
Augusto Sampaio
Farn Wang (Eds.)

 123

LN
CS

 9
96

5

13th International Colloquium
Taipei, Taiwan, ROC, October 24–31, 2016
Proceedings

Theoretical Aspects
of Computing –
ICTAC 2016

Lecture Notes in Computer Science 9965

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Augusto Sampaio • Farn Wang (Eds.)

Theoretical Aspects
of Computing – ICTAC 2016
13th International Colloquium
Taipei, Taiwan, ROC, October 24–31, 2016
Proceedings

123

Editors
Augusto Sampaio
Centro de Informática
Universidade Federal de Pernambuco
Recife, Pernambuco
Brazil

Farn Wang
Department of Electrical Engineering
National Taiwan University
Taipei
Taiwan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-46749-8 ISBN 978-3-319-46750-4 (eBook)
DOI 10.1007/978-3-319-46750-4

Library of Congress Control Number: 2016952524

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at ICTAC 2016, the 13th International
Colloquium on Theoretical Aspects of Computing, held during October 24–31, 2016,
in Taipei, Taiwan, ROC.

The International Colloquium on Theoretical Aspects of Computing (ICTAC) is a
series of annual events founded in 2004 by the United Nations International Institute
for Software Technology. Its purpose is to bring together practitioners and researchers
from academia, industry, and government to present research results and exchange
experiences and ideas. Beyond these scholarly goals, another main purpose is to
promote cooperation in research and education between participants and their institu-
tions from developing and industrial regions.

The city of Taipei, where this edition of ICTAC took place, is the capital and the
largest city of Taiwan, ROC (Republic of China). The National Taiwan University
(NTU), host of the colloquium, is the top university in Taiwan with 17,000 under-
graduate students and 15,000 graduate students. The Department of Electrical Engi-
neering of NTU, where most ICTAC 2016 sessions have been held, is the leading
research group in Taiwan and has technical contributions to Taiwan’s world-renowned
giants, including TSMC, MediaTek, Quanta Computers, etc. ICTAC 2016 was spon-
sored by Microsoft Research, Springer, EasyChair, the Ministry of Science and
Technology (ROC), the Ministry of Education (ROC), the Ministry of Economical
Affairs (ROC), the Taipei Municipal Government, and the National Taiwan University.

In this edition of ICTAC, we had four invited speakers: Hsu-Chun Yen, from the
National Taiwan University; Leonardo de Moura, from Microsoft Research, USA;
Heike Wehrheim, form Universität Paderborn, Germany; and Wen-Lian Hsu, from
Academia Sinica, Taiwan. They delivered keynote speeches as well as tutorials.

ICTAC 2016 received 60 submissions from 26 different countries. Each submission
was reviewed by at least three members of the Program Committee, along with help
from external reviewers. Out of these 60 submissions, 23 regular papers were accepted.
The committee also accepted one short paper and one tool paper. Apart from the paper
presentations and invited talks, ICTAC 2016 continued the tradition of previous
ICTAC conferences in holding a five-course school on important topics in theoretical
aspects of computing.

We thank all the authors for submitting their papers to the conference, and the
Program Committee members and external reviewers for their excellent work in the
review, discussion, and selection process. We are indebted to all the members of the
Organizing Committee, including Dr. Churn-Jung Liau (Academia Sinica), Prof.
Jonathan Lee (NTU), Dr. Yu-Fang Chen (Academia Sinica), and Prof. Fang Yu
(National Cheng-Chi University), for their hard work in all phases of the conference, as
well as to Filipe Arruda and Gustavo Carvalho, who helped enormously with managing
EasyChair and several other operational aspects of the reviewing and proceedings

creation process. We also acknowledge our gratitude to the Steering Committee for
their constant support.

We are also indebted to EasyChair that greatly simplified the assignment and
reviewing of the submissions as well as the production of the material for the pro-
ceedings. Finally, we thank Springer for their cooperation in publishing the proceed-
ings, and for the sponsorship of the two best paper awards.

August 2016 Augusto Sampaio
Farn Wang

VI Preface

Organization

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Farhad Arbab CWI and Leiden University, The Netherlands
Mauricio Ayala-Rincon Universidade de Brasilia, Brazil
Mario Benevides Universidade Federal do Rio de Janeiro, Brazil
Ana Cavalcanti University of York, UK
Yu-Fang Chen Academia Sinica, Taiwan
Gabriel Ciobanu Romanian Academy, Institute of Computer Science,

Iasi, Romania
Hung Dang Van UET, Vietnam National University, Vietnam
Ana De Melo University of Sao Paulo, Brazil
Rocco De Nicola IMT - Institute for Advanced Studies Lucca, Italy
Razvan Diaconescu IMAR, Romania
Jin Song Dong National University of Singapore, Singapore
José Luiz Fiadeiro Royal Holloway, University of London, UK
John Fitzgerald Newcastle University, UK
Marcelo Frias Buenos Aires Institute of Technology, Argentina
Martin Fränzle Carl von Ossietzky Universität Oldenburg, Germany
Lindsay Groves Victoria University of Wellington, NZ
Kim Guldstrand Larsen Computer Science, Aalborg University, Denmark
Zhenjiang Hu NII, Japan
Jie-Hong Roland Jiang National Taiwan University, Taiwan
Cliff Jones Newcastle University, UK
Luis Lamb Federal University of Rio Grande do Sul, Brazil
Martin Leucker University of Lübeck, Germany
Zhiming Liu Birmingham City University, UK
Dominique Mery Université de Lorraine, LORIA, France
Alexandre Mota Universidade Federal de Pernambuco, Brazil
Mohammadreza Mousavi Halmstad University, Sweden
Tobias Nipkow TU München, DE
Jose Oliveira Universidade do Minho, Portugal
Catuscia Palamidessi Inria, France
Paritosh Pandya TIFR, India
António Ravara Universidade Nova de Lisboa, Portugal
Camilo Rueda Universidad Javeriana, Colombia
Jacques Sakarovitch CNRS/Telecom ParisTech, France
Augusto Sampaio Federal University of Pernambuco, Brazil
Sven Schewe University of Liverpool, UK

Martin Schäf SRI International, USA
Emil Sekerinski McMaster University, Canada
Hiroyuki Seki Nagoya University, Japan
Tetsuo Shibuya The University of Tokyo, Japan
Andrzej Tarlecki Warsaw University, Poland
Kazunori Ueda Waseda University, Japan
Frank Valencia LIX, Ecole Polytechnique, France
Farn Wang National Taiwan University, Taiwan
Jim Woodcock University of York, UK
Hsu-Chun Yen National Taiwan University, Taiwan
Shoji Yuen Nagoya University, Japan
Naijun Zhan Institute of Software, Chinese Academy of Sciences,

China
Lijun Zhang Institute of Software, Chinese Academy of Sciences,

China
Huibiao Zhu East China Normal University, China

Additional Reviewers

Accattoli, Beniamino
Aman, Bogdan
Bistarelli, Stefano
Bollig, Benedikt
Bouyer-Decitre, Patricia
Bucchiarone, Antonio
Ciancia, Vincenzo
Dang, Duc-Hanh
De Moura, Flavio L.C.
Decker, Normann
Foster, Simon
Goulão, Miguel
Hafemann Fragal,

Vanderson
Hanazumi, Simone
Helouet, Loic
Hsu, Tzu-Chien
Höfner, Peter
Hölzl, Johannes
Imai, Keigo
Jensen, Peter Gjøl
Lengal, Ondrej
Li, Guangyuan

Li, Qin
Liu, Bo
Liu, Wanwei
Lluch Lafuente, Alberto
Mikučionis, Marius
Montrieux, Lionel
Moreira, Nelma
Nantes-Sobrinho, Daniele
Naumowicz, Adam
Nguyen, Thi Huyen Chau
Nishida, Naoki
Nyman, Ulrik
Ody, Heinrich
Olsen, Petur
Popescu, Andrei
Rocha, Camilo
Rot, Jurriaan
Sanchez, Huascar
Sato, Shuichi
Scheffel, Torben
Schumi, Richard
Serre, Olivier
Singh, Neeraj

Song, Fu
Strathmann, Thomas
Sun, Meng
Taromirad, Masoumeh
Ter Beek, Maurice H.
Thomsen,

Michael Kirkedal
Thorn, Johannes
Ting, Gan
Tiplea, Ferucio
Truong, Hoang
Tu, Kuan-Hua
Tutu, Ionut
Ventura, Daniel
Wang, Hung-En
Wang, Shuling
Wiedijk, Freek
Wolter, Uwe
Worrell, James
Xie, Wanling
Yokoyama, Tetsuo
Zhao, Hengjun

VIII Organization

Invited Papers

Verification of Concurrent Programs
on Weak Memory Models

Oleg Travkin and Heike Wehrheim

Institut für Informatik, Universität Paderborn, 33098, Paderborn, Germany
{oleg82,wehrheim}@uni-paderborn.de

Abstract. Modern multi-core processors equipped with weak memory models
seemingly reorder instructions (with respect to program order) due to built-in
optimizations. For concurrent programs, weak memory models thereby produce
interleaved executions which are impossible on sequentially consistent (SC)
memory. Verification of concurrent programs consequently needs to take the
memory model of the executing processor into account. This, however, makes
most standard software verification tools inapplicable.

In this paper, we propose a technique (and present its accompanying tool
WEAK2SC) for reducing the verification problem for weak memory models to
the verification on SC. The reduction proceeds by generating – out of a given
program and weak memory model (here, TSO or PSO) – a new program con-
taining all reorderings, thus already exhibiting the additional interleavings on
SC. Our technique is compositional in the sense that program generation can be
carried out on single processes without ever needing to inspect the state space
of the concurrent program. We formally prove compositionality as well as
soundness of our technique.

WEAK2SC takes standard C programs as input and produces program
descriptions which can be fed into automatic model checking tools (like SPIN)
as well as into interactive provers (like KIV). Thereby, we allow for a wide
range of verification options. We demonstrate the effectiveness of our technique
by evaluating WEAK2SC on a number of example programs, ranging from
concurrent data structures to software transactional memory algorithms.

Petri Nets and Semilinear Sets
(Extended Abstract)

Hsu-Chun Yen

Department of Electrical Engineering, National Taiwan University,
Taipei, 106, Taiwan, Republic of China

yen@cc.ee.ntu.edu.tw

Abstract. Semilinear sets play a key role in many areas of computer science, in
particular, in theoretical computer science, as they are characterizable by Pres-
burger Arithmetic (a decidable theory). The reachability set of a Petri net is not
semilinear in general. There are, however, a wide variety of subclasses of Petri
nets enjoying semilinear reachability sets, and such results as well as analytical
techniques developed around them contribute to important milestones histori-
cally in the analysis of Petri nets. In this talk, we first give a brief survey on
results related to Petri nets with semilinear reachability sets. We then focus on a
technique capable of unifying many existing semilinear Petri nets in a coherent
way. The unified strategy also leads to various new semilinearity results for Petri
nets. Finally, we shall also briefly touch upon the notion of almost semilinear
sets which witnesses some recent advances towards the general Petri net
reachability problem.

The Lean Theorem Prover

Leonardo de Moura

Microsoft Research
leonardo@microsoft.com

Abstract. Lean is a new open source theorem prover being developed at
Microsoft Research and Carnegie Mellon University, with a small trusted kernel
based on dependent type theory. It aims to bridge the gap between interactive
and automated theorem proving, by situating automated tools and methods in a
framework that supports user interaction and the construction of fully specified
axiomatic proofs. The goal is to support both mathematical reasoning and rea-
soning about complex systems, and to verify claims in both domains. Lean is an
ongoing and long-term effort, and much of the potential for automation will be
realized only gradually over time, but it already provides many useful compo-
nents, integrated development environments, and a rich API which can be used
to embed it into other systems.

In this talk, we provide a short introduction to the Lean theorem prover,
describe how mathematical structures are encoded in the system, quotient types,
the type class mechanism, and the main ideas behind the novel meta-pro-
gramming framework available in Lean. More information about Lean can be
found at http://leanprover.github.io. The interactive book “Theorem Proving in
Lean”1 is the standard reference for Lean. The book is available in PDF and
HTML formats.

1 http://leanprover.github.io/tutorial.

http://leanprover.github.io
http://leanprover.github.io/tutorial

Contents

Invited Papers

Verification of Concurrent Programs on Weak Memory Models 3
Oleg Travkin and Heike Wehrheim

Petri Nets and Semilinear Sets (Extended Abstract) 25
Hsu-Chun Yen

Program Verification

Termination of Single-Path Polynomial Loop Programs 33
Yi Li

Relation-Algebraic Verification of Prim’s Minimum Spanning
Tree Algorithm . 51

Walter Guttmann

Certified Impossibility Results and Analyses in Coq of Some
Randomised Distributed Algorithms . 69

Allyx Fontaine and Akka Zemmari

Calculating Statically Maximum Log Memory Used by Multi-threaded
Transactional Programs . 82

Anh-Hoang Truong, Ngoc-Khai Nguyen, Dang Van Hung,
and Duc-Hanh Dang

Design, Synthesis and Testing

Synthesis of Petri Nets with Whole-Place Operations and Localities 103
Jetty Kleijn, Maciej Koutny, and Marta Pietkiewicz-Koutny

Schedulers and Finishers: On Generating the Behaviours
of an Event Structure. 121

Annabelle McIver, Tahiry Rabehaja, and Georg Struth

On the Expressiveness of Symmetric Communication 139
Thomas Given-Wilson and Axel Legay

Towards MC/DC Coverage of Properties Specification Patterns 158
Ana C.V. de Melo, Corina S. Păsăreanu, and Simone Hanazumi

http://dx.doi.org/10.1007/978-3-319-46750-4_1
http://dx.doi.org/10.1007/978-3-319-46750-4_2
http://dx.doi.org/10.1007/978-3-319-46750-4_3
http://dx.doi.org/10.1007/978-3-319-46750-4_4
http://dx.doi.org/10.1007/978-3-319-46750-4_4
http://dx.doi.org/10.1007/978-3-319-46750-4_5
http://dx.doi.org/10.1007/978-3-319-46750-4_5
http://dx.doi.org/10.1007/978-3-319-46750-4_6
http://dx.doi.org/10.1007/978-3-319-46750-4_6
http://dx.doi.org/10.1007/978-3-319-46750-4_7
http://dx.doi.org/10.1007/978-3-319-46750-4_8
http://dx.doi.org/10.1007/978-3-319-46750-4_8
http://dx.doi.org/10.1007/978-3-319-46750-4_9
http://dx.doi.org/10.1007/978-3-319-46750-4_10

Calculi

Unification for k-calculi Without Propagation Rules 179
Flávio L.C. de Moura

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 196
Pierre Halmagrand

Deriving Inverse Operators for Modal Logic. 214
Michell Guzmán, Salim Perchy, Camilo Rueda, and Frank D. Valencia

Specifications

Specifying Properties of Dynamic Architectures
Using Configuration Traces . 235

Diego Marmsoler and Mario Gleirscher

Behavioural Models for FMI Co-simulations . 255
Ana Cavalcanti, Jim Woodcock, and Nuno Amálio

An Abstract Model for Proving Safety of Autonomous Urban Traffic 274
Martin Hilscher and Maike Schwammberger

Composition and Transformation

Unifying Heterogeneous State-Spaces with Lenses 295
Simon Foster, Frank Zeyda, and Jim Woodcock

Ensuring Correctness of Model Transformations While
Remaining Decidable. 315

Jon Haël Brenas, Rachid Echahed, and Martin Strecker

ProofScript: Proof Scripting for the Masses . 333
Steven Obua, Phil Scott, and Jacques Fleuriot

Automata

Derived-Term Automata for Extended Weighted Rational Expressions 351
Akim Demaille

Weighted Register Automata and Weighted Logic on Data Words 370
Parvaneh Babari, Manfred Droste, and Vitaly Perevoshchikov

Hybrid Automata as Coalgebras . 385
Renato Neves and Luis S. Barbosa

XVI Contents

http://dx.doi.org/10.1007/978-3-319-46750-4_11
http://dx.doi.org/10.1007/978-3-319-46750-4_11
http://dx.doi.org/10.1007/978-3-319-46750-4_12
http://dx.doi.org/10.1007/978-3-319-46750-4_13
http://dx.doi.org/10.1007/978-3-319-46750-4_14
http://dx.doi.org/10.1007/978-3-319-46750-4_14
http://dx.doi.org/10.1007/978-3-319-46750-4_15
http://dx.doi.org/10.1007/978-3-319-46750-4_16
http://dx.doi.org/10.1007/978-3-319-46750-4_17
http://dx.doi.org/10.1007/978-3-319-46750-4_18
http://dx.doi.org/10.1007/978-3-319-46750-4_18
http://dx.doi.org/10.1007/978-3-319-46750-4_19
http://dx.doi.org/10.1007/978-3-319-46750-4_20
http://dx.doi.org/10.1007/978-3-319-46750-4_21
http://dx.doi.org/10.1007/978-3-319-46750-4_22

Temporal Logics

Temporal Logic Verification for Delay Differential Equations. 405
Peter Nazier Mosaad, Martin Fränzle, and Bai Xue

Dynamic Logic with Binders and Its Application to the Development
of Reactive Systems . 422

Alexandre Madeira, Luis S. Barbosa, Rolf Hennicker,
and Manuel A. Martins

Propositional Dynamic Logic for Petri Nets with Iteration 441
Mario R.F. Benevides, Bruno Lopes, and Edward Hermann Haeusler

Tool and Short Papers

ML Pattern-Matching, Recursion, and Rewriting: From FoCaLiZe
to Dedukti . 459

Raphaël Cauderlier and Catherine Dubois

Parametric Deadlock-Freeness Checking Timed Automata 469
Étienne André

Author Index . 479

Contents XVII

http://dx.doi.org/10.1007/978-3-319-46750-4_23
http://dx.doi.org/10.1007/978-3-319-46750-4_24
http://dx.doi.org/10.1007/978-3-319-46750-4_24
http://dx.doi.org/10.1007/978-3-319-46750-4_25
http://dx.doi.org/10.1007/978-3-319-46750-4_26
http://dx.doi.org/10.1007/978-3-319-46750-4_26
http://dx.doi.org/10.1007/978-3-319-46750-4_27

Invited Papers

Verification of Concurrent Programs
on Weak Memory Models

Oleg Travkin(B) and Heike Wehrheim(B)

Institut für Informatik, Universität Paderborn, 33098 Paderborn, Germany
{oleg82,wehrheim}@uni-paderborn.de

Abstract. Modern multi-core processors equipped with weak memory
models seemingly reorder instructions (with respect to program order)
due to built-in optimizations. For concurrent programs, weak memory
models thereby produce interleaved executions which are impossible on
sequentially consistent (SC) memory. Verification of concurrent programs
consequently needs to take the memory model of the executing processor
into account. This, however, makes most standard software verification
tools inapplicable.

In this paper, we propose a technique (and present its accompanying
tool Weak2SC) for reducing the verification problem for weak memory
models to the verification on SC. The reduction proceeds by generating –
out of a given program and weak memory model (here, TSO or PSO) – a
new program containing all reorderings, thus already exhibiting the addi-
tional interleavings on SC. Our technique is compositional in the sense
that program generation can be carried out on single processes without
ever needing to inspect the state space of the concurrent program. We
formally prove compositionality as well as soundness of our technique.

Weak2SC takes standard C programs as input and produces program
descriptions which can be fed into automatic model checking tools (like
SPIN) as well as into interactive provers (like KIV). Thereby, we allow
for a wide range of verification options. We demonstrate the effectiveness
of our technique by evaluating Weak2SC on a number of example pro-
grams, ranging from concurrent data structures to software transactional
memory algorithms.

