is false for a given assignment d for which d(v) = T , one can build the following truth-table

according to the assignment of v under d and the inductive steps for the connectives ¬ and

! of the definition:

v (¬v) (v ! (¬v))

T F F

Similarly, if d0 is an assignment for which, d0(v) = F , one obtains the following truth-table:

v (¬v) (v ! (¬v))

F T T

Notice, that the interpretation of a formula depends on the given assignment. Also, al-

though we are talking about the interpretation of a formula under a given assignment it was

not proved that, given an assignment, formulas have a unique interpretation. That is done

in the following lemma.

Lemma 1 (Uniqueness of interpretations). The interpretation of a propositional formula '

under a given assignment d is unique and it is either true or false.

Proof. The proof is by induction on the structure of propositional formulas.

IB In the three possible cases the truth-value is unique: for ? false, for > true and for v 2 V ,

d(v) that is unique since d is functional.

1.5. SEMANTICS OF THE PROPOSITIONAL LOGIC 47

IS This is done by cases.

Case ' = (¬). By the hypothesis of induction is either true or false and conse-

quently, following the item iii. of the definition of interpretation of propositional formulas,

the interpretation of ' is univocally given by either false or true, respectively.

Case ' = (_ �). By the hypothesis of induction the truth-values of and � are unique

and consequently, according to the item iv. of the definition of interpretation of propositional

formulas, the truth-value of ' is unique.

Case ' = (^ �). By the hypothesis of induction the truth-values of and � are unique

and consequently, according to the item v. of the definition of interpretation of propositional

formulas, the truth-value of ' is unique.

Case ' = (! �). By the hypothesis of induction the truth-values of and � are unique

and consequently, according to the item vi. of the definition of interpretation of propositional

formulas, the truth-value of ' is unique.

It should be noticed that a formula may be interpreted both as true and false for di↵erent

assignments. Uniqueness of the interpretation of a formula holds only once an assignment is

fixed. Notice, for instance that the formula (v ! (¬v)) can be true or false, according to the

selected assignment. If it maps v to T , the formula is false and in the case that it maps v to

F , the formula is true.

Whenever a formula can be interpreted as true for some assignment, it is said that the

formula is satisfiable. In the other case it is said that the formula is unsatisfiable or invalid.

Definition 11 (Satisfiability and unsatisfiability). Let ' be a propositional formula. If there

exists an assignment d, such that ' is true under d, then it is said to be satisfiable. If there

does not exist such an assignment, it is said that ' is unsatisfiable.

The semantical counterpart of derivability is the notion of being a logical consequence.

Definition 12 (Logical consequence and validity). Let, � = {�1, . . . ,�n} be a finite set of

propositional formulas that can be empty, and ' be a propositional formula. Whenever for

48MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

all assignments under which all formulas of � are true, also ' is true, one says that ' is a

logical consequence of �, which is denoted as

� |= '

When � is the empty set one says that ' is valid, which is denoted as

|= '

Notice that the notion of validity of a propositional formula ', corresponds to the nonex-

istence of assignments for which ' is false. Then by simple observations of the definitions,

we have the following lemma.

Lemma 2 (Satisfiability versus validity).

i. Any valid formula is satisfiable.

ii. The negation of a valid formula is unsatisfiable

Proof. i. Let ' be a propositional formula such that |= '. Then given any assignment d,

' is true under d. Thus, ' is satisfiable.

ii. Let ' be a formula such that |= '. Then for all assignments ' is true, which implies that

for all assignments (¬') is false. Then there is no possible assignment for which (¬') is

true. Thus, (¬') is unsatisfiable.

1.6 Soundness and Completeness of the Propositional

Logic

The notions of soundness (or correctness) and completeness are not restricted to deductive

systems being also applied in several areas of computer science. For instance, we can say