1 Introduction

With the advent of multi-core processors, we have recently seen new types of bugs
in concurrent programs coming up1. These bugs are due to the weak memory
semantics of multi-core processors, which in their architectures are streamlined
towards high performance. In executions of concurrent programs, weak memory
causes program statements to seemingly be executed in an order different from the

1 See T. Lane. Yes, waitlatch is vulnerable to weak-memory-ordering bugs, http://
www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us, 2011, or D. Dice.
A race in LockSupport park() arising from weak memory models, https://blogs.
oracle.com/dave/entry/a race in locksupport park, 2009.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 3–24, 2016.
DOI: 10.1007/978-3-319-46750-4 1

http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park

4 O. Travkin and H. Wehrheim

program order. Two such weak memory models are TSO (total store order, the
memory model of the Intel x86 [24,38]) and PSO (partial store order, the mem-
ory model of the SPARC processor [16]). On the contrary, concurrent executions
adhering to program order are said to be sequentially consistent (SC) [29], a notion
long ago introduced by Leslie Lamport. As Lamport has already realized in 1979,
on multi-core processors concurrent programs might exhibit behaviour which is
not explainable by their program order. However, it is only today that multi-core
processor come at large use, and consequently correctness of concurrent programs
needs to be checked with respect to weak memory models.

Over the years, a lot of verification tools for concurrent programs assuming
sequential consistency have been developed (e.g., Spin [23], the tools of the CSeq
family [25] or CBMC [26]). For weak memory models, these cannot be readily
used. Thus, instead a number of specialised analysis tools have recently come up,
e.g. [3,11,19,33,40,41,44]. The technique which we propose in this paper takes
the opposite approach: instead of developing new tools for weak memory models,
we generate a new program which already contains all the statement reorderings
which a weak memory model might construct. Thereby, we reduce verification on
weak memory models to verification on sequential consistency, and hence enable
re-use of existing model checkers for concurrent programs. Our technique is para-
metric in the memory model, and applicable to all memory models with an opera-
tional definition (as opposed to an axiomatic definition like given in [32,38]). Here,
we provide a definition for three memory models: TSO, PSO and SC.

The generation of the SC-program proceeds via the construction of a so-
called store-buffer graph which abstractly represents the contents of the store-
buffer (a queue associated to a core). This construction does, however, only need
to be done for single processes (within a concurrent program): the techniques is
compositional, and hence we can avoid having to deal with the state space of the
parallel system during SC-program generation.

We have implemented this technique within our new tool Weak2SC. It takes
C programs as input and first of all produces an intermediate representation
using the LLVM compiler framework [30]. On the intermediate representation,
we have the right granularity of operations allowing us to precisely see read and
write operations (on which reorderings take place). Out of this, we separately
construct a store-buffer graph for every process. The store buffer graphs in a
sense act as control flow graphs of the SC programs. Currently, we automati-
cally generate SC programs in two forms: as Promela code (and thus input to
the model checker Spin [23]) and as logical formulae (input to the interactive
prover KIV [22]). In principle, however, code generation is possible for every
verification tool allowing for nondeterminstic programs. So far, our tool covers
the TSO and PSO memory models. In this and in the full automation of our
transformations, we extend the approach of [43]. We have carried out a number
of experiments on mutual exclusion algorithms, concurrent data structures and
a software transactional memory algorithm. The experiments show that we can
indeed detect errors in programs which just appear in weak memory models, and
we can verify correctness of corrected (i.e., fenced) versions.

Verification of Concurrent Programs on Weak Memory Models 5

2 Memory Models – TSO, PSO and SC

Weak memory models describe the semantics of concurrent programs when exe-
cuted on multi-core processors. Multi-core processors are highly optimized for
performance, but these optimizations are – if one takes a correctness point of
view – only sound for sequential programs. As long as sequential programs are
run on multi-core processors, their semantics, i.e., the executions they exhibit,
stay the same. When concurrent programs are run on multi-core processors, their
executions show interleaved behaviour which is not explainable by the program
order of their sequential parts. Weak memory models seem to reorder program
instructions.

A large amount of research so far has gone into finding out what reorderings
which memory model will produce [6]. For the two weak memory models we con-
sider here (TSO and PSO), the reorderings can best be explained operationally
by looking at the way access to shared memory takes place. In both TSO and
PSO, cores have local store buffers which cache values written by processes run-
ning in these cores. Caching allows for faster access: if a variable needs to be
read which is cached, access to shared memory can be avoided and instead the
local copy in the store buffer is taken. Unlike real caches, no coherence protocols
are run on store buffers to prevent them from getting inconsistent. Occasion-
ally, the contents of the store buffer is flushed into main memory. Flushing can
be enforced by adding memory barriers to the program code, so called fence
operations. TSO and PSO deviate in the way they organize their store buffers:
TSO employs a single FIFO queue and PSO a FIFO queue per shared variable.
In both memory models, flushing nondeterministically flushes one entry of the
queue(s) to shared memory. For PSO, this means that variable values are poten-
tially flushed into main memory in an order different from the order of writing
them to the store buffer.

For a more detailed explanation, consider the three examples programs in
Fig. 1. They give three so-called litmus tests (taken from [24]) which exemplify
a specific form of reordering. For each litmus test, we give the initial values of
shared variables (x and y), the code of two processes and possible final values of
registers. All these outcomes are not feasible on SC.

– The program on the left has a write-read reordering: the writing to x and y is
first of all cached in the store buffers, and thus the two reads can still read the
initial values of x and y from shared memory (possible for PSO and TSO).

– The program in the middle has an early-read: the writes to x and y are cached
in the store buffers, and the reads (of the same process) will read these vari-
ables, whereas the reads from other processes will see the values in shared
memory (valid for PSO and TSO).

– The program on the right has a write-write reordering: in PSO (and not in
TSO), the write to y can be flushed to memory before the write to x, and thus
from the point of view of process 2 these two writes are reordered.

For our reduction to SC, we will directly use this operational explanation of
reorderings via the contents of store buffers. More precisely, we will construct a

6 O. Travkin and H. Wehrheim

a) Initially : x = 0 ∧ y = 0

Process 1

1 : write(x , 1);
2 : read(y , r1);
3 :

Process 2

1 : write(y , 1);
2 : read(x , r2);
3 :

r1 = 0 ∧ r2 = 0 possible

c) Initially : x = 0 ∧ y = 0

Process 1

1 : write(x , 1);
2 : write(y , 1);
3 :

Process 2

1 : read(y , r1);
2 : read(x , r2);
3 :

r1 = 1 ∧ r2 = 0 possible

b) Initially : x = 0 ∧ y = 0

Process 1

1 : write(x , 1);
2 : read(x , r1);
3 : read(y , r2);
4 :

Process 2

1 : write(y , 1);
2 : read(y , r3);
3 : read(x , r4);
4 :

r1 = r3 = 1 ∧ r2 = r4 = 0 possible

Fig. 1. Litmus tests for (a) write-read reordering (left), (b) for early-reads (middle)
and (c) for write-write reordering (right)

symbolic contents of the store buffer for programs, and out of this generate the
new SC program. We next start with formally defining the semantics of programs
on SC, PSO, and TSO, as to be able to compare these later (which we need for
proving soundness of our reduction technique).

3 Memory Model Semantics

For programs, we assume a set Reg of registers local to processes and a set
of variables V ar, shared by processes. For simplicity, both take as values just
integers2. A set of labels L is used to denote program locations. The following
definition gives the grammar of programs.

Definition 1. A sequential program (or process) P is generated by the following
grammar:

P :: = � : read(x, r) | � : write(x, r) | � : write(x, n) |
� : r := expr | � : fence | � : skip | P1;P2 |
� : if (bexpr) then P1 else P2 fi |
� : while (bexpr) do P1 od | � : goto �′

where x ∈ V ar, n ∈ Z, r ∈ Reg, �, �′ ∈ L and bexpr is a boolean and expr an
arithmetic expression over V ar, Reg and Z.

A concurrent program S is defined as [P1|| . . . ||Pn] where all Pi, 1 ≤ i ≤ n,
are sequential programs.

2 This restriction is of course lifted in our implementation.

Verification of Concurrent Programs on Weak Memory Models 7

typeTSO =̂ (Var × Z)∗

initTSO =̂ sb = 〈 〉
writeTSO(x ,n) =̂ sb′ = sb � 〈(x ,n)〉 {skip}
writeTSO(x , r) =̂ sb′ = sb � 〈(x , reg(r))〉 {skip}
readTSO(x , r) =̂ (x �∈ sb ∧ readMTSO(x , r)) ∨ {rd(x , r)}

(x ∈ sb ∧ readLTSO(x , r)) {(r := n)}
(where n = lstTSO(x , sb))

readMTSO(x , r) =̂ reg ′ = reg [r �→ mem(x)]
readLTSO(x , r) =̂ reg ′ = reg [r �→ lstTSO(x , sb)]

fenceTSO =̂ sb = 〈 〉 {skip}
flushTSO =̂ ∃(x ,n) : sb = 〈(x ,n)〉 � sb′ {wr(x ,n)}

∧ mem ′ = mem[x �→ n]

where lstTSO(x , sb) = n iff ∃ sbpre , sbsuf : sb = sbpre � 〈(x ,n) � sbsuf ∧ x �∈ sbsuf .

Fig. 2. Memory model TSO (Color figure online)

Out of the program text, we can derive a function succ : L → L denoting the
successor of a label � in the program. Similarly, we use functions succT and
succF for the successors in if and while statements (on condition being true,
false, respectively). We assume the first statement in a sequential program to
have label �0.

Processes have a local state represented by a function reg : Reg → Z (regis-
ters) together with the value of a program counter, and concurrent programs in
addition have a shared global state represented by a function mem : V ar → Z

(shared variables). We use the notation mem[x �→ n] to stand for the function
mem′ which agrees with mem up to x which is mapped to n (and similar for
other functions). A memory model is fixed by stating how the writing to and
reading from global memory takes place. Memory models use store buffers to

typePSO =̂ (Var → Z
∗)

initPSO =̂ ∀ v ∈ Var : sb(v) = 〈 〉
writePSO(x ,n) =̂ sb′(x) = sb(x) � 〈n〉 {skip}
writePSO(x , r) =̂ sb′(x) = sb(x) � 〈reg(r)〉 {skip}
readPSO(x , r) =̂ (sb(x) = 〈 〉 ∧ readMTSO(x , r))∨ {rd(x , r)}

(sb(x) �= ∅ ∧ readLPSO(x , r)) {r := n}
(where n = lstPSO(x , sb))

readMPSO =̂ reg ′ = reg [r �→ mem(x)]
readLPSO =̂ reg ′ = reg [r �→ lstPSO(sb(x))]
fencePSO =̂ ∀ v ∈ Var : sb(v) = 〈 〉 {skip}
flushPSO =̂ ∃ x ,n : sb(x) = 〈n〉 � sb′(x) {wr(x ,n)}

∧ mem ′ = mem[x �→ n]

where lstPSO(x , sb) = last(sb(x)).

Fig. 3. Memory model PSO (Color figure online)

8 O. Travkin and H. Wehrheim

cache values of global variables. Such store buffers take different forms: in case
of TSO it is a sequence of pairs (variable,value); in case of PSO it is a mapping
from variables to sequence of values; in case of SC the store buffer is not existing
(which we model by a set which is always empty). In the semantics, the store
buffer is represented by sb.

We describe the semantics of program operations by logical formulae over
sb, reg and mem. In this, primed variables are used to denote the state after
execution of the operation. A formula like (x = 0) ∧ (reg′(r1) = 4) for instance
describes the fact that currently x has to be 0 and in the next state the register
r1 has the value 4 (and all other registers stay the same). A state s for a process
consists of a valuation of the variables pc (the program counter), sb and reg. We
write s |= p for a formula p to say that p holds true in s.

Definition 2. A memory model MM = (type, init, read, write, flush, fence)
consists of

– the type of the store buffer, and
– formulae for initialization, read, write, flush and fence operations ranging over

mem, sb and reg.

Figures 2 and 3 give the types as well as operation formulae of TSO and PSO;
Fig. 4 that of SC. In curly brackets (blue) we give the label of an operation (see
below). We assume all registers and variables to initially have value 0.

The semantics of programs is given by assigning to every statement stm
as semantics a predicate according to the given memory model, i.e., we fix
�stm�MM . Figure 5 then defines the semantics for sequential programs, para-
meterized in the memory model. We define Ops(P) to be the set of all such
predicates plus an operation �� : flush�MM for each program location � ∈ L.
Thus, Ops(P) is the set of all operations of the program P . We assume that
variables that are not mentioned by the predicates keep their value, e.g., not
mentioning mem implicitly states mem′ = mem.

Given the operations of a sequential program P , we can derive a local tran-
sition system of P . This local transition system abstracts from its environment
(i.e., other processes running concurrently) in that it assumes arbitrary states of
the global memory (which could be produced by other processes). We call this
an open semantics.

typeSC =̂ 2Var

initSC =̂ sb = ∅

writeSC (x ,n) =̂ mem ′ = mem[x �→ n] {wr(x ,n)}
writeSC (x , r) =̂ mem ′ = mem[x �→ reg(r)] {wr(x , reg(r))}
readSC (x , r) =̂ reg ′ = reg [r �→ mem(x)] {rd(x , r)}

fenceSC = true {skip}
flushSC = false {skip}

Fig. 4. Memory model SC (Color figure online)

Verification of Concurrent Programs on Weak Memory Models 9

Fig. 5. Semantics of program statements wrt. memory model MM

Transitions in the transition system will be labelled. The labels reflect the
effect of the operation as observed by the environment. Therefore, a write to a
store buffer gets a label skip whereas a flush operation gets a label wr. Mem-
ory model specific labels are given in Figs. 2, 3 and 4 behind the semantics of
operations (enclosed in curly brackets, in blue). The labels for memory model
independent operations are as follows: the label of if bexpr then . . . is reg(bexpr)
(reg current valuation of registers), and similar for while, the label of r := expr
is r := reg(expr) and that of goto simply skip. The set of all such labels is called
Lab, and the label of an operation op is label(op).

Definition 3. The local transition system of a sequential program P on memory
model MM , ltsMM (P) = (S,−→, S0), consists of

– a set of states S = {(pc, sb, reg) | pc ∈ L, sb ∈ typeMM , reg ∈ (Reg → Z)},
– a set of initial states S0 = {s ∈ S | s |= initMM ∧ s |= (pc = �0)},
– a set of transitions −→ ⊆ S × Lab × S such that for s = (pc, sb, reg) and

s′ = (pc′, sb′, reg′), we have s −lab−→ s′ iff ∃ op ∈ Ops(P),∃mem,mem′ :
((s,mem), (s′,mem′)) |= op and label(op) = lab. For such transitions, we
use the notation s −lab−→mem,mem′ s′.

Processes typically run in parallel with other processes. The semantics for paral-
lel compositions of processes is now a closed semantics already incorporating all
relevant components. We just define it for two processes here; a generalisation to
larger numbers of components is straightforward. The initial global state mem0

assigns 0 to all global variables.

Definition 4. Let Pj, j ∈ {1, 2}, be two sequential programs and let
(Sj ,−→j , S0,j), be their process local (i.e., open) labelled transitions systems for
memory model MM .

The closed MM semantics of P1 ||P2, ltsMM (P1 ||P2), is the labelled transition
system (S,−→, S0) with S⊆{(mem,s1,s2) | s1 ∈ S1, s2 ∈ S2}, S0 = {(mem0, s0,1,

10 O. Travkin and H. Wehrheim

s0,2 | s0,j ∈ S0,j}, and s = (mem, s1, s2) −lab−→ s′ = (mem′, s′
1, s

′
2) when (s1

−lab−→mem,mem′ s′
1 ∧ s2 = s′

2) or (s2 −lab−→mem,mem′ s′
2 ∧ s1 = s′

1).

Due to the open semantics for processes, we are thus able to give a compo-
sitional semantics for parallel composition. This is key to our transformation
which operates on single processes.

Ultimately, we will be interested in comparing the weak memory model
semantics of one program with the SC semantics of another. Our notion of
equality is based on bisimulation equivalence [34]. Our definition of bisimulation
compares transition systems with respect to their labels on transitions as well as
their local states.

Definition 5. Let T1 = (S,−→1, S0) be an MM1 and T2 = (Q,−→2, Q0) an
MM2 transition system.

Transition systems T1 and T2 are locally bisimilar, T1 ∼� T2, if there is a
bisimulation relation R ⊆ S × Q such that the following holds:

1. Local state equality:
∀(s, q) ∈ R, s = (pc1, sb1, reg1), q = (pc2, sb2, reg2),∀r ∈ Reg: reg1(r) =
reg2(r).

2. Matching on initial states:
∀s0 ∈ S ∃ q0 ∈ Q0 s.t. (s0, q0) ∈ R, and reversely ∀q0 ∈ Q0 ∃ s0 ∈ S0 s.t.
(s0, q0) ∈ R.

3. Mutual simulation of steps:
if (s1, q1) ∈ R and s1 −lab−→ s2, then ∃ q2 such that q1 −lab−→ q2 and (s2, q2) ∈ R,
and vice versa, if (s1, q1) ∈ R and q1 −lab−→ q2, then ∃ s2 such that s1 −lab−→ s2
and (s2, q2) ∈ R.

Similarly, one can define global bisimilarity for the closed semantics of a parallel
composition, in addition requiring equality of shared memory mem. We use the
notation ∼g to denote global bisimilarity. This lets us state our first result: Local
bisimilarity of processes implies global bisimilarity of their parallel compositions.

Theorem 1. Let P1, P
′
1, P2, P

′
2 be sequential programs such that ltsMM1(Pj) ∼�

ltsMM2(P
′
j), j = 1, 2. Then

ltsMM1(P1 ||P2) ∼g ltsMM2(P
′
1 ||P ′

2).

Proof idea: Proofs of bisimilarity proceed by giving a relation and showing this
relation to fulfill the properties of bisimilarity. Due to lack of space, we only give
the relation here. Let Rj , j = 1, 2, be the relations showing local bisimilarity
of ltsMM1(Pj) and ltsMM2(P

′
j). Out of this we construct a global bisimulation

relation which is

R := {((mem, s1, s2), (mem, q1, q2)
) | (sj , qj) ∈ Rj , j = 1, 2}.

Verification of Concurrent Programs on Weak Memory Models 11

4 Program Transformation

The basic principle behind our verification technique is to transform every
sequential program P into a program P ′ such that lts(P) for a weak mem-
ory model is locally bisimilar to lts(P ′) for SC. The construction of P ′ proceeds
by symbolic execution of P , and out of the thus constructed symbolic states
generation of P ′. The symbolic execution tracks - besides the operations being
executed and the program locations reached - store buffer contents only, and
only in a symbolic form. The symbolic form stores variable names together with
either values of Z (in case a constant was used in the write), or register names
(in case a register was used). A symbolic store buffer content for TSO might thus
for instance look like this: 〈(x, 3), (y, r1), (x, r2), (z, 5)〉. The symbolic execution
thereby generates a symbolic reachability graph, called store-buffer graph. Edges
in the graph will get labels as well, however, only symbolic ones. We refer to
these symbolic labels as the name of an operation (Names). For memory model
specific operations, this is simply the name used for the operation (e.g., flush)
with the exception that read is split into readM and readL (according to the
semantics); for the other operations it is the (unevaluated) boolean condition
bexpr or its negation (in case of if and while), or simply goto. We use names
instead of the labels of the semantics here since we still need to see the operation
which is executed.

Definition 6. A store-buffer (or sb-)graph G = (V,E, v0) of a memory model
MM consists of a set of nodes V ⊆ L × typeMM , edges E ⊆ V × Names × V
and initial node v0 ∈ V with v0 = (�0, sb0) with sb0 |= initMM .

The store-buffer graph for a program P is constructed by a form of symbolic
execution, executing program operations step by step without constructing the
concrete states of registers.

Definition 7. Let P be a sequential program. The sb-graph of P wrt. a memory
model MM , sgMM (P), is inductively defined as follows:

1. v0 := (pc, sb) with sb |= initMM ∧ pc = �0,
2. if (pc, sb) ∈ V , we add a node (pc′, sb′) and an edge (pc, sb) −name−−−→ (pc′, sb′)

if ∃ op ∈ Ops(P) such that
– (pc, pc′) |= op,
– (sb, sb′) |= sym(op) and
– name = name(op).

Here, sym(op) = op except for write(x, r) which is sb′ = sb�〈(x, r)〉 for TSO
and sb′(x) = sb(x)�〈r〉 for PSO.

Note that a store-buffer graph for memory model SC is simply a control-flow
graph. Figures 6 and 7 show the store buffer graphs of process 1 of Fig. 1(c).
Here, we directly see the difference between TSO and PSO: whereas for TSO,
the value of x will always leave the store buffer before the value of y, this is
different in PSO where both orders are possible.

12 O. Travkin and H. Wehrheim

(1, 〈 〉)

(2, 〈(x , 1)〉)

(2, 〈 〉) (3, 〈(x , 1), (y , 1)〉)

(3, 〈(y , 1)〉)

(3, 〈 〉)

write(x,1)

flush write(y,1)

write(y,1) flush

flush

Fig. 6. TSO store-buffer graph
of process 1 of Fig. 1(c)

(1, x 〉〈→�)

(2, x 〈→� 1〉, y 〉〈→�)

(2, x 〉〈→� , y 〉〈→�)(3, x 〈→� 1〉, y 〈→� 1〉)

(3, x 〉〈→� , y 〈→� 1〉) (3, x 〈→� 1〉, y 〉〈→�)

(3, x 〉〈→� , y 〉〈→�)

write(x,1)

flush write(y,1)

write(y,1) flush flush

flush flush

Fig. 7. PSO store-buffer graph of process 1 of
Fig. 1(c)

Note also that store-buffer graphs need not necessarily be finite. They are
infinite if a program has loops with write operations, but no fences in order
to enforce flushing of store buffer content. Since finiteness of the store buffer
graph is a prerequisite to our technique, we state one restriction on the class
of programs considered: all loops have to be fenced or write-free. A loop is a
sequence �1, �2, ..., �n in the transition system such that n > 1 and �1 = �n. A
loop is write-free if none of the operations executed in the loop is a write. A loop
is fenced, if at least one of the operations on the loop is a fence.

We furthermore assume that all sequential programs are in SSA-form (static
single assignment [17]), meaning that all the registers are (statically) assigned to
only once. We furthermore assume that registers are never used before defined.
Both, this and the SSA-form is guaranteed by modern compilers, e.g., the LLVM-
framework3 which we use for our approach.

Proposition 1. Let P be a process program in which every loop is fenced or
write-free. Then sgMM (P) is finite for every MM ∈ {TSO,PSO, SC}.
In the generation of the SC-program out of an sb-graph, we transform every edge
of the graph into an operation (predicate). In this, a flush operation (TSO or
PSO) in the sb-graph, flushing a symbolic store buffer contents (either (x, r) ∈ sb
or r ∈ sb(x), r being a register name), becomes a writesc(x, r) operation. For
this to be sound (w.r.t. the intended equivalence of old and new program), we
need to make sure that the contents of register r at a flush is still the same as
the one at the time of writing the pair r into the (symbolic) store buffer. This
is not the case when a write to a register is reaching a use of the register (a
so-called wd-chain) without a fence operation in between. Unfenced wd-chains
can be removed by introducing new auxiliary registers (see [43]) and our tool
Weak2SC automatically does so.

3 http://www.llvm.org

http://www.llvm.org

Verification of Concurrent Programs on Weak Memory Models 13

The generation of the SC-program now proceeds by defining the operations
of the new program (instead of program text4). Essentially, every edge in the sb-
graph gives rise to one new operation, where the nodes of the graph act as new
location labels. The sb-graph is thus the control flow graph of the new program.

Definition 8. Let G = (V,E, v0) be an sb-graph of a program P on a memory
model MM . The sequential SC program P ′ of G, prog(G), is given by the new
initial location �0 := v0 and the set of operations Ops(P ′) defined as follows: for
every edge (�, sb) −lab−→ (�′, sb′) we construct an operation

(pc = (�, sb) ∧ op ∧ pc′ = (�′, sb′))

with

op =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

skip iflab ∈ {fence, write(x, r),
write(x, n)}

readSC(x, r) if lab = readM(x, r)
writeSC(x, r) if lab = flush

∧ flushedMM (x, r, sb, sb′)
r := rsrc if lab = readL(x, r)

∧ rsrc = lstMM (x, sb)
lab else

where flushedTSO(x, r, sb, sb′) = (sb = 〈(x, r)〉�sb′) and flushedPSO(x, r, sb,
sb′) = (sb(x) = 〈r〉�sb′(x).

Note that the transformation to SC does not necessarily yield a deterministic
program again. This is for instance the case for the store buffers in Figs. 6 and 7.
Out of both graphs, we generate a nondeterministic program. This does, how-
ever, not constitute a problem when the verification tool to be used allows for
nondeterminism.

The transformation of a program on memory model MM into its SC form
(weak to SC) is finally defined as

w2sc(P,MM) =̂ prog(sgMM (P))

which lets us state our main theorem.

Theorem 2. Let P be a program with fenced or write-free loops only and with
no unfenced wd-chains and MM ∈ {PSO, TSO} a memory model. Then

ltsMM (P) ∼� ltsSC(w2sc(P,MM)).

Proof idea: Again, we only state the bisimulation relation here. The relation
contains pairs (s1, s2), both consisting of tuples (pci, sbi, regi), i = 1, 2. While
s1 can have a non-empty store buffer contents sb1, s2 (the SC state) always
has an empty store buffer. The program counter value pc2 consists of two parts:
4 Input to Spin can then be generated from a set of operations.

14 O. Travkin and H. Wehrheim

a location of the original program and a symbolic store buffer contents (out of
the sb-graph). The correspondence between s1 and s2 with respect to store buffer
contents states that a concretisation of the symbolic content (in the pc of the SC
state) yields the contents in the weak memory model. More formally, we define
two functions concMM (reg, sb) taking register values reg and a symbolic store
buffer content sb as argument and returning a concrete store buffer content for
a memory model MM ∈ {PSO, TSO} as

concTSO(reg, 〈〉) = 〈〉
concTSO(reg, 〈(x, n)〉�sb) = 〈(x, n)〉�concTSO(reg, sb)
concTSO(reg, 〈(x, r)〉�sb) = 〈(x, reg(r))〉�concTSO(reg, sb)

concPSO(reg, sb)(v) = concTSO(reg, sb(v))

Here, n ∈ Z and r ∈ Reg. With this concretisation at hand, the bisimimulation
relation for memory model MM is

RMM := {(s1, s2) | si = (pci, sbi, regi), i = 1, 2,

∧ sb2 = ∅ ∧ pc1 = first(pc2)
∧ ∀r ∈ Reg : reg1(r) = reg2(r)
∧ concMM (reg2, second(pc2)) = sb1}

5 Weak2SC – Tool

We automated our transformation in a tool framework called Weak2SC.
Figure 8 gives an overview of the verification process. The tool currently pro-
duces two sorts of outputs: code for the model checker Spin [23] for verification
of finite state concurrent programs, and input to the interactive prover KIV [22]
for proving correctness of infinite state programs, in particular parameterized
algorithms. We refrain from showing the KIV output here as the main difference
to Promela is syntactical. We refer to [41] (which we extend and automate) for
more details on the KIV output.

Fig. 8. Usage of Weak2SC in the verification process

LLVM IR: We start with the C or C++ code of an algorithm that has to be
compiled to intermediate representation (LLVM IR) and thus enables reasoning

Verification of Concurrent Programs on Weak Memory Models 15

1: @y= global i32∗ null , align 4
2: @x= global i32∗ null , align 4

3: define void @p0() nounwind {
4: entry:
5: store i32 1, i32∗ @x, align 4
6: store i32 1, i32∗ @y, align 4
7: fence seq cst
8: % 1 = load i32∗ @y, align 4
9: ret void
10: }

Fig. 9. Simple LLVM IR code
with two writes followed by a
fence and a read instruction.

Fig. 10. Store buffer graph visualization (PSO
semantics) for the LLVM IR code in 9 (left with
fence, right without fence); transition color encod-
ing: writes (red), reads (green), flush (brown),
fence (blue), local instructions (grey). (Color figure
online)

about the algorithm on a low-level, i.e., single processor instructions like reads and
writes. The intermediate representation is used for a variety of analyzes and opti-
mizations by the compiler. Hence, we can decide whether we want to deal with the
code before or after compiler optimization. The intermediate representation uses
symbolic registers and addresses instead of explicit ones. Furthermore, it provides
type information and preserves variable names from the original C/C++ program.
All of this helps with understanding the low-level version of a program, which is
crucial, since all further reasoning must be done low-level.

An example of the LLVM IR syntax is shown in Fig. 9. It shows a simple
program, a method @p0 with two writes to two shared pointers (@x and @y
declared globally) followed by fence instructions and a read of variable @y. Note
that the pointers need to be initialized before they are used, which is usually
done in the main method (not shown). Global variables in LLVM IR are prefixed
with an ‘@’. All other variables are prefixed with an ‘%’.

SB-Graph: Weak2SC parses the LLVM IR code of the compiled program and
constructs an sb-graph for each of its methods. The semantics (SC, TSO or PSO)
can be chosen upfront by the user. For TSO and PSO, Weak2SC checks whether
the program contains loops with writes but no fences. If it finds any, the user
receives a warning as such loops cannot be represented by a finite store buffer
graph and the tool would not terminate. Furthermore, Weak2SC checks for wd-
chains (see Sect. 4) in case of TSO or PSO and, if necessary, removes them.

By choosing a particular memory model, the underlying strategy for creation
of the store buffer graph is determined. By choosing SC as the target memory
model, Weak2SC generates simply a control flow graph because SC does not
have store buffers. The sb-graph is created by symbolically executing the pro-
gram and memorizing all visited combinations of locations and symbolic store

16 O. Travkin and H. Wehrheim

buffer contents. Instructions are represented by edges while nodes represent the
state before and after the instruction.

Figure 10 shows a screenshot of the sb-graph visualization in Weak2SC. On
the left, it shows the sb-graph for the code in Fig. 9, which results from choosing
PSO semantics. On the right, it shows the sb-graph for the same program, but
without the fence in line 7. Initial and final nodes in the sb-graph are highlighted
in light blue. Edges have a color encoding according to their semantics (see figure
caption). The labels slightly differ from our formal definitions in Sect. 4, but
should be straightforward. As can be observed immediately, the fence on the
left of the figure restricts executions and avoids nondeterminism while missing
fences cause an sb-graph to grow quickly. Thus, the visualization can be helpful
for finding a good placement of fences or just serve as a simple view of possible
executions. Note that we assume fences at invocation and return of a method,
and thus return statements seem to act like a fence in the sb-graph. However,
we can circumvent this assumption by unfolding different methods to one larger
method and then create the sb-graph for it. By this, reorderings across method
boundaries are included.

Promela Output: From the sb-graph, Weak2SC generates a new SC-program.
Generally, the new program can be the input to any verification tool that pro-
vides SC semantics and allows for non-determinism in programs. Figure 11 shows
the output produced by Weak2SC for the left sb-graph in Fig. 10.

The generated program has an explicit modelling of memory as an array of
fixed but arbitrary size MEM SIZE. A counter variable memUse always points to
the next free cell of the memory and is incremented whenever memory is allo-
cated. Memory is never freed, but can be allocated through the alloca statement,
which increments memUse and checks whether MEM SIZE was chosen sufficiently
and throws an error, otherwise. When space is allocated, we do not differentiate
between different types, i.e., each value (bit or integer) requires one entry in the
memory array. This simplifies reasoning and sometimes also allows us to drop
some value conversion instructions from the original program, e.g., casts from
integer to bit and vice versa. For globally defined variables like x and y in the
example, memory is allocated in the init process. All other variables represent
registers and therefore are declared locally. In the example, register %1 from the
LLVM code is represented by v1 in the Promela model.

Weak2SC generates an inline statement for each method (p0 in the exam-
ple), which can be used in different process definitions, e.g., two or more processes
running the same method concurrently. Each inline statement starts with vari-
able declarations for registers followed by the transition encoding. Each transi-
tion encoding starts at a certain label, performs some computation or non in
case of skip, and then jumps via goto to the next label. Take for instance the
transition A02y: memory[x] = 1; goto A02; in Fig. 11. It starts at A02y, writes
value 1 to the memory address pointed to by x and then goes to the location
A02. If more than one transition can be taken, then the choice is modeled by a
nondeterministic if-statement. All labels are unique and prefixed by “A” if they
belong to the first method, “B” for the second and so on. We use a compact

Verification of Concurrent Programs on Weak Memory Models 17

short memory[MEMSIZE] ;
short memUse = 1; //next free cel l
short y = null ;
short x = null ;
. . .
inline p0(){

short v1;
goto A00;
A00: goto A01x;
A01x:

i f
: : goto A02xy;
: : memory[x] = 1; goto A01;
f i ;

A02xy:
i f
: : memory[x] = 1; goto A02y;
: : memory[y] = 1; goto A02x;
f i ;

A01: goto A02y;
A02y: memory[y] = 1; goto A02;
A02x: memory[x] = 1; goto A02;
A02: goto A03;
A03: v1 = memory[y] ; goto A04;
A04: goto AEnd;
AEnd: skip ;

}
. . .
init{atomic{

alloca (1 , y) ;
alloca (1 , x) ;
. . . }}

Fig. 11. Excerpt of generated program
model (Promela) for the store buffer
graph in Fig. 10.

Algorithm tso2sc pso2sc

Dekker [21] uwl uwl
Dekker (TSO) � �
Peterson [36] × ×
Peterson (TSO) � ×
Peterson (PSO) � �
Lamport bakery [28] × ×
Lamport bakery (TSO) � ×
Lamport bakery (PSO) � �
Szymanski [39] × ×
Szymanski (TSO) � �
fib bench [1] � �
Arora queue [7] × ×
Arora queue (TSO) � ×
Arora queue (PSO) � �
Treiber stack [42] � ×
Treiber stack (PSO) � �
TML [18] � ×
TML (PSO) � �

Fig. 12. Verification results for the
transformed programs (tso2sc, pso2sc).
Brackets state the memory model for
which a program was fenced.

encoding of labels (location numbers and store buffer content, if there is any).
Each method has an “End” label used as the target label of return statements.

The generated model provides process definition stubs that have to be filled
with calls of the methods/inline statements. The init definition defines the sce-
nario for the state space exploration, i.e., a set of processes to run and initializa-
tion of variables if necessary. In Spin, the properties to be verified can be either
assertions or LTL formulae [37].

Implementation: Weak2SC supports a subset of LLVM IR. In particular, it
supports single word operations, e.g., 32/64 bit reads/writes but no multi-word
operations. If unsupported operations are detected, Weak2SC adds annotations
in the generated programs, in order to draw a developer’s attention to them. The
generation of the sb-graph and of the new program are fully automated and the
output is usually produced almost instantly.s

Weak2SC is implemented as a plug-in for the Eclipse IDE5. It has a built-in
parser for the LLVM-IR language, which is defined in the XText parser generator

5 http://www.eclipse.org

http://www.eclipse.org

18 O. Travkin and H. Wehrheim

framework. All internal models are based on the Eclipse Modelling Framework
(EMF) and allow for easy customization or extension. All program models are
generated by a template based model transformation (Acceleo framework). Sup-
port for a new target language can be added straightforwardly. It requires only
a set of templates for the representation of the store buffer graph in the new
target language. We provide a repository6 for Weak2SC with the latest files.

6 Experiments

With our automatic tool at hand, we carried out a number of experiments. The
experiments aimed at answering the following research questions:

– RQ1. Is Weak2SC able to find bugs in concurrent algorithms which are due
to weak memory models?

– RQ2. Does our tool cover a sufficiently large range of concurrent programs?
– RQ3. How does Weak2SC compare to other approaches in terms of verifi-

cation time and state space?

Experimental Setup: In order to answer the above questions, we conducted
experiments with a set of programs ranging from mutual exclusion algorithms to
concurrent data structures (like the Treiber stack [42]) and software transactional
memory algorithms (the Transactional Mutex Lock (TML) of [18]). All of these
algorithms are defined for arbitrary many processes running concurrently and
calling methods provided by these algorithms. Thus, for every experiment we
first of all defined different usage scenarios (initial state, number of processes
and their method calls). All of our experiments were conducted with Spin 6.2.3
on a Linux virtual machine with 3 GB memory and 2 cores dedicated to it (Intel
Core i5 M540, 2.53 GHz).

RQ1: In order to answer RQ1, we defined a correctness property for every
scenario (in the form of temporal logic formulas or assertions in the code). Note
that all of the algorithms are correct under SC. It turned out that almost all
examples are incorrect on at least PSO. In that case, we inspected the code
and added fences in order to fix the error. As a result, every example comes in
up to 3 versions, original, fenced for TSO and fenced for PSO (in brackets after
algorithm name). Table 1 shows the verification result for each algorithm. The
columns “tso2sc” and “pso2sc” show the results for the programs transformed for
TSO and PSO memory model, respectively. An entry × means violation and �
holding of the property. Some of the errors found for weak memory are actually
new, e.g., TML has so far not been verified for PSO. For placing appropriate
fences, we made extensive use of the sb-graph visualization.

RQ2: For answering question RQ2, we chose our case studies as to represent a
wide range of highly concurrent programs (mutexes, concurrent data structures,
STMs). In particular, we wanted to use algorithms which are vulnerable to weak

6 https://github.com/oleg82upb/lina4wm-tools

https://github.com/oleg82upb/lina4wm-tools

Verification of Concurrent Programs on Weak Memory Models 19

memory errors. This is typically the case for concurrent data structures and
STMs since – for performance reasons – these are intentionally designed with
data races. For race-free programs it would be sufficient to verify the SC version.
Out of our examples, we were only unable to construct the sb-graph due to an
unfenced writing loop (uwl) for the unfenced version of Dekker [21]. The fenced
version (where the fence is known to be needed anyway) was checkable. Further-
more, it turned out that the supported subset of LLVM IR is fully sufficient for
all such algorithms. In fact, whenever we ran over a feature in an algorithm not
covered so far, we slightly extended our subset.

RQ3: Research question RQ3 was the most difficult to answer. A lot of verifica-
tion tools for weak memory models either do not support C, or use programs and
property specifications syntactically streamlined for the SV-COMP competition.
Thus, we could not find a set of benchmarks working for all tools. However, as
the examples studied here are mainly the same, we give some remarks on the
runtimes taken from publications and a comparison to ours at the end of this
paragraph.

In order to gain proper data for performance comparison, we compared our
approach against those using operational memory models for TSO and PSO
[4,35,38,40]. Operational models explicitly define store buffers and simulate their
behaviour during program verification. In order to rule out influences on the
results because of the usage of different tools, we implemented an operational
model ourselves within Spin. We took the operational memory model for TSO
provided by [40] and adapted their technique to create an operational model for
PSO. To this end, we extended Weak2SC in order to generate program models
for Promela that can be combined with any of the given operational models (SC,
TSO or PSO) interchangeably. For the extension, we defined another set of code
templates for Promela in Acceleo.

In order to determine the impact on the verification performance, we took
the programs from the earlier experiments (in case of bugs, the fenced version)
and measured the full exploration time and the number of explored states. For
the mutex algorithms, it was a single scenario with two processes each. For the
Treiber stack [42], the queue of Arora et al. [7] and the TML [18] we conducted
results for several scenarios, varying in the number of processes and method calls
per process. Table 1 shows the exploration performance results. The columns
tso2sc and pso2sc again represent the results for the transformed programs; tso
and pso are the columns for the explicit operational model. Column #i states the
number of instructions per method in the LLVM IR code, whereas #n states the
number of nodes in the generated sb-graph and therefore roughly indicates how
much behavior is added due to the underlying weak memory. The numbers are
“/”-separated where different or asymmetric methods are present. Column #s
states the number of states explored and t the time in seconds that was required
for the full exploration.

The scenarios for the mutex algorithms each consist of 2 processes trying
to acquire the lock concurrently. For the non-mutex algorithms, the scenario is
given in each row of the table. It is a parallel composition of a series of method

20 O. Travkin and H. Wehrheim

Table 1. Verification results for full state space exploration error: #i are lines of LLVM
IR instructions (“/” separated for each method); #n number of nodes in the sb-graph
(“/” separated for each sb-graph); #s the number of states explored t is the time in
seconds.

Algorithm #i tso tso2sc pso pso2sc

#s t #s t #n #s t #s t #n

Dekker (TSO) 33 2232 0.01 1208 0.01 56 2368 0.02 1441 ≈0 60

Peterson (PSO) 24 2149 0.01 1408 ≈0 30 2149 0.02 1408 ≈0 30

Lamp. B. (PSO) 49 12.2 k 0.04 7525 0.01 59 12.2 k 0.07 7525 0.01 59

Szymanski (TSO) 32/35 22.5 k 0.12 11.7 k 0.02 59/68 22.5 k 0.17 14.7 k 0.03 70/82

PGSQL [4] 11 1818 0.01 1817 0.01 26 7.2 k 0.14 7547 0.02 42

Burns (PSO) [14] 3/19/11 737 ≈0 448 ≈0 4/30/12 737 ≈0 458 ≈0 4/30/12

Fib bench [1] 21 5M 12.2 1.8M 2.1 67 4.5M 24.4 1.8M 2.52 67

Arora Q. (PSO)

uuuoouo‖sss 9/15/30 329.3 k 1.08 147.2 k 0.3 13/18/49 339.9 k 1.83 160.3 k 0.31 13/18/52

uououo‖ss‖ss 9/15/30 24.5M 134 7.90M 21.8 13/18/49 24.1M 258 8.1M 18.9 13/18/52

Treiber St.

uouo‖uouo 13/16 215.3 k 0.74 132.2 k 0.34 16/29 218.6 k 1.53 143.7 k 0.31 16/31

uuuooo‖ ooouuu 13/16 2.6M 11.2 1.8M 4.94 16/29 2.7M 22 2M 4.89 16/31

TML (PSO)

bwrc ‖ bwrc 30 2204 0.01 1426 0.01 55 2251 0.01 1578 ≈0 59

bwrrc ‖ bwrrc 37 3739 0.01 1298 ≈0 86 8176 0.07 5943 0.02 111

‖2
i=1 (bwci ‖ brci) 22/23 22.1M 174 7.17M 28.3 33/38 23.4M 393 7,9M 33.3 42/58

calls by each process, where u (resp. o) denotes the push (resp. pop) method
of the queue and stack implementations. In case of the queue, an s denotes a
steal method from non-owning process as it is a work-stealing queue. The TML
algorithm provides methods begin (b), write (w), read (r) and commit (c). Since
these would be rather short methods, we composed them into larger transactions.

Our results suggest that the transformation-based approach provides a sig-
nificant performance improvement over the use of an operational memory model
in most cases. All experiments show a roughly similar sized or a smaller state
space for the transformed programs than for their operational counterpart (up to
a factor of ca. 3). One reason for this is certainly the encoding of the operational
memory, which requires lots of auxiliary variables to model the store buffer and
which is not necessary7 in the transformed programs. From our experiments, we
can also observe a speedup of up to a magnitude and the results suggest that the
speedup grows with the number of concurrent processes (see verification times
for Arora queue and TML).

For a comparison with approaches other than the operational modelling, we
could only look at publications. In [2], experiments were conducted with other
tools like CBMC [5], goto-instrument [4], or Nidhugg [2], all of which take weak
memory semantics into account during verification and which were used to verify
the same set of mutex algorithms as we did. While CBMC and goto-instrument
took seconds or in some cases even minutes to get results, only Nidhugg

7 With the exception of max. 1 auxiliary variable per write in a loop.

Verification of Concurrent Programs on Weak Memory Models 21

performed comparably well to Weak2SC. However, a direct comparison is not
really fair as they verified slightly different implementations with different prop-
erty instrumentation.

7 Conclusion

Verification of concurrent algorithms under weak memory, such as TSO and
PSO, is difficult and only few tools have a built-in support for it. We presented
a practical reduction approach from TSO or PSO to SC and its implementation
in Weak2SC. The reduction enables verification with standard tools for con-
current programs. The transformation exploits the fact that most of the possible
reorderings under weak memory can be computed statically. Our approach uses
these to generate a new program. Because we need finite sb-graphs, our app-
roach is restricted to the class of programs that have no unfenced writing loops.
Our results show that Weak2SC is practically useful for finding errors within
a short amount of time. As future work we plan for performance optimizations
by developing more compact representations of sb-graphs.

Related work. In the last years, several approaches were proposed in order to deal
with software verification under the influence of weak memory models, ranging
from theoretical results to practical techniques. We comment on the latter.

A number of approaches (e.g., [4,8,15,20,31]) like us propose reduction tech-
niques, which allow for a reuse of verification techniques developed for SC. In
spirit closest to us is [8]. They propose a translation from a program run under
TSO to SC, assuming a so called age bound on the time an entry can stay in the
store buffer. Their approach needs a large number of auxiliary variables in the
generated program. While this gives an equivalent program on SC (like in our
case), [20] on the other hand generates an SC program overapproximating the
behaviour of the TSO or PSO program.

Another class of approaches uses partial order (PO) representations of pro-
gram executions and PO reduction techniques [2,5,9], as to cope with the large
number of interleavings generated by concurrent programs plus the reorderings.
From looking at the published runtimes of these approaches, we conjecture our
tool to compare favourably well to these.

A further type of approaches apply underapproximating techniques like test-
ing, bounded model checking or monitoring [5,11–13]. This is in particular often
applied for automatic fence placement [10,27].

Acknowledgements. We thank Annika Mütze, Monika Wedel and Alexander Hetzer
for their help with the implementation of Weak2SC.

22 O. Travkin and H. Wehrheim

References

1. SV-Competition Benchmarks, April 2016. https://github.com/dbeyer/
sv-benchmarks

2. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 28

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28756-5 15

4. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37036-6 28

5. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 9

6. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

7. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: Proceedings of the Tenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA 1998, pp. 119–129. ACM, New
York (1998)

8. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 9

9. Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy TSO reachability. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 267–282. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 18

10. Burckhardt, S., Alur, R., Martin, M.M.K.: Checkfence: checking consistency of
concurrent data types on relaxed memory models. In: Ferrante, J., McKinley, K.S.
(eds.) Proceedings of the ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation, pp. 12–21. ACM (2007)

11. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 12

12. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19835-9 3

13. Burnim, J., Sen, K., Stergiou, C.: Testing concurrent programs on relaxed memory
models. In: Dwyer, M.B., Tip, F. (eds.) ISSTA 2011, pp. 122–132. ACM (2011)

14. Burns, J., Lynch, N.A.: Mutual exclusion using indivisible reads and writes. In:
18th Allerton Conference on Communication, Control, and Computing, pp. 833–
842 (1980)

https://github.com/dbeyer/sv-benchmarks
https://github.com/dbeyer/sv-benchmarks
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-662-46681-0_28
http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-642-28756-5_15
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-22110-1_9
http://dx.doi.org/10.1007/978-3-662-46675-9_18
http://dx.doi.org/10.1007/978-3-540-70545-1_12
http://dx.doi.org/10.1007/978-3-642-19835-9_3
http://dx.doi.org/10.1007/978-3-642-19835-9_3

Verification of Concurrent Programs on Weak Memory Models 23

15. Cohen, E., Schirmer, B.: From Total Store Order to Sequential Consistency:
a practical reduction theorem. In: Kaufmann, M., Paulson, L.C. (eds.) ITP
2010. LNCS, vol. 6172, pp. 403–418. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 28

16. I. Corporate SPARC International. The SPARC architecture manual: version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1992)

17. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst. 13(4), 451–490 (1991)

18. Dalessandro, L., Dice, D., Scott, M., Shavit, N., Spear, M.: Transactional mutex
locks. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol.
6272, pp. 2–13. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15291-7 2

19. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935,
pp. 84–104. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 7

20. Dan, A., Meshman, Y., Vechev, M., Yahav, E.: Effective abstractions for verifica-
tion under relaxed memory models. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.)
VMCAI 2015. LNCS, vol. 8931, pp. 449–466. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46081-8 25

21. Dijkstra, E.W.: Cooperating sequential processes. In: Genuys, F. (ed.) Program-
ming Languages: NATO Advanced Study Institute, pp. 43–112. Academic Press,
New York (1968)

22. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV - overview and
VerifyThis competition. Softw. Tools Techn. Transfer 17(6), 1–18 (2014)

23. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Reading (2004)

24. Intel, Santa Clara, CA, USA. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1, May 2012

25. Inverso, O., Nguyen, T.L., Fischer, B., La Torre, S., Parlato, G.: Lazy-cseq: a
context-bounded model checking tool for multi-threaded C-programs. In: Cohen,
M.B., Grunske, L., Whalen, M. (eds.) 30th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2015, Lincoln, NE, USA, pp. 807–812.
IEEE, 9–13 November 2015

26. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54862-8 26

27. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
SIGACT News 43(2), 108–123 (2012)

28. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

29. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

30. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code
Generation and Optimization (CGO 2004), San Jose, CA, USA, pp. 75–88. IEEE
Computer Society, 20–24 March 2004

31. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying
programs on relaxed memory models. In: Pol, J., Weber, M. (eds.) SPIN
2010. LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16164-3 16

http://dx.doi.org/10.1007/978-3-642-14052-5_28
http://dx.doi.org/10.1007/978-3-642-14052-5_28
http://dx.doi.org/10.1007/978-3-642-15291-7_2
http://dx.doi.org/10.1007/978-3-642-38856-9_7
http://dx.doi.org/10.1007/978-3-662-46081-8_25
http://dx.doi.org/10.1007/978-3-662-46081-8_25
http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://dx.doi.org/10.1007/978-3-642-16164-3_16
http://dx.doi.org/10.1007/978-3-642-16164-3_16

24 O. Travkin and H. Wehrheim

32. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens,
S., Alur, R., Martin, M.M.K., Sewell, P., Williams, D.: An axiomatic memory
model for POWER multiprocessors. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 495–512. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31424-7 36

33. Meshman, Y., Rinetzky, N., Yahav, E.: Pattern-based synthesis of synchronization
for the C++ memory model. In: Kaivola, R., Wahl, T. (eds.) Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, pp. 120–127. IEEE,
27–30 September 2015

34. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

35. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(Relaxed Memory Order). In: SPAA, pp. 34–41 (1995)

36. Peterson, G.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3),
115–116 (1981)

37. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, pp. 46–57. IEEE
Computer Society, 31 October–1 November 1977

38. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

39. Szymanski, B.K.: A simple solution to Lamport’s concurrent programming problem
with linear wait. In: Proceedings of the 2nd International Conference on Super-
computing, ICS 1988, pp. 621–626. ACM, New York (1988)

40. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under
weak memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol.
8244, pp. 311–326. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03077-7 21

41. Travkin, O., Wehrheim, H.: Handling TSO in mechanized linearizability proofs.
In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 132–147. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-13338-6 11

42. Treiber, R.K.: Systems programming: coping with parallelism. Technical report RJ
5118, IBM Almaden Res. Ctr. (1986)

43. Wehrheim, H., Travkin, O.: TSO to SC via symbolic execution. In: Piterman, N.
(ed.) HVC 2015. LNCS, vol. 9434, pp. 104–119. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-26287-1 7

44. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory model
specification framework with integrated model checking capability. Concurrency
Comput. Pract. Experience 17(5–6), 465–487 (2005)

http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-642-31424-7_36
http://dx.doi.org/10.1007/978-3-319-03077-7_21
http://dx.doi.org/10.1007/978-3-319-13338-6_11
http://dx.doi.org/10.1007/978-3-319-26287-1_7
http://dx.doi.org/10.1007/978-3-319-26287-1_7

Petri Nets and Semilinear Sets
(Extended Abstract)

Hsu-Chun Yen(B)

Department of Electrical Engineering, National Taiwan University,
Taipei 106, Taiwan, Republic of China

yen@cc.ee.ntu.edu.tw

Abstract. Semilinear sets play a key role in many areas of computer
science, in particular, in theoretical computer science, as they are char-
acterizable by Presburger Arithmetic (a decidable theory). The reacha-
bility set of a Petri net is not semilinear in general. There are, however,
a wide variety of subclasses of Petri nets enjoying semilinear reachability
sets, and such results as well as analytical techniques developed around
them contribute to important milestones historically in the analysis of
Petri nets. In this talk, we first give a brief survey on results related to
Petri nets with semilinear reachability sets. We then focus on a technique
capable of unifying many existing semilinear Petri nets in a coherent way.
The unified strategy also leads to various new semilinearity results for
Petri nets. Finally, we shall also briefly touch upon the notion of almost
semilinear sets which witnesses some recent advances towards the general
Petri net reachability problem.

Petri nets (or, equivalently, vector addition systems) represent one of the most
popular formalisms for specifying, modeling, and analyzing concurrent systems.
In spite of their popularity, many interesting problems concerning Petri nets
are either undecidable or of very high complexity. For instance, the reachability
problem is known to be decidable [13] (see also [6]) and exponential-space-hard
[12]. (The reader is referred to [11] for an improved upper bound.) Historically,
before the work of [13], a number of attempts were made to investigate the
problem for restricted classes of Petri nets, in hope of gaining more insights and
developing new tools in order to conquer the general Petri net reachability prob-
lem. A common feature of those attempts is that decidability of reachability for
those restricted classes of Petri nets was built upon their reachability sets being
semilinear. As semilinear sets precisely correspond to the those characterized
by Presburger Arithmetic (a decidable theory), decidability of the reachability
problem follows immediately.

Formally speaking, a Petri net (PN, for short) is a 3-tuple (P, T, ϕ), where
P is a finite set of places, T is a finite set of transitions, and ϕ is a flow function
ϕ : (P × T) ∪ (T × P) → N . A marking is a mapping μ : P → N , specifying
a PN’s configuration. (μ assigns tokens to each place of the PN.) A transition
t ∈ T is enabled at a marking μ iff ∀p ∈ P , ϕ(p, t) ≤ μ(p). If a transition t
is enabled, it may fire by removing ϕ(p, t) tokens from each input place p and
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 25–29, 2016.
DOI: 10.1007/978-3-319-46750-4 2

26 H.-C. Yen

putting ϕ(t, p′) tokens in each output place p′. We then write μ
t→ μ′, where

μ′(p) = μ(p)−ϕ(p, t)+ϕ(t, p), ∀p ∈ P . A sequence of transitions σ = t1...tn is a
firing sequence from μ0 iff μ0

t1→ μ1
t2→ · · · tn→ μn for some markings μ1,...,μn. (We

also write ‘μ0
σ→ μn’ or ‘μ0

σ→’ if μn is irrelevant.) Given a PN P = (P, T, ϕ), its
reachability set w.r.t. the initial marking μ0 is R(P, μ0)={μ | μ0

σ→ μ, for some
σ ∈ T ∗}. The reachability relation of P is R(P)={(μ0, μ) | μ0

σ→ μ, for some
σ ∈ T ∗}.

A subset L of Nk is a linear set if there exist vectors v0, v1, . . . , vt in Nk such
that L = {v | v = v0+m1v1+· · ·+mtvt, mi ∈ N}. The vectors v0 (referred to as
the constant vector) and v1, v2, . . . , vt (referred to as the periods) are called the
generators of the linear set L. A set SL ⊆ Nk is semilinear if it is a finite union of
linear sets, i.e., SL =

⋃
1≤i≤d Li, where Li (⊆ Nk) is a linear set. It is worthy of

noting that semilinear sets are exactly those that can be expressed by Presburger
Arithmetic (i.e., first order theory over natural numbers with addition), which
is a decidable theory.

A PN is said to be semilinear if has a semilinear reachability set. In addi-
tion to the trivial example of finite PNs, the following are notable classes of
semilinear PNs, including PNs of dimension 5 [4], conflict-free [7], persistent [7],
normal [15], sinkless [15], weakly persistent [14], cyclic [1], communication-free
PNs [2,5], and several others (see [16] for more). It is also known that checking
whether a PN has a semilinear reachability set is decidable [3]. In view of the
above, a natural question to ask is to identity, if at all possible, the key behind
the exhibition of semilinear reachability sets for such a wide variety of restricted
PN classes, while their restrictions are imposed on the PN model either struc-
turally or behaviorally. We are able to answer the question affirmatively to a
certain extent. In what follows, we give a sketch for the idea behind our unified
strategy. The idea was originally reported in [17]. As we shall explain later, for
each of considered PNs, any reachable marking is witnessed by somewhat of a
canonical computation which will be elaborated later. Furthermore, such canon-
ical computations can be divided into a finite number of groups, each of which
has a finite number of “minimal computations” associated with a finite number
of “positive loops.” As one might expect, such minimal computations and posi-
tive loops exactly correspond to the constant vectors and periods, respectively,
of a semilinear set. It is worth pointing out that the implication of our approach
is two-fold. First, we are able to explain in a unified way a variety of semilin-
earity results reported in the literature. Second, perhaps more importantly, our
approach yields new results in the following aspects:

(i) new semilinearity results for additional subclasses of PNs,
(ii) unified complexity and decidability results for problems including reachabil-

ity, model checking, etc.

Given an α = r1 · · · rd−1 ∈ T ∗ and an initial marking μ0, a computation of
the form

π : μ0
σ0→ μ1

r1→ μ̄1
σ1→ μ2

r2→ · · · rd−1→ μ̄d−1
σd−1→ μd,

Petri Nets and Semilinear Sets (Extended Abstract) 27

where μi, μ̄j ∈ Nk, and σr ∈ T ∗ (0 ≤ i ≤ d, 1 ≤ j ≤ d − 1, 0 ≤ r ≤ d), is called
an α-computation. We write cv(π) = (μ1, ..., μd). Suppose δi ∈ T ∗, 1 ≤ i ≤ d,
are transition sequences such that Δ(δi) ≥ 0 and (μi +

∑i−1
j=1 Δ(δj))

δi→, then
following the monotonicity property of PNs,

π′ : μ0
σ0δ1→ μ′

1
r1→ μ̄′

1
σ1δ2→ μ′

2
r2→ · · · rd−1→ μ̄′

d−1

σd−1δd→ μ′
d

remains avalidPNcomputation. In fact,wehaveµ0
σ0(δ1)

+r1σ1(δ2)
+r2···rd−1σd−1(δd)

+

→ ,
meaning that δ1, ..., δd constitute “pumpable loops”. In view of the above and if

we write cv(π)
(δ1,··· ,δd)⇒ cv(π′), clearly “⇒” is transitive as v

(α1,··· ,αd)⇒ v′ and

v′ (δ1,··· ,δd)⇒ v′′ imply v
(α1δ1,··· ,αdδd)⇒ v′′, where v, v′, v′′ ∈ (Nk)d, k = |P |.

It turns out that the following properties are satisfied by several interesting
subclasses of PNs all of which have semilinear reachability sets. With respect to
an α ∈ T d,

(1) there is a finite set of transition sequences F ⊆ T ∗ with nonnegative displace-

ments (i.e., ∀γ ∈ F , Δ(γ) ≥ 0) such that if (μ1, · · · , μd)
(δ1,··· ,δd)⇒ (μ′

1, · · · , μ′
d)

in some α-computations, then δi = γi
1 · · · γi

hi
, for some hi where γi

j ∈ F (i.e.,
δi can be decomposed into γi

1 · · · γi
hi

), and
(2) the number of “minimal” α-computations is finite.

Intuitively, (2) ensures the availability of a finite set of constant vectors of a
semilinear set, while (1) allows us to construct a finite set of periods based on
those Δ(γ), γ ∈ F .

A PN P = (P, T, ϕ) with initial marking μ0 is said to be computationally
decomposable (or simply decomposable) if every reachable marking μ ∈ R(P, μ0)
is witnessed by an α-computation (α ∈ T ∗) which meets Conditions (1) and (2)
above. P is called globally decomposable if P is decomposable for every initial
marking μ0 ∈ Nk. Let RRα(P, μ0) = {cv(π) | π is an α-computation from μ0

for some α ∈ T ∗}, and RRα(P) = {(μ0, cv(π)) | π is an α-computation from
μ0 for some α ∈ T ∗}. We are able to show that if a PN is decomposable (resp.,
globally decomposable) then RRα(P, μ0) (resp., RRα(P)) is semilinear.

Among various subclasses of PNs, conflict-free, persistent, normal, sinkless,
weakly persistent, cyclic, and communication-free PNs can be shown to be
decomposable. Furthermore, each of the above classes of PNs also enjoys a nice
property that

(3) there exists a finite set {α1, ..., αr} ⊆ T ∗ (for some r) such that every
reachable marking of the PN is witnessed by an αi-computation, for some
1 ≤ i ≤ r.

As a result, our unified strategy shows R(P, μ0) of a PN P with initial marking μ0

for each of the above subclasses to be semilinear. Furthermore, a stronger result
shows that conflict-free and normal PNs are globally decomposable; hence, their
reachability relations R(P) are always semilinear.

28 H.-C. Yen

For semilinear PNs, a deeper question to ask is: What is the size of its semi-
linear representation? An answer to the above question is key to the complexity
analysis of various problems concerning such semilinear PNs. To this end, we
are able to incorporate another ingredient into our unified strategy, yielding size
bounds for the semilinear representations of the reachability sets. Consider a
computation μ

σ→ μ′. Suppose T = {t1, ..., th}. For a transition sequence σ ∈ T ∗,
let PK(σ) = (#σ(t1), ...,#σ(th)) be an h-dimensional vector of nonnegative inte-
gers, representing the so-called Parikh map of σ. The i-th coordinate denotes the
number of occurrences of ti in σ. In addition to Conditions (1)-(3) above, if the
following is also known for a PN:

(4) a function f(μ) which bounds the size of each of the minimal elements of
ER(μ) = {(PK(σ), μ′) | μ

σ→ μ′} (i.e., the so-called extended reachability
set),

then we are able to come up with a bound for the size of the semilinear repre-
sentation of a PN’s reachability set.

Semilinearity for PNs is also related to the concept of the so-called flatness.
A PN is said to be flat if there exist some words σ1, ..., σr ∈ T ∗ such that every
reachable marking μ is witnessed by a computation μ0

σ→ μ with σ ∈ σ∗
1 · · · σ∗

r ,
i.e., it has a witnessing sequence of transitions belonging to a bounded language.
It is not hard to see the reachability set of a flat PN to be semilinear, and as
shown in [10], a variety of known PN classes are indeed flat. In a recent article
[9], flatness is shown to be not only sufficient but also necessary for a PN to be
semilinear. We shall compare flat PNs with the aforementioned decomposable
PNs.

Finally, we also briefly touch upon recent advances for the general PN reacha-
bility problem in which the notion of (almost) semilinearity is essential in yielding
a simpler decidability proof [8] in comparison with that of [6,13].

References

1. Araki, T., Kasami, T.: Decidability problems on the strong connectivity of Petri
net reachability sets. Theor. Comput. Sci. 4, 99–119 (1977)

2. Esparza, J.: Petri nets, commutative grammars and basic parallel processes. Fun-
damenta Informaticae 30, 24–41 (1997)

3. Hauschildt, D.: Semilinearity of the Reachability Set is Decidable for Petri Nets.
Technical report FBI-HH-B-146/90, University of Hamburg (1990)

4. Hopcroft, J., Pansiot, J.: On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci. 8, 135–159 (1979)

5. Huynh, D.: Commutative grammars: the complexity of uniform word problems.
Inf. Control 57, 21–39 (1983)

6. Kosaraju, R.: Decidability of reachability in vector addition systems. In: 14th ACM
Symposium on Theory of Computing, pp. 267–280 (1982)

7. Landweber, L., Robertson, E.: Properties of conflict-free and persistent Petri nets.
JACM 25, 352–364 (1978)

8. Leroux, J.: The general vector addition system reachability problem by presburger
inductive invariants. In: LICS 2009, pp. 4–13. IEEE Computer Society (2009)

Petri Nets and Semilinear Sets (Extended Abstract) 29

9. Leroux, J.: Presburger vector addition systems. In: LICS 2013, pp. 23–32. IEEE
Computer Society (2013)

10. Leroux, J., Sutre, G.: Flat counter automata almost everywhere!. In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005). doi:10.1007/11562948 36

11. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
LICS 2015, pp. 56–67. IEEE Computer Society (2015)

12. Lipton, R.: The Reachability Problem Requires Exponential Space. Technical
report 62, Yale University, Dept. of CS, January 1976

13. Mayr, E.: An algorithm for the general Petri net reachability problem. In: 13th
ACM Symposium on Theory of Computing, pp. 238–246 (1981)

14. Yamasaki, H.: On weak persistency of Petri nets. Inf. Process. Lett. 13, 94–97
(1981)

15. Yamasaki, H.: Normal Petri nets. Theor. Comput. Sci. 31, 307–315 (1984)
16. Yen, H.: Introduction to Petri net theory. In: Esik, Z., Martin-Vide, C., Mitrana,

V. (eds.) Recent Advances in Formal Languages and Applications. Studies in Com-
putational Intelligence, vol. 25, pp. 343–373. Springer, Heidelberg (2006)

17. Yen, H.: Path decomposition and semilinearity of Petri nets. Int. J. Found. Comput.
Sci. 20(4), 581–596 (2009)

http://dx.doi.org/10.1007/11562948_36

Program Verification

Termination of Single-Path Polynomial
Loop Programs

Yi Li(B)

Chongqing Key Laboratory of Automated Reasoning and Cognition,
CIGIT, CAS, Chongqing, China

zm liyi@163.com

Abstract. Termination analysis of polynomial programs plays a very
important role in applications of safety critical software. In this paper, we
investigate the termination problem of single-path polynomial loop pro-
grams (SPLPs) over the reals. For such a loop program, we first assume
that the set characterized by its loop guards is closed, bounded and con-
nected. And then, we give some conditions and prove that under such
conditions, the termination of single-path loop programs is decidable over
the reals.

1 Introduction

Termination analysis of loop programs is endowed with a great importance
for software correctness. The popular method for termination analysis is based
on the synthesis of ranking functions. Several methods have been presented in
[1,4–7,11–15,17,22] on the synthesis of ranking functions. Also, the complexity
of the linear ranking function problem for linear loops is discussed in [2–5].

For example, In 2001, Colón and Sipma [13] synthesized linear ranking func-
tions (LRFs for short) to prove loop termination by the theory of polyhedra. For
single-path linear loops, Podelski and Rybalcheko [22] first proposed a complete
and efficient method for synthesizing LRFs based on linear programming when
program variables range over the reals and rationals in 2004. Their method is
dependent on Farkas’ lemma which provides a technique to extract hidden con-
straints from a system of linear inequalities. Bradley et al. [6,7] extended the
work presented in [13] and showed how to synthesize lexicographic LRFs with lin-
ear supporting invariants over multi-path linear constraint loops in 2005. In [12],
Chen et al. gave a technique to generate non-linear ranking functions for poly-
nomial programs by solving semi-algebraic systems. Cook et al. [14] described
an automatic method for finding sound under-approximations to weakest pre-
conditions to termination.

In 2012, [11] characterized a method to generate proofs of universal termina-
tion for linear simple loops based on the synthesis of disjunctive ranking relations.
Their method is a generalization of the method given in [22]. In [17], a method
was proposed by Ganty and Genaim to partition the transition relations, which
can be applied to conditional termination analysis. Bagnara et al. [1] analysed ter-
mination of single-path linear constraint loops by the existence of eventual LRFs,
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 33–50, 2016.
DOI: 10.1007/978-3-319-46750-4 3

34 Y. Li

where the eventual LRFs are linear functions that become ranking functions after
a finite unrolling of the loop. In 2013, Cook et al. [15] presented a method for prov-
ing termination by Ramsey-based termination arguments instead of lexicographic
termination arguments. For lasso programs, Heizmann et al. suggested a series of
techniques to synthesize termination arguments in [18–20].

It is well known that the termination of loop programs is undecidable, even for
the class of linear programs [25]. Existence of ranking function is only a sufficient
(but not necessary) condition on the termination of a program. That is, it is easy
to construct programs that terminate, but have no ranking functions. In contrast
to the above methods for synthesizing ranking functions, [9,25] tried to detect
decidable subclasses. In [25], Tiwari proves that the termination of a class of
single-path loops with linear guards and assignments is decidable, providing a
decision procedure via constructive proofs. Braverman [9] generalized the work
of Tiwari, and showed that termination of a simple of class linear loops over the
integer is decidable. Xia et al. [26] gave the NZM (Non-Zero Minimum) condition
under which the termination problem of loops with linear updates and nonlinear
polynomial loop conditions is decidable over the reals. In addition, there are
some other methods for determining termination problem of loop programs. For
instance, in [8] Bradley et al. applied finite difference trees to prove termination
of multipath loops with polynomial guards and assignments. In [21], Liu et al.
analyzed the termination problems for multi-path polynomial programs with
equational loop guards and established sufficient conditions for termination and
nontermination.

In this paper, we focus on the termination of single-path polynomial loop
programs having the following form

P : While x ∈ Ω do

{x := F (x)}
endwhile

(1)

where Ω is a closed, bounded and connected subset in R
n, defined by a set of

polynomial equations and polynomial inequalities, and F (x) : Rn → R
n, is a

polynomial mapping, i.e., F (x) = (f1(x), ..., fn(x))T and fi(x) is a polynomial
in x, for i = 1, ..., n. For convenience, we say that Program P is defined by Ω
and F (x), i.e., P � P (Ω,F (x)). We say that Program P is non-terminating over
the reals, if there exists a point x∗ ∈ R

n such that F k(x∗) ∈ Ω for any k ≥ 0. If
such x∗ does not exist, then we say Program P is terminating over the reals.

In contrast to the existing methods mentioned above, for Program P , in this
paper we give some conditions such that under such conditions the termination of
P can be equivalently reduced to the computation of fixed points of F (x). That is,
if such conditions are satisfied, then P is nonterminating if and only if F (x) has at
least one fixed point in Ω. Otherwise, the termination of P remains unknown. In
particular, Groebner basis technique is introduced, which sometimes can reduce
a given polynomial mapping to another one with simpler structure. This helps us
to further analyze the termination of P , when F (x) has complex structure. Since
the computation of fixed points of F can be equivalently reduced to semi-algebraic

Termination of Single-Path Polynomial Loop Programs 35

systems solving, in this paper, for convenience,weutilize the symbolic computation
tool RegularChains [10] in Maple to solve such systems.

The rest of the paper is organized as follows. Section 2 introduces some basic
notion and background information regarding ranking functions, semi-algebraic
systems and Groebner basis. In Sect. 3, we give some proper conditions and prove
that if such the conditions hold, then the termination of Program P is decidable
over the reals. Moreover, some examples are given to illustrate our methods.
Section 4 concludes the paper.

2 Preliminaries

In the section, some basic notion on ranking functions, semi-algebraic systems
and Groebner basis will be introduced first.

2.1 Semi-Algebraic Systems

Let R be the field of real numbers. A semi-algebraic system is a set of equations,
inequations and inequalities given by polynomials. And the coefficients of those
polynomials are all real numbers. Let v = (v1, ..., vd)T ∈ R

d, x = (x1, ..., xn)T ∈
R

n. Next, we give the definition of semi-algebraic systems (SASs for short).

Definition 1 (Semi-algebraic systems). A semi-algebraic system is a con-
junctive polynomial formula of the following form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1(v,x) = 0, ..., pr(v,x) = 0,
g1(v,x) ≥ 0, ..., gk(v,x) ≥ 0,

gk+1(v,x) > 0, ..., gt(v,x) > 0,

h1(v,x) �= 0, ..., hm(v,x) �= 0,

(2)

where r > 1, t ≥ k ≥ 0, m ≥ 0 and all pi’s, gi’s and hi’s are polynomials in
R[v,x] \ R. An semi-algebraic system is called parametric if d �= 0, otherwise
constant, where d is the dimension of v.

The RegularChains library offers a set of tools for manipulating semi-
algebraic systems. For instance, given a parametric SAS, RegularChains pro-
vides commands for getting necessary and sufficient conditions on the parameters
under which the system has real solutions.

2.2 Ranking Functions

As a popular method for determining program termination, synthesis of ranking
functions has received extensive attention in these years. We recall the definition
of ranking functions, as follows.

36 Y. Li

Definition 2 (Ranking functions for single-path polynomial loop pro-
grams). Given a single-path polynomial loop program P , we say ρ(x) is a rank-
ing function for P , if the following formula is true over the reals,

∀x,x′,
(
x ∈ Ω ∧ x′ = F (x) ⇒ ρ(x) ≥ 0 ∧ ρ(x) − ρ(x′) ≥ 1

)
. (3)

Note that the decrease by 1 in (3) can be replaced by any positive number
δ. It is well known that the existence of ranking functions for P implies that
Program P is terminating. Formula (3) holds if and only if the following two
Formulae hold,

∀x,x′,
(
x ∈ Ω ∧ x′ = F (x) ∧ ρ(x) ≥ 0), (4)

∀x,x′,
(
x ∈ Ω ∧ x′ = F (x) ∧ ρ(x) − ρ(x′) ≥ 1

)
, (5)

We now take an example to illustrate how to synthesize ranking functions by
means of RegularChains.

Example 1. Consider the below single-path polynomial program.

P1 : While x2 + y2 ≤ 1 do

{x := x + 4y + 3; y := 3y + 1}
endwhile

(6)

First, predefine a ranking function template ρ(x, y) = ax+by+c. we next will
utilize the tool RegularChains to find a, b and c such that ρ(x, y) meets Formula
(4) and (5). Invoking the following commands in RegularChains,

with(RegularChains);

with(SemiAlgebraicSetTools);

T1 := &E([x, y, x′, y′]), (x′ = x + 4y + 3)&and(y′ = 3y + 1)&and(x2 + y2 <= 1)

&implies(ax + by ≥ 0);

T2 := &E([x, y, x′, y′]), (x′ = x + 4y + 3)&and(y′ = 3y + 1)&and(x2 + y2 <= 1)

&implies(a(x − x′) + b(y − y′) ≥ 1);

we get

(b �= 0 ∧
√

a2 + b2 ≤ c) ∨ (b = 0 ∧ a ≤ 0 ∧ −a ≤ c) ∨ (b = 0 ∧ − < a ∧ a ≤ c),

and
0 ≤ b ∧ −b ≤ a ∧ a ≤ −3

7
b.

Thus, taking a = −1, b = 2, c = 5, we obtain a linear ranking function ρ(x, y) =
−x + 2y + 5.

Termination of Single-Path Polynomial Loop Programs 37

2.3 Polynomial Ideal and Groebner Basis

Let α = (a1, ..., an)T and let xα = xa1
1 xa2

2 · · · xan
n . Let f =

∑
α cαxα be a polyno-

mial in R[x]. We call cα the coefficient of the monomial xα. The monomials xα’s
in f can also be ordered in terms of monomial orderings, such as lexicographic
order, graded lexicographic order and graded reverse lex order. We state here
the following well-known results on Polynomial ideal and Groebner basis briefly.

Definition 3. Let R[x] be a polynomial ring. A subset I ⊂ R[x] is a polynomial
ideal if it satisfies:

(i) 0 ∈ I.
(ii) If f, g ∈ I, then f + g ∈ I.
(iii) If f ∈ I and h ∈ R[x], then h · f ∈ I.

Definition 4. Let f1, ...fs be polynomials in R[x]. Set

〈f1, ..., fs〉 = {
s∑

i=1

hifi : h1, ..., hs ∈ R[x]}.

Then 〈f1, ..., fs〉 is a polynomial ideal of R[x]. We call 〈f1, ..., fs〉 the ideal gen-
erated by f1, ..., fs.

Definition 5. Let k be a field, and let f1, ...fs be polynomials in k[x]. Then we
set

V(f1, ..., fs) = {(a1, ..., an) ∈ kn : fi(a1, ..., an) = 0 for all 1 ≤ i ≤ s}.

We call V(f1, ..., fs) the affine variety defined by f1, ..., fs.

Definition 6. Let V ⊂ kn be an affine variety. Set

I(V) = {f ∈ k[x] : f(a1, ..., an) = 0 for all (a1, ..., an) ∈ V }.

Then I(V) is an ideal and we call it the ideal of V.

Definition 7. Let I be an ideal. We will denote by V(I) the set

V(I) = {(a1, ..., an) ∈ kn : f(a1, ..., an) = 0 for all f ∈ I}.

The following proposition follows from Hilbert’s Basis Theorem.

Proposition 1. With the above notion. V(I) is an affine variety. In particular,
if I = 〈f1, ..., fs〉, then V(I) = V(f1, ..., fs).

The above proposition shows that even though a nonzero ideal I always
contains infinitely many different polynomials, the set V(I) can still be defined
by a finite set of polynomial equations. In particular, if I1 = I2, then V(I1) =
V(I2).

38 Y. Li

Definition 8. Fix a monomial order. A finite subset G = {g1, ..., gs} of an ideal
I is said to be Groebner basis if

〈LT (g1), ..., LT (gs)〉 = 〈LT (I)〉,
where LT (I) is the set of leading terms of elements of I, and 〈LT (I)〉 is the ideal
generated by the elements of LT (I).

It has been proven that every ideal I other than {0} has a Groebner basis, and
any Groebner basis G = {g1, ..., gs} for I is a basis having good properties. That
is, I = 〈G〉. For convenience, we call G the affine Groebner basis of I, if gi’s are
all affine. The computation of Groebner Basis has been implemented in Maple.
For example, let I = 〈f1, f2〉 = 〈3xy − 1, x2 + 5y − x〉. Invoking the following
command,

Basis([f1, f2], plex(x, y), output = extended),

we can get

[45y3 − 3y + 1, 15y2 + x − 1], [[−3xy + 3y − 1, 9y2], [1 − x, 3y]].

The first list is a Groebner basis of I, i.e., G = [45y3 − 3y + 1, 15y2 + x − 1]. If
let

MG =
(−3xy + 3y − 1, 9y2

1 − x, 3y

)
, H = (f1, f2),

then we have G = MG·H. Since I = 〈G〉, every element of I can also be expressed
by elements of G. For the example, invoking the commands in Maple,

– NormalForm(f1, G, plex(x, y), ‘Q1’)

– NormalForm(f2, G, plex(x, y), ‘Q2’),

we obtain that Q1 = [−1, 3y], Q2 = [5y,−15y2 + x]. And let

MH =
(−1, 3y

5y, −15y2 + x

)
.

It is easy to check that H = MH · G.

3 Termination Analysis for SPLPs

In the section, we will give some conditions under which Program P as defined
in (1) is nonterminating if and only if F (x) has fixed points in Ω. We first give
the following lemma, which enables us to build necessary and sufficient criteria
for termination of several kinds of SPLPs.

Lemma 1. Let Ω and F be defined as in (1). Let P � P (Ω,F (x)). If Program
P is non-terminating over the reals, then for any continuous function T (x), we
have

Θ ∩ Ω �= ∅,

where Θ = {x ∈ R
n : T (x) = T (F (x))}.

Termination of Single-Path Polynomial Loop Programs 39

Proof. The proof is simple. Assume that there exists a continuous function T (x),
such that Θ ∩ Ω = ∅. There are two cases to consider.

(a) ∀x ∈ Ω,T (x) − T (F (x)) > 0.
(b) ∀x ∈ Ω,T (x) − T (F (x)) < 0.

Consider Case (a). Since Ω is a closed, bounded and connected set, and
T − T ◦ F is continuous, it immediately follows that

∀x ∈ Ω.(T (x) − T (F (x)) ≥ δ1 > 0 ∧ T (x) ≥ c1),

for a certain positive number δ1 and a certain constant c1, by properties of
continuous functions. It is not difficult to see that 1

δ1
(T (x) − c1) is a ranking

function for P , which implies that Program P is terminating. This contradicts
the hypothesis that Program P is non-terminating. Similar analysis can also be
applicable to Case (b). We just need to notice that if Case (b) occurs, then there
must exist a certain positive number δ2 and a certain constant c2, such that

∀x ∈ Ω.
(− T (x) − (− T (F (x))

) ≥ δ2 > 0 ∧ −T (x) ≥ c2
)
.

Hence, 1
δ2

(−T (x) − c2) is a ranking function for P. The proof of the lemma is
completed. �

Following Lemma 1, we can get the below simple result.

Corollary 1. Let Ω and F be defined as in (1). Give a Program P � P (Ω,
F (x)). If there exists a continuous function T (x), such that {x ∈ R

n : T (x) =
T (F (x))} ∩ Ω = ∅, then Program P is terminating.

It is not difficult to see that Corollary 1 presents a sufficient (but not nec-
essary) criteria for Program P specified by Ω,F (x) to be terminating. In the
following, we will establish necessary and sufficient condition under which the
termination problem of Program P can be equivalently reduced to the problem
of existence of fixed points of F (x). To do this, we first introduce several useful
lemmas as follows.

Lemma 2 (separating hyperplane theorem [24]). Let C and D be two convex
sets of Rn, which do not intersect, i.e., C ∩ D = ∅. Then there exist a �= 0 and
b such that aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D.

Lemma 2 tells us that if C and D are two disjoint nonempty convex subsets,
then there exists the affine function aTx − b that is nonpositive on C and non-
negative on D. The hyperplane {x : aTx = b} is called a separating hyperplane
for C and D. Also, we say that the affine function aTx − b strictly separates C
and D as defined above, if aTx < b for all x ∈ C and aTx > b for all x ∈ D.
This is called strict separation of C and D. In general, disjoint convex sets need
not be strictly separated by a hyperplane. However, the following lemma tells
us that in the special case when C is a closed convex set and D is a single-point
set, there indeed exists a hyperplane that strictly separates C and D.

40 Y. Li

Lemma 3 (Strict separation of a point and a closed convex set [24]). Let C
be a closed convex set and x0 �∈ C. Then there exists a hyperplane that strictly
separates x0 from C.

Lemma 4 ([16]). Let S ⊆ R
n be a closed, bounded and connected set and let

H be a polynomial mapping. Then, the image H(S) of S under the polynomial
mapping H is still closed, bounded and connected.

Given a polynomial mapping F (x) ∈ (R[x])m and a vector α ∈ Z
m
≥0. Let

F (x)α = fa1
1 fa2

2 · · · fan
n . Let M(x) be a vector of some monomials in x. Let m

be the number of elements in M. Let

H(x) = M(x) − M(F (x)).

Clearly, H(x) can be regarded as a polynomial mapping from kn to km, where
k ∈ {R,C}. For example, set x = (x1, x2), F (x) = (5x2

1, x1 − x2 + 1)T and
M(x) = (x1, x1x2)T . Then,

H(x) = (x1 − 5x2
1, x1x2 − 5x2

1(x1 − x2 + 1))T

is a polynomial mapping from k2 to k2. In addition, for a given set Ω, define

H(Ω) = {H(x) : x ∈ Ω} ⊆ R
m.

Let U(x) = (u1(x), ..., us(x))T be a polynomial mapping. For convenience, we
also use the same notation U(x) to denote a set of polynomials consisting of all
the elements in polynomial mapping U(x). Define

VR(U(x)) = {x ∈ R
n : U(x) = 0}

VC(U(x)) = {x ∈ C
n : U(x) = 0}

to be the real algebraic variety and the complex algebraic variety defined by
U(x) = 0, repectively.

Theorem 1. Let Ω and F be defined as in (1). Given a Program P � P (Ω,
F (x)). Let M(x) be a vector consisting of m monomials in R[x]. Define H(x) =
M(x) − M(F (x)). If the following conditions are satisfied,

(a) VR(H(x)) = VR(F (x) − x),
(b) H(Ω) is a convex set,

then, Program P is non-terminating over the reals if and only if F (x) has at
least one fixed point in Ω.

Proof. If F (x) has one fixed point in Ω, then Program P does not terminate
on its fixed point. Next, we will claim that if F (x) has no fixed points in Ω,
then Program P terminates. Since F (x) has no fixed points in Ω, we know that
VR(F (x) − x) ∩ Ω = ∅. It immediately follows that VR(H(x)) ∩ Ω = ∅, since
VR(H(x)) = VR(F (x) − x). Therefore, for any x ∈ Ω, H(x) �= 0. This implies
that 0 �∈ H(Ω), where 0 ∈ R

m, Ω ⊆ R
n and

Termination of Single-Path Polynomial Loop Programs 41

H(Ω) = {H(x) : x ∈ Ω} ⊆ R
m.

Let u = H(x). Since H : R
n → R

m is a polynomial mapping and Ω is closed,
bounded and connected, by Lemma2, we know H(Ω) is a closed, bounded and
connected set. Also, by the hypothesis (b), we know that H(Ω) is a convex set.
Thus, H(Ω) is a closed convex set. By Lemma 3, we know that in the space R

m,
there must exist a hyperplane aT · u = b, which can strictly separate 0 from
H(Ω). That is to say, for any u ∈ H(Ω), aT ·u �= b. Furthermore, since 0 ∈ R

m is
strictly separated from H(Ω) ⊆ R

m by the hyperplane aT · u = b, it follows that
the hyperplane aT ·u = 0 must be disjoint from H(Ω), which passes through the
origin 0 and parallels to the hyperplane aT ·u = b. Therefore, since the hyperplane
aT · u = 0 is disjoint from H(Ω), we get that for any u ∈ H(Ω), aT · u �= 0. This
immediately implies that for any x ∈ Ω, we have aT · H(x) �= 0, since u = H(x).
Thus, for any x ∈ Ω, aT · (M(x) − M(F (x))) �= 0. Let T (x) = aT · M(x). By
Corollary 1, Program P must terminate, since {x ∈ R

n : T (x) = T (F (x))}∩Ω =
∅. This completes the proof of the theorem. ��
Remark 1. Let SH = {a : aT H(x) �= 0, for all x ∈ Ω}. By the proof of
Theorem 1, we know that if the conditions (a) and (b) in the theorem are satis-
fied, then F has no fixed points in Ω implies that SH �= ∅.

Example 2. Consider the termination of the below program.

P2 : While 4 ≤ x ≤ 5 ∧ 1 ≤ y ≤ 2 do

{x := x; y := −xy + y2 + 1}
endwhile

(7)

Let Ω = {(x, y) ∈ R
2 : 4 ≤ x ≤ 5 ∧ 1 ≤ y ≤ 2}, f1(x, y) = x and f2(x, y) =

y2 − xy + 1. Let M(x) = (x, y, xy)T . Thus,

H(x) = M(x) − M(F (x)) = (x − f1, y − f2, xy − f1f2)T .

Invoking the commands in RegularChains below,

/* to define the region Ω

c1 := x >= 4; c2 := x <= 5; c3 := y >= 1; c4 := y <= 2;
/ ∗ to describe the formula ∀x∀y((x, y) ∈ VR(H(x, y)) ⇒ VR(F (x) − x))
q1 := &A([x, y]), ((x − f1 = 0)&and(y − f2 = 0)&and(xy − f1f2 = 0))

&implies((x − f1 = 0)&and(y − f2 = 0));
/ ∗ to describe the formula ∀x∀y(VR(F (x) − x) ⇒ (x, y) ∈ VR(H(x, y)))
q2 := &A([x, y]), ((x − f1 = 0)&and(y − f2 = 0))&implies((x − f1 = 0)

&and(y − f2 = 0)&and(xy − f1f2 = 0));
/ ∗ to check if Formula q1 is true
QuantifierElimination(q1, output = rootof);
/ ∗ to check if Formula q2 is true
QuantifierElimination(q2, output = rootof);

42 Y. Li

we find that the conditions (a) in Theorem1 is satisfied. Furthermore, invoking
the commands as follows,

/ ∗ to describe the relation between Ω and H(Ω)
p1 := &E([x, y]), (x − f1 = u1)&and(y − f2 = u2)&and(xy − f1f2 = u3)

&and(c1)&and(c2)&and(c3)&and(c4);
/ ∗ to compute H(Ω) by eliminating the quantified variables x and y from p1

QuantifierElimination(p1, output = rootof);

we obtain that
u1 = 0 ∧ u3 = 0 ∧ 3 ≤ u2 ≤ 7,

which defines H(Ω). That is, H(Ω) = {u = (u1, u2, u3) ∈ R
3 : u1 = 0 ∧ u3 =

0 ∧ 3 ≤ u2 ≤ 7}. Clearly, H(Ω) is convex. Thus, the condition (b) is satisfied.
Therefore, by Theorem1, Program P2 is terminating, since F (x) has no fixed
points in Ω.

Corollary 2. Let Ω and F be defined as in (1). Given a Program P � P (Ω,
F (x)). Let M(x) be a vector consisting of some monomials in x. Let H(x) =
M(x) − M(F (x)). If

(a) VR(H(x)) = VR(F (x) − x),
(b) Ω is a convex set and H(x) is a convexity preserving mapping,

then, Program P is non-terminating over the reals if and only if F (x) has at
least one fixed point in Ω.

Proof. The proof is simple. We just need to notice that if condition (b) holds,
then we have that H(Ω) is a convex set. By Theorem 1, Program P is non-
terminating if and only if F (x) has at least one fixed point in Ω. �
Corollary 3. Let Ω and F be defined as in (1). Given a Program P � P (Ω,
F (x)). If Ω is convex and F (x) is an affine mapping, then, Program P is non-
terminating over the reals if and only if F (x) has at least one fixed point in Ω.

Proof. Let M(x) = (x, y)T = x. Then H(x) = M(x) − M(F (x)) = x − F (x).
Clearly, VR(H(x)) = VR(F (x) − x). Besides, since both M(x) and F (x) are
affine, H(x) is an affine mapping. Therefore, H(Ω) is convex, since any affine
mapping is a convexity preserving mapping and Ω is convex. By Theorem 1 or
Corollary 2, Program P is non-terminating over the reals if and only if F (x) has
at least one fixed point in Ω. �

Define

F̂ (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1(x1)
f2(x2)

...
fi(xi)

...
fn(xn)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Ω̂ = {x ∈ R
n : ai ≤ xi ≤ bi, for all i = 1, ..., n}

Termination of Single-Path Polynomial Loop Programs 43

where fi’s are all polynomials, and Ω̂ is a set defined by box constraints.

Corollary 4. With the above notion. Given a Program P specified by the above
Ω̂ and F̂ (x). Then Program P is non-terminating over the reals if and only if
F̂ (x) has at least one fixed point in Ω̂.

Proof. Take M(x) = x = (x1, ..., xn)T . Then, H(x) = x − F (x). Clearly,
VR(H(x)) = VR(x − F (x)). Let Ii = [ai, bi] be an interval. Since fi(xi) is a
polynomial in xi and Ii is an interval, fi(Ii) is still an interval. Set Io

i = fi(Ii).
Then, Io

1 × Io
2 ×· · ·×Io

n is a hyperrectangle, which clearly defines H(Ω̂). That is,
H(Ω̂) = Io

1 × Io
2 ×· · ·× Io

n. It is very easy to see that H(Ω̂) is convex. Therefore,
by Theorem 1, Program P is non-terminating over the reals if and only if F̂ (x)
has at least one fixed point in Ω̂. �

In general, for given a closed, bounded, and connected set Ω, H(Ω) is not
necessarily a convex set. However, this requirement can be relaxed, when the
number of program variables in Program P is 2.

Theorem 2. Let x = (x1, x2)T . Given a Program P specified by a closed,
bounded and connected set Ω ⊆ R

2 and a polynomial mapping F (x). Let M(x) =
(xα1 ,xα2)T , where α1, α2 ∈ Z

2
≥0. Let H(x) = M(x)−M(F (x)). If the following

conditions are satisfied,

(a) VR(H(x)) = VR(x − F (x)),
(b) For any two points x,y ∈ Ω, and any λ > 0,

H(x) �= −λ · H(y),

then, Program P is non-terminating if and only if F (x) has at least one fixed
point in Ω.

Proof. Let u = H(x). Sufficiency is clear, as the existence of fixed points in
Ω of F (x) implies that Program P does not terminate on such a fixed point.
To see necessity, suppose that F (x) has no fixed points in Ω. Therefore, for
any x ∈ Ω, x − F (x) �= 0. That is, VR(x − F (x)) ∩ Ω = ∅. It directly follows
that VR(H(x)) ∩ Ω = ∅ by the hypothesis (a). Therefore, 0 �∈ H(Ω). For any
H(x),H(y) in H(Ω), by the angle formula of two vectors, we define the angle of
H(x),H(y) as

θ = cos−1
(H(x)H(y)
|H(x)||H(y)|

)
.

Clearly, θ ≥ 0. Let g(x,y) = H(x)H(y)
|H(x)||H(y)| . Since 0 �∈ H(Ω), g is continuous on

Ω×Ω. And cos−1 is also continuous on [−1, 1]. Hence, the composition cos−1◦g of
cos−1 and g is continuous on Ω×Ω. Since Ω is compact implies Ω×Ω is compact,
continuous function cos−1 ◦ g has a maximum on Ω × Ω, i.e., there exists θ∗ such
that for any (x,y) ∈ Ω × Ω, we have θ ≤ θ∗. Moreover, by the hypothesis that
H(x) �= −λ · H(y) for any x,y ∈ Ω and any λ > 0, we get that the angle θ of any

44 Y. Li

two vectors H(x),H(y) ∈ H(Ω) cannot be π, i.e., θ �= π. We next further show
that θ∗ cannot be greater than π. Suppose that θ∗ > π. Then, since 0 ≤ θ ≤ θ∗ and
cos−1 ◦ g is a continuous function on Ω ×Ω, by properties of continuous function,
there must exist (x̂, ŷ) ∈ Ω × Ω such that θ = cos−1(g(x̂, ŷ)) = π. This clearly
contradicts that θ �= π. Therefore, we have θ∗ < π. Because θ∗ < π, there exists a
closed convex sector with vertex 0, whose angle is less than π, containing the set
H(Ω). Since the vertex 0 of this sector is not included in H(Ω), i.e., 0 �∈ H(Ω),
there must exist a hyperplane aT ·u = aT ·H(x) = 0 that intersects the sector only
at the origin 0. Therefore, for any H(x) ∈ H(Ω), aT · H(x) �= 0. It immediately
follows by the definition of H(Ω) that for anyx ∈ Ω, aT ·H(x) �= 0. Let T (x) = aT ·
M(x). By the above arguments, we get that {x ∈ R

2 : T (x) = T (F (x))}∩Ω = ∅.
By Corollary 1, Program P is terminating over the reals. This completes the proof
of the theorem. �

Next, we will introduce Groebner basis to analyze the termination of Pro-
gram P . And the computations involved with Groebner basis and ideal will
be done over C. Given Program P � P (F,Ω) as defined in (1). Let M(x) =
(xα1 ,xα2 , ...,xαs)T . Let H(x) = M(x) − M(F (x)) = (h1, ..., hs)T and let
G(x) = (g1, ..., gν)T be a Groebner basis for 〈H(x)〉. By the properties of Groeb-
ner basis, we have

〈G(x)〉 = 〈H(x)〉 and M(x) · G(x) = H(x), (8)

for a certain polynomial matrix M(x) ∈ (R[x])s×ν . For convenience, the notation
G(x) is also used to denote a polynomial mapping from kn to kν . Define

S = {v ∈ R
ν : vT · G(x) �= 0, for all x ∈ Ω}. (9)

Especially, if G(x) is an affine Groebner basis and Ω is a bounded, closed convex
polytope with finitely many vertices, i.e., G(x) = Ax+ c, Ω = {x ∈ R

n : Bx ≥
b} and for all x ∈ Ω there exists a positive number δ such that |x| ≤ δ, then
it can be shown that S = ∪t

i=1Si, where Si is a convex polytope specified by
semi-algebraic system Si = {v ∈ R

ν : Div ≥ 0 ∧ cT
i v > 0}, for i = 1, ..., t. Let

 = (≥, >)T . Si can be rewritten as

Si = {v ∈ R
ν : D̃iv
 0},

where D̃i =
(

Di

cT
i

)
.

Theorem 3. With the above notion. Let Ω ⊆ R
n be a bounded, closed and

convex polytope with finitely many vertices x1, ...,xμ. Let S be defined as above.
If G(x) is a affine mapping, i.e., G(x) = Ax + c for some constant matrix A
and some constant vector c, then, there exist S1, ..., St, such that S = ∪t

i=1Si.

Proof. By hypothesis, since Ω is a convex set, Ω is also a connected set. Hence,
since vT G(x) is a continuous function on the bounded, closed and connected set
Ω, by the properties of continuous functions, to check if ∀x ∈ Ω ⇒ vT ·G(x) �= 0
is equivalent to check if

Termination of Single-Path Polynomial Loop Programs 45

(1) ∀x ∈ Ω, vT · G(x) > 0, or,
(2) ∀x ∈ Ω, vT · G(x) < 0.

Denote by T(1) and T(2) the sets of the vectors v’s satisfying the above (1) and
(2), respectively. Clearly, S = T(1) ∪ T(2). We next show that T(1) = ∪t1

i=1Si.
And similar analysis can be applied to T(2). Consider Formula (1). Since Ω is a
bounded, closed and convex polytope with finitely many vertices x1, ...,xμ, every
point x ∈ Ω is a convex combination of the vertices, i.e., x = λ1x1 + λ2x2 +
· · · + λμxμ where

∑μ
i=1 λi = 1 and λi ≥ 0, i = 1, ..., μ. Therefore, we have

∀x ∈ Ω ⇒ vT · G(x) > 0

is equivalent to

∀λ̄.(∧μ
i=1λi ≥ 0 ∧

μ∑

i=1

λi = 1 ⇒ vT · (A(
μ∑

i=1

λixi) + c) > 0) (10)

where λ̄ = (λ1, ..., λμ) and v is regarded as parameter. Hence, eliminating the
quantifiers λi’s from (10), we get the desired T(i) that is a set of constraints only
on v. Let Obj(λ̄) = vT · (A(

∑μ
i=1 λixi) + c) =

∑μ
i=1(v

T Axi)λi + vT c. Clearly,
Formula (10) can be converted to the following standard linear programming
problem,

minimize Obj(λ̄) > 0

subject to
μ∑

i=1

λi = 1,

λi ≥ 0.

(11)

The constraints {∑μ
i=1 λi = 1, λ1 ≥ 0, ..., λμ ≥ 0} characterize a feasible region

Reg. Also, it is not difficult to see that Reg is a simplex that has the vertices
e1, ..., eμ, where ei denotes the vector with a 1 in the i-th coordinate and 0’s
elsewhere. It is well known that if the feasible region Reg is bounded, then the
optimal solution is always one of the vertices of Reg. Therefore,

minimize Obj(λ̄) � min({Obj(ei)}μ
i=1),

where Obj(ei) = vT Axi + vT c. Thus, to obtain Obj(λ̄)min is equivalent to
find the minimum value of {Obj(e1), ...,Obj(eμ)}. Because v is regarded as
parameter in (10) and (11), Obj(ei)’s are all linear homogenous polynomials in
v with constant coefficients (Axi + c)T . Therefore, to find the minimum value
of {Obj(ei)}μ

i=1 and guarantee that its minimum value is positive, there will be
μ cases to consider,

Ineqi
(1) �

⎛

⎝
∧

j �=i

Obj(ej) ≥ Obj(ei)

⎞

⎠ ∧ Obj(ei) > 0,

for i = 1, ..., μ. Furthermore, since the inequalities in Ineqi
(1) are all linear homoge-

nous polynomials in v, Ineqi
(1) can be rewritten as Ineqi

(1) � D̃iv
 0. And let

46 Y. Li

Si = {v ∈ R
ν : D̃iv
 0} and set t1 = μ. Then we have T(1) = ∪t1

i=1Si. Con-
sider Formula (2). Since ∀x ∈ Ω ⇒ vT · G(x) < 0 is equivalent to ∀x ∈ Ω ⇒
(−v)T ·G(x) > 0, we can directly construct Ineqi

(2) by replacing v in Ineqi
(1) with

−v, i.e., Ineqi
(2) � −D̃iv
0, for i = 1, ..., μ. Let S−

i = St1+i = {v ∈ R
ν : −D̃iv
0}

for i = 1, ..., μ. Then we have T(2) = ∪μ
i=1St1+i. It immediately follows that

S = T(1) ∪ T(2) = ∪2μ
i=1Si. This completes the proof of the theorem. �

Remark 2. In fact, the proof of Theorem3 proposes a method to directly con-
struct the desired S, if G(x) is affine and Ω is a bounded, closed and convex
polytope with finitely many vertices.

Given two matrices A,B ∈ R
m×n, we say A ≥ B, if Aij ≥ Bij for all

i = 1, ...,m, j = 1, ..., n. It is not difficult to see that if A ≥ B, then Av ≥ Bv
for any non-negative vector v.

Let F (x) : R
n → R

n be a polynomial mapping. Let M(x) =
(xα1 ,xα2 , ...,xαs)T and let H(x) = M(x) − M(F (x)) = (h1, ..., hs)T . And
let G(x) = (g1, ..., gν)T = Ax + c be an affine Groebner basis for 〈H(x)〉.
Let S = {v ∈ R

ν : vT · G(x) �= 0, for all x ∈ Ω}. By Theorem 3, we have
S = ∪t

i=1Si. Let Ω ⊆ R
n be a bounded, closed and convex polytope with finitely

many vertices x1, ...,xμ. Let M(x) be a polynomial matrix as defined in (8). We
now establish the following two results.

Theorem 4. With the above notion. Given Program P � P (Ω,F), where F,Ω

are defined as above. If there exist nonempty set Si = {v ∈ R
ν : D̃iv
 0} �= ∅,

i ∈ {1, ..., t}, and nonzero nonnegative vector v∗ ∈ R
ν , such that

∀x =
μ∑

l=1

λlxl ∈ Ω ⇒ D̃iM
T (x) ≥

μ∑

l=1

λlD̃iM
T (xl), (12)

where λl ≥ 0,
∑μ

l=1 λl = 1 and

MT (x1)v∗,MT (x2)v∗, ...,MT (xμ)v∗ ∈ Si, (13)

then, Program P � P (Ω,F) is terminating over the reals.

Proof. By the hypothesis, we have S �= ∅ and

∀x =
μ∑

l=1

λlxl ∈ Ω ⇒ D̃iM
T (x)v∗ ≥

μ∑

l=1

λlD̃iM
T (xl)v∗,

since v∗ is a non-negative vector. And by (13), since for l = 1, ..., μ, MT (xl)v∗ ∈
Si, i.e., D̃iM

T (xl)v∗
 0, we have D̃iM
T (x)v∗
 0, i.e., MT (x)v∗ ∈ Si. By the

definition of S, we know that (MT (x)v∗)T ·G(x) �= 0 for any x ∈ Ω, since Si ⊆ S.
That is, for all x ∈ Ω, (MT (x)v∗)T · G(x) = (v∗)T M(x) · G(x) �= 0. Because
M(x)G(x) = H(x), we have for all x ∈ Ω,

(v∗)T M(x) · G(x) = (v∗)T H(x) �= 0.

Termination of Single-Path Polynomial Loop Programs 47

Let T (x) = (v∗)T M(x). Then, we get {x ∈ R
n : T (x) = T (F (x))} ∩ Ω =

∅. It immediately follows that Program P is terminating by Corollary 1. This
completes the proof of the theorem. �
Remark 3. Note that to check if Formula (12) holds is equivalent to check if

∀λ̄.(
μ∧

l=1

λl ≥ 0 ∧
μ∑

l=1

λl = 1 ⇒ D̃iM
T (

μ∑

l=1

λlxl) ≥
μ∑

l=1

λlD̃iM
T (xl)), (14)

since Ω is bounded convex polytope, and each point in Ω can be expressed as
a convex combination of the vertices of Ω by the properties of bounded convex
polytope. In addition, in terms of the definition of Si, to check if Formula (13)
holds is equivalent to check if the following semi-algebraic system,

v∗ ≥ 0∧v∗ �= 0∧D̃iM
T (x1)v∗
0∧D̃iM

T (x2)v∗
0∧· · ·∧D̃iM
T (xμ)v∗
0. (15)

has real solutions, where
 = (≥, >)T .

Theorem 5. With the above notion. Given Program P � P (Ω,F), where F,Ω
are defined as above. If the following conditions are satisfied,

(a) VR(H(x)) = VR(F (x) − x),
(b) H(Ω) ⊆ G(Ω),

then Program P � P (Ω,F) is non-terminating over the reals if and only if F
has at least one fixed point in Ω.

Proof. If F has fixed points in Ω, then Program P is non-terminating. We next
show that if F has no fixed points in Ω, then Program P must terminate. First,
let u = G(x). And since G(x) is an affine Groenber basis of 〈H(x)〉, by (8), we
have 〈H(x)〉 = 〈G(x)〉 and M(x)G(x) = H(x). This immediately implies that
VC(H(x)) = VC(G(x)). Hence, VR(H(x)) = VR(G(x)) = VR(F (x)−x), according
to condition (a). Since F has no fixed points in Ω, we have 0 �∈ G(Ω), where
G(Ω) = {u = G(x) ∈ R

ν : for all x ∈ Ω}. In addition, since G(x) is affine
and Ω is a bounded, closed and convex polytope, G(Ω) is also bounded, closed
and convex set. By Lemma 3 and the similar arguments presented in the proof
of Theorem 1, we know that there must exist a hyperplane vT · u = b strictly
separates 0 ∈ R

ν from G(Ω) ⊆ R
ν . That is, vT · u = b does not intersect

with G(Ω). This immediately indicates that the hyperplane vT ·u = 0 also does
not intersect with G(Ω). That is, for any u ∈ G(Ω), vT · u �= 0. Therefore, by
the definition of G(Ω), we have for any x ∈ Ω, vT · G(x) �= 0. This suggests
that S = ∪t

i=1Si �= ∅. Furthermore, by condition (b), since H(Ω) ⊆ G(Ω), it
immediately follows that vT · H(Ω) �= 0 for any v ∈ S. This implies Program P
is terminating. �
Example 3. Consider the termination of the below program.

P3 : While 1 ≤ x ≤ 2 ∧ 1 ≤ y ≤ 2 do

{x := −5x − 12; y := 3y − x2 − 1}
endwhile

(16)

48 Y. Li

Let f1 = −5x − 12 and f2 = 3y − x2 − 1. Define Ω = {(x, y)T ∈ R
2 : 1 ≤ x ≤

2 ∧ 1 ≤ y ≤ 2}. Set VP = {(1, 1), (2, 1), (1, 2), (2, 2)} to be a set of all vertices of
Ω. And let M(x) = (x, y)T . Then H(x) = M(x)−M(F (x)) = (x−f1, y−f2)T .
First, invoking the command Basis in Maple, we get the Groebner basis of ideal
〈H(x)〉 and the corresponding transformation matrix M(x),

G(x) = (−5 + 2y, x + 2)T ,

M(x) =
(

0, 6
−1, x − 2

)
.

Since each component in G is affine, G(x) is an affine Groebner basis. We next
check if the hypothesis in Theorem 4 holds. To do this, we first need to compute
S. Let G(x) = (g1(x), g2(x))T and v = (v1, v2)T . To compute S is equivalent to
eliminate quantified variables x, y from the following quantified formula:

∀x ∈ Ω ⇒ v1 · g1(x) + v2 · g1(x) �= 0. (17)

This can be done easily, since G(x) is affine. However, by the proof of Theorem3
and Remark 2, we can directly construct S as follows,

S =
4⋃

i=1

Si ∪
4⋃

i=1

S−
i =

4⋃

i=1

{(v1, v2)T : D̃iv
 0} ∪
4⋃

i=1

{(v1, v2)T : D̃i(−v)
 0},

where
 = (≥,≥,≥, >)T and

D̃1 =

⎛

⎜
⎜
⎝

1 0
0 2
1 2

−1 7

⎞

⎟
⎟
⎠ , D̃2 =

⎛

⎜
⎜
⎝

−1 0
−1 2
0 2
0 7

⎞

⎟
⎟
⎠ , D̃3 =

⎛

⎜
⎜
⎝

0 −2
1 −2
1 0

−1 9

⎞

⎟
⎟
⎠ , D̃4 =

⎛

⎜
⎜
⎝

−1 −2
0 −2

−1 0
0 9

⎞

⎟
⎟
⎠ . (18)

Next, we will check if Formula (12) and Formula (13) hold. According to
Remark 3, to check if Formula (12) and Formula (13) hold is equivalent to check
if Formula (14) and Formula (15) hold. By computation, we find that when i = 3,
both Formula (14) and Formula (15) hold. Therefore, by Theorem 4, Program
P3 must terminate over the reals.

4 Conclusion

We have analyzed the termination of single-path polynomial loop programs
(SPLPs). Some conditions are given such that under such conditions the termi-
nation of this kind of loop programs over the reals can be equivalently reduced
to computation of real fixed points. In other words, once such conditions are
satisfied, an SPLP P (Ω,F) is not terminating over the reals if and only if F
has at least one fixed point in Ω. Furthermore, such conditions can be described
by quantified formulae. This enables us to apply the tools for real quantifier
elimination, such as RegularChains, to automatically check if such conditions
are satisfied.

Termination of Single-Path Polynomial Loop Programs 49

Acknowledgments. The author would like to thank the anonymous reviewers for
their helpful suggestions. This research is partially supported by the National Natural
Science Foundation of China NNSFC (61572024, 61103110).

References

1. Bagnara, R., Mesnard, F.: Eventual linear ranking functions. In: Proceedings of
the 15th Symposium on Principles and Practice of Declarative Programming, pp.
229–238. ACM, Madrid (2013)

2. Bagnara, R., Mesnard, F., Pescetti, A., Zaffanella, E.: A new look at the automatic
synthesis of linear ranking functions. Inf. Comput. 215, 47–67 (2012)

3. Ben-Amram, A.: The hardness of finding linear ranking functions for Lasso pro-
grams. Electron.Proc. Theor. Comput. Sci. 161, 32–45 (2014)

4. Ben-Amram, A., Genaim, S.: On the linear ranking problem for integer linear-
constraint loops. In: POPL 2013 Proceedings of the 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 51–62. ACM,
Rome (2013)

5. Ben-Amram, A., Genaim, S.: Ranking functions for linear-constraint loops. J. ACM
61(4), 1–55 (2014)

6. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005). doi:10.1007/11513988 48

7. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005). doi:10.1007/11523468 109

8. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg
(2005). doi:10.1007/978-3-540-30579-8 8

9. Braverman, M.: Termination of integer linear programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006).
doi:10.1007/11817963 34

10. Chen, C., Maza, M.: Quantifier elimination by cylindrical algebraic decomposition
based on regular chains. In: Proceedings of the 39th International Symposium on
Symbolic and Algebraic Computation, pp. 91–98. ACM (2014)

11. Chen, H.Y., Flur, S., Mukhopadhyay, S.: Termination proofs for linear simple loops.
In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 422–438. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33125-1 28

12. Chen, Y., Xia, B., Yang, L., Zhan, N., Zhou, C.: Discovering non-linear ranking
functions by solving semi-algebraic systems. In: Jones, C.B., Liu, Z., Woodcock,
J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 34–49. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-75292-9 3

13. Colón, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg
(2001). doi:10.1007/3-540-45319-9 6

14. Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving condi-
tional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
328–340. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 32

15. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 47–61.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 4

http://dx.doi.org/10.1007/11513988_48
http://dx.doi.org/10.1007/11523468_109
http://dx.doi.org/10.1007/978-3-540-30579-8_8
http://dx.doi.org/10.1007/11817963_34
http://dx.doi.org/10.1007/978-3-642-33125-1_28
http://dx.doi.org/10.1007/978-3-540-75292-9_3
http://dx.doi.org/10.1007/3-540-45319-9_6
http://dx.doi.org/10.1007/978-3-540-70545-1_32
http://dx.doi.org/10.1007/978-3-642-36742-7_4

50 Y. Li

16. Duistermaat, J., Kolk, J.: Multidimensional Real Analysis. Cambridge University
Press, Cambridge (2004)

17. Ganty, P., Genaim, S.: Proving termination starting from the end. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 397–412. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39799-8 27

18. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear Lasso
programs. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 365–
380. Springer, Heidelberg (2013). doi:10.1007/978-3-319-02444-8 26

19. Leike, J., Heizmann, M.: Ranking templates for linear loops. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 172–186. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54862-8 12

20. Leike, J., Tiwari, A.: Synthesis for polynomial Lasso programs. In: McMillan, K.L.,
Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 434–452. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54013-4 24

21. Liu, J., Xu, M., Zhan, N.J., Zhao, H.J.: Discovering non-terminating inputs for
multi-path polynomial programs. J. Syst. Sci. Complex. 27, 1284–1304 (2014)

22. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24622-0 20

23. Sohn, K., Van Gelder, A.: Termination detection in logic programs using argument
sizes (extended abstract). In: Proceedings of the Tenth ACM SIGACT- SIGMOD-
SIGART Symposium on Principles of Database Systems, pp. 216-226. ACM, Asso-
ciation for Computing Machinery, Denver (1991)

24. Stephen, B., Lieven, V.: Convex Optimization. Cambridge University Press,
New York (2004)

25. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.)
CAV 2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27813-9 6

26. Xia, B., Zhang, Z.: Termination of linear programs with nonlinear constraints. J.
Symb. Comput. 45(11), 1234–1249 (2010)

http://dx.doi.org/10.1007/978-3-642-39799-8_27
http://dx.doi.org/10.1007/978-3-319-02444-8_26
http://dx.doi.org/10.1007/978-3-642-54862-8_12
http://dx.doi.org/10.1007/978-3-642-54013-4_24
http://dx.doi.org/10.1007/978-3-540-24622-0_20
http://dx.doi.org/10.1007/978-3-540-27813-9_6
http://dx.doi.org/10.1007/978-3-540-27813-9_6

Relation-Algebraic Verification of Prim’s
Minimum Spanning Tree Algorithm

Walter Guttmann(B)

Department of Computer Science and Software Engineering,
University of Canterbury, Christchurch, New Zealand

walter.guttmann@canterbury.ac.nz

Abstract. We formally prove the correctness of Prim’s algorithm for
computing minimum spanning trees. We introduce new generalisations
of relation algebras and Kleene algebras, in which most of the proof can
be carried out. Only a small part needs additional operations, for which
we introduce a new algebraic structure. We instantiate these algebras by
matrices over extended reals, which model the weighted graphs used in
the algorithm. Many existing results from relation algebras and Kleene
algebras generalise from the relation model to the weighted-graph model
with no or small changes. The overall structure of the proof uses Hoare
logic. All results are formally verified in Isabelle/HOL heavily using its
integrated automated theorem provers.

1 Introduction

A well-known algorithm commonly attributed to Prim [43] – and independently
discovered by Jarńık [27] and Dijkstra [17] – computes a minimum spanning
tree in a weighted undirected graph. It starts with an arbitrary root node, and
constructs a tree by repeatedly adding an edge that has minimal weight among
the edges connecting a node in the tree with a node not in the tree. The itera-
tion stops when there is no such edge, at which stage the constructed tree is a
minimum spanning tree of the component of the graph that contains the root
(which is the whole graph if it is connected).

The aim of this paper is to demonstrate the applicability of relation-algebraic
methods for verifying the correctness of algorithms on weighted graphs. Accord-
ingly, we will use an implementation of Prim’s algorithm close to the above
abstraction level. Since its discovery many efficient implementations of this and
other spanning tree algorithms have been developed; for example, see the two
surveys [21,35]. These implementations typically rely on specific data structures,
which can be introduced into a high-level algorithm by means of data refinement;
for example, see [4]. We do not pursue this in the present paper.

Relation-algebraic methods have been used to develop algorithms for
unweighted graphs; for example, see [4,5,7]. This works well because such a
graph can be directly represented as a relation; an adjacency matrix is a Boolean
matrix. Weighted graphs do not have a direct representation as a binary relation.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 51–68, 2016.
DOI: 10.1007/978-3-319-46750-4 4

52 W. Guttmann

Previous relational approaches to weighted graphs therefore use many-sorted rep-
resentations such as an incidence matrix and a weight function. In this paper,
we directly work with a matrix of weights.

In the context of fuzzy systems, relations have been generalised from Boolean
matrices to matrices over the real interval [0, 1] or over arbitrary complete dis-
tributive lattices [19]. The underlying idea is to extend qualitative to quantitative
methods; see [41] for another instance based on automata. We propose to use
matrices over lattices to model weighted graphs, in particular in graph algo-
rithms. Previous work based on semirings and Kleene algebras deals well with
path problems in graphs [20]. We combine these algebras with generalisations of
relation algebras to tackle the minimum spanning tree problem.

Tarski’s relation algebras [46], which capture Boolean matrices, have been
generalised to Dedekind categories to algebraically capture fuzzy relations [30];
these categories are also known as locally complete division allegories [18]. In the
present paper we introduce a new generalisation – Stone relation algebras – which
maintains the signature of relation algebras and weakens the underlying Boolean
algebra structure to Stone algebras. We show that matrices over extended reals
are instances of Stone relation algebras and of Kleene algebras, and can be used
to represent weighted graphs.

Most of the correctness proof of Prim’s minimum spanning tree algorithm
can be carried out in these general algebras. Therefore, most of our results hold
for many instances, not just weighted graphs. A small part of the correctness
proof uses operations beyond those available in relation algebras and in Kleene
algebras, namely for summing edge weights and identifying minimal edges. We
capture essential properties of these operations in a new algebraic structure.

With this approach we can apply well-developed methods and concepts of
relation algebras and Kleene algebras to reason about weighted graphs in a new,
more direct way. The contributions of this paper are:

– Stone relation algebras, a new algebraic structure that generalises relation
algebras but maintains their signature. Many theorems of relation algebras
already hold in these weaker algebras. Combined with Kleene algebras, they
form a general yet expressive setting for most of the correctness proof of the
minimum spanning tree algorithm.

– A new algebra that extends Stone-Kleene relation algebras by dedicated opera-
tions and axioms for finding minimal edges and for computing the total weight
of a graph.

– Models of the above algebras, including weighted graphs represented by matri-
ces over extended reals. This includes a formalisation of Conway’s automata-
based construction for the Kleene star of a matrix.

– A Hoare-logic correctness proof of Prim’s minimum spanning tree algorithm
entirely based on the above algebras.

– Isabelle/HOL theories that formally verify all of the above and all results in
and about the algebras stated in the present paper. Proofs are omitted in this
paper and can be found in the Isabelle/HOL theory files available at http://
www.csse.canterbury.ac.nz/walter.guttmann/algebra/.

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/
http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 53

Section 2 recalls basic algebraic structures and introduces Stone relation alge-
bras, which we use to represent weighted graphs. They are extended by the
Kleene star operation to describe reachability in graphs in Sect. 3. Operations
for summing weights and for finding their minimum are added in Sect. 4. In this
setting, Sect. 5 presents the minimum spanning tree algorithm, details aspects of
its correctness proof and shows how the proof uses the various algebras. Related
work is discussed in Sect. 6.

2 Stone Relation Algebras

In this section we introduce Stone relation algebras, which generalise relation
algebras so as to model not just Boolean matrices but matrices over arbitrary
numbers required to represent weighted graphs. Each entry in such a matrix is
taken from the set of real numbers R extended with a bottom element ⊥ and
a top element �; let R′ = R ∪ {⊥,�}. If the entry in row i and column j of
the matrix is ⊥, this means there is no edge from node i to node j. If the entry
is a real number, there is an edge with that weight. An entry of � is used to
record the presence of an edge without information about its weight; see below.
The order ≤ and the operations max and min on R′ are extended from reals so
that ⊥ is the ≤-least element and � is the ≤-greatest element. To work with
extended reals (weights) and matrices of extended reals (weighted graphs) we
use the following well-known algebraic structures [9,12,22].

Definition 1. A bounded semilattice is an algebraic structure (S,�,⊥) where
� is associative, commutative and idempotent and has unit ⊥:

x � (y � z) = (x � y) � z x � y = y � x x � x = x x � ⊥ = x

A bounded distributive lattice is an algebraic structure (S,�,�,⊥,�) where
(S,�,⊥) and (S,�,�) are bounded semilattices and the following distributivity
and absorption axioms hold:

x � (y � z) = (x � y) � (x � z) x � (x � y) = x
x � (y � z) = (x � y) � (x � z) x � (x � y) = x

The lattice order is given by

x ≤ y ⇔ x � y = y

A distributive p-algebra (S,�,�, ,⊥,�) expands a bounded distributive lattice
(S,�,�,⊥,�) with a pseudocomplement operation satisfying the equivalence

x � y = ⊥ ⇔ x ≤ y

This means that y is the ≤-greatest element whose meet with y given by � is ⊥.
A Stone algebra is a distributive p-algebra satisfying the equation

x � x = �
An element x ∈ S is regular if x = x. A Boolean algebra is a Stone algebra whose
elements are all regular.

54 W. Guttmann

Note that there is no obvious way to introduce a Boolean complement on R′,
which is why we use the weaker Stone algebras. We obtain the following conse-
quences for Stone algebras; in particular, extended reals form a Stone algebra
and so do matrices over extended reals. See [20] for similar matrix semirings and
the max-min semiring of extended reals. The set of square matrices with indices
from a set A and entries from a set S is denoted by SA×A. It represents a graph
with node set A and edge weights taken from S.

Theorem 1. Let (S,�,�, ,⊥,�) be a Stone algebra and let A be a set.

1. The regular elements of S form a Boolean algebra that is a subalgebra of S
[22].

2. (SA×A,�,�, ,⊥,�) is a Stone algebra, where the operations �, �, , ⊥, �
and the lattice order ≤ are lifted componentwise.

3. (R′,max,min, ,⊥,�) is a Stone algebra with

x =
{� if x = ⊥

⊥ if x
= ⊥

and the order ≤ on R′ as the lattice order.

The regular elements of the Stone algebra R′ are ⊥ and �. In particular, apply-
ing the pseudocomplement operation twice maps ⊥ to itself and every other
element to �. Applying twice to a matrix over R′, which represents a weighted
graph, yields a matrix over {⊥,�} that represents the structure of the graph
forgetting the weights. A related operation called the ‘support’ of a matrix is
discussed in [33]; it works on matrices over natural numbers and maps 0 to 0 and
each non-zero entry to 1. Relations are used to describe the ‘shape’ of a matrix
of complex numbers in [16]; a shape represents a superset of the non-zero entries
of a matrix, but an operator to obtain the non-zero entries is not discussed there.

The matrices over {⊥,�} are the regular elements of the matrix algebra
and form a subalgebra of it. This situation, shown in Fig. 1, is analogous to
that of partial identities – subsets of the identity relation used to represent

partial identities

{R∈{⊥,�}A×A | x�=y ⇒ Rx,y=⊥}
Boolean algebra

relations

{⊥,�}A×A

relation algebra

weighted graphs

′A×A

Stone relation algebra

Fig. 1. Relations form a substructure of weighted graphs as partial identities form a
substructure of relations

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 55

conditions in computations – which form a substructure of the encompassing
relation algebra. In both cases, the substructure can be obtained as the image of
a closure operation. The regular matrices are the image of the closure operation
λx.x that is used in the correctness proof whenever only the structure of the
graph is important, not the weights. The graph structure can be represented as
a (Boolean) relation; in the context of fuzzy systems these are also called ‘crisp’
relations to distinguish them from fuzzy relations [19]. An operation to obtain
the least crisp relation containing a given fuzzy relation is discussed in [47].

The order ≤ of Stone algebras allows us to compare edge weights. For matri-
ces the comparison and all operations of Stone algebras work componentwise.
These operations cannot be used to propagate information about edges through
a graph. To combine information from edges between different pairs of nodes
we add a relational structure with the operations of composition and converse.
In unweighted graphs, they would be provided by relation algebras. To handle
weighted graphs, we introduce the following generalisation.

Definition 2. A Stone relation algebra (S,�,�, ·, , T,⊥,�, 1) is a Stone alge-
bra (S,�,�, ,⊥,�) with a composition · and a converse T and a constant 1
satisfying Eqs. (1)–(10). We abbreviate x · y as xy and let composition have
higher precedence than the operators � and �. The axioms are:

(xy)z = x(yz) (1)
1x = x (2)

(x � y)z = xz � yz (3)

(xy)T = yTxT (4)

(x � y)T = xT � yT (5)

xTT
= x (6)

⊥x = ⊥ (7)

xy � z ≤ x(y � xTz) (8)
xy = x y (9)

1 = 1 (10)

An element x ∈ S is a vector if x� = x, symmetric if x = xT, injective if
xxT ≤ 1, surjective if 1 ≤ xTx and bijective if x is injective and surjective. An
element x ∈ S is an atom if both x� and xT� are bijective. A relation algebra
(S,�,�, ·, , T,⊥,�, 1) is a Stone relation algebra whose reduct (S,�,�, ,⊥,�)
is a Boolean algebra.

We reuse the concise characterisations of vectors, atoms, symmetry, injectivity,
surjectivity and bijectivity known from relation algebras [44]. In the instance of
relations over a set A, a vector represents a subset of A and an atom represents
a relation containing a single pair. Hence, in the graph model a vector describes
a set of nodes – such as the ones visited in Prim’s algorithm – and an atom

56 W. Guttmann

describes an edge of the graph. Injectivity then means that two nodes cannot
have the same successor, which is a property of trees.

Observe that relation algebras and Stone relation algebras have the same
signature. The main difference between them is the weakening of the lattice
structure from Boolean algebras to Stone algebras. In particular, the property

xTxy ≤ y (11)

holds in Stone relation algebras. Tarski’s relation algebras require a Boolean alge-
bra, axioms (1)–(6), and property (11) [34]. Axioms (7)–(10) follow in relation
algebras.

Axiom (8) has been called ‘Dedekind formula’ or ‘modular law’ [8,30]. Besides
being typed, Dedekind categories require that composition has a left residual and
that each Hom-set is a complete distributive lattice [29] and therefore a Heyting
algebra, which is more restrictive than a Stone algebra. Rough relation algebras
[13] weaken the lattice structure of relation algebras to double Stone algebras,
which capture properties of rough sets. Axioms (9) and (10) state that regular
elements are closed under composition and its unit.

Many results of relation algebras hold in Stone relation algebras directly or
with small modifications. For example, x ≤ xxTx, the complement of a vector is
a vector, and composition with an injective element distributes over � from the
right. We also obtain the following variant of the so-called Schröder equivalence:

xy ≤ z ⇔ xTz ≤ y

The following result shows further consequences for Stone relation algebras. In
particular, every Stone algebra can be extended to a Stone relation algebra, and
the Stone relation algebra structure can be lifted to matrices by using the usual
matrix composition (taking � and · from the underlying Stone relation algebra
as addition and multiplication, respectively).

Theorem 2. 1. The regular elements of a Stone relation algebra S form a rela-
tion algebra that is a subalgebra of S.

2. Let (S,�,�, ,⊥,�) be a Stone algebra. Then (S,�,�,�, , λx.x,⊥,�,�) is
a Stone relation algebra with the identity function as converse.

3. Let (S,�,�, ·, , T,⊥,�, 1) be a Stone relation algebra and let A be a finite
set. Then (SA×A,�,�, ·, , T,⊥,�, 1) is a Stone relation algebra, where the
operations ·, T and 1 are defined by

(M · N)i,j =
⊔

k∈A Mi,k · Nk,j

(MT)i,j = (Mj,i)
T

1i,j =
{

1 if i = j
⊥ if i
= j

Hence weighted graphs form a Stone relation algebra as follows: for weights the
operations are x · y = min{x, y} and xT = x according to Theorem 2.2, and
these operations are lifted to matrices as shown in Theorem 2.3. Because in

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 57

this instance the converse operation of the underlying Stone relation algebra is
the identity, the lifted converse operation only transposes the matrix. Thus for
a finite set A, the set of matrices R′A×A is a Stone relation algebra with the
following operations:

(M � N)i,j = max(Mi,j , Ni,j)

(M � N)i,j = min(Mi,j , Ni,j)

(M · N)i,j = maxk∈A min(Mi,k, Nk,j)

M i,j = Mi,j

MT
i,j = Mj,i

⊥i,j = ⊥
�i,j = �

1i,j =
{� if i = j

⊥ if i
= j

The order in this structure is M ≤ N ⇔ ∀i, j ∈ A : Mi,j ≤ Ni,j .

3 Stone-Kleene Relation Algebras

In this section, we combine Stone relation algebras with Kleene algebras [32] in
order to obtain information about reachability in graphs. Kleene algebras are
used to model finite iteration for regular languages and relations. In particular,
they expand semirings by a unary operation – the Kleene star – which instanti-
ates to the reflexive-transitive closure of relations. The properties of the Kleene
star have been studied in [14] and we use the axiomatisation given in [32].

Definition 3. An idempotent semiring is an algebraic structure (S,�, ·,⊥, 1)
where (S,�,⊥) is a bounded semilattice and · is associative, distributes over �
and has unit 1 and zero ⊥:

x(y � z) = xy � xz x⊥ = ⊥ x1 = x x(yz) = (xy)z
(x � y)z = xz � yz ⊥x = ⊥ 1x = x

A Kleene algebra (S,�, ·, ∗,⊥, 1) is an idempotent semiring (S,�, ·,⊥, 1) with an
operation ∗ satisfying the unfold and induction axioms

1 � yy∗ ≤ y∗ z � yx ≤ x ⇒ y∗z ≤ x

1 � y∗y ≤ y∗ z � xy ≤ x ⇒ zy∗ ≤ x

A Stone-Kleene relation algebra is a structure (S,�,�, ·, , T, ∗,⊥,�, 1) such
that the reduct (S,�,�, ·, , T,⊥,�, 1) is a Stone relation algebra, the reduct
(S,�, ·, ∗,⊥, 1) is a Kleene algebra and the following equation holds:

x∗ = (x)∗ (12)

58 W. Guttmann

An element x ∈ S is acyclic if xx∗ ≤ 1 and x is a forest if x is injective and
acyclic. A Kleene relation algebra (S,�,�, ·, , T, ∗,⊥,�, 1) is a Stone-Kleene
relation algebra whose reduct (S,�,�, ·, , T,⊥,�, 1) is a relation algebra.

Axiom (12) states that regular elements are closed under the operation ∗. Many
results of Kleene relation algebras hold in Stone-Kleene relation algebras directly
or with small modifications. For example, (xxT)∗ = 1 � xxT for each vector x,
the operations converse and Kleene star commute, and

x∗xT∗ � xTx ≤ 1

for each forest x. The latter follows using the cancellation property

xy ≤ 1 ⇒ x∗y∗ ≤ x∗ � y∗

which we have proved in Kleene algebras as part of the present verification
work; such properties can also be interpreted in rewrite systems [45]. Proofs
of the above properties – and other algebraic results and consequences stated
in this paper – can be found in the Isabelle/HOL theory files mentioned in
the introduction. The following result shows further consequences for Kleene
algebras, Stone-Kleene relation algebras and Kleene relation algebras.

Theorem 3. 1. The regular elements of a Stone-Kleene relation algebra S form
a Kleene relation algebra that is a subalgebra of S.

2. Let (S,�,�,⊥,�) be a bounded distributive lattice. Then (S,�,�, λx.�,⊥,�)
is a Kleene algebra with the constant � function as the star operation.

3. Let (S,�,�, ,⊥,�) be a Stone algebra.
Then (S,�,�,�, , λx.x, λx.�,⊥,�,�) is a Stone-Kleene relation algebra.

4. Let (S,�,�, ·, , T, ∗,⊥,�, 1) be a Stone-Kleene relation algebra and let A be a
finite set. Then (SA×A,�,�, ·, , T, ∗,⊥,�, 1) is a Stone-Kleene relation alge-
bra, where the operation ∗ is defined recursively using Conway’s automata-
based construction [14]:

(
a b
c d

)∗
=

(
e∗ a∗bf∗

d∗ce∗ f∗

)
where

(
e
f

)
=

(
a � bd∗c
d � ca∗b

)

This shows the recursive case, which splits a matrix into smaller matrices. At
termination, the Kleene star is applied to the entry of a one-element matrix.

In particular, this provides a formally verified proof of Conway’s construction for
the Kleene star of matrices, which is missing in existing Isabelle/HOL theories
of Kleene algebras [3, Sect. 5.7].

As a consequence, weighted graphs form a Stone-Kleene relation algebra
as follows: for weights the max-min lattice is extended with the Kleene star
operation x∗ = � according to Theorem 3.3, and the Kleene star is defined for
matrices by Conway’s construction shown in Theorem 3.4.

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 59

4 An Algebra for Minimising Weights

In this section we extend Stone-Kleene relation algebras by dedicated operations
for the minimum spanning tree application. First, the algorithm needs to select
an edge with minimal weight; this is done by the operation m. Second, the sum
of edge weights needs to be minimised according to the specification; the sum is
obtained by the operation s. Third, the axioms of s use the operation + to add
the weights of corresponding edges of two graphs. These operations are captured
in the following algebraic structure.

Definition 4. An M-algebra (S,�,�, ·,+, , T, ∗, s,m,⊥,�, 1) is a Stone-Kleene
relation algebra (S,�,�, ·, , T, ∗,⊥,�, 1) with an addition +, a summation s and
a minimum selection m satisfying the following properties:

x = y ∧ x ≤ y ⇒ z + x ≤ z + y (13)
x + s(⊥) = x (14)

s(x) + s(y) = s(x � y) + s(x � y) (15)

s(xT) = s(x) (16)

x
= ⊥ ⇒ s(y) ≤ s(x) (17)
m(x) ≤ x (18)

m(x) = m(x) (19)
x
= ⊥ ⇒ m(x) is an atom (20)

y is an atom ∧ y = y ∧ y � x
= ⊥ ⇒ s(m(x) � x) ≤ s(y � x) (21)

Among the new operations, only m is used in the algorithm. The axioms have
the following meaning:

(13) The operation + is ≤-isotone in its second argument as long as no new edges
are introduced (this is required because edges may have negative weights).

(14) The empty graph adds no weight; the given axiom is weaker than the con-
junction of s(⊥) = ⊥ and x + ⊥ = x.

(15) This generalises the inclusion-exclusion principle to sets of numbers.
(16) Reversing edges does not change the sum of weights.
(17) The result of s is represented by a graph with one fixed edge.
(18) The minimal edge is contained in the graph.
(19) The result of m is represented as a relation.
(20) The result of m is just one edge, if the graph is not empty.
(21) Any edge y in the graph x weighs at least as much as m(x); the operation

s is used to compare the weights of edges between different nodes.

A precise definition of the operations +, s and m on weighted graphs is given in
the following result, which shows that weighted graphs form an M-algebra.

60 W. Guttmann

Theorem 4. Let A be a finite set. Let ≺ be a strict total order on A with least
element h. Then the set of matrices R′A×A is an M-algebra with the following
operations:

(M + N)i,j = Mi,j + Ni,j (22)

s(M)i,j =
{∑

k,l∈A Mk,l if i = j = h

⊥ if i
= h ∨ j
= h
(23)

m(M)i,j =

⎧
⎪⎪⎨

⎪⎪⎩

� if Mi,j
= ⊥ ∧
∀k, l ∈ A : (Mk,l
= ⊥ ⇒ Mi,j ≤ Mk,l) ∧

((k ≺ i ∨ (k = i ∧ l ≺ j)) ⇒ Mi,j
= Mk,l)
⊥ otherwise

(24)

The addition + on R′ used in (22) is defined by

x + y = y = ⊥ y ∈ R y = �
x = ⊥ ⊥ y �
x ∈ R x x +R y �
x = � � � �

The finite summation
∑

on R′ used in (23) is defined recursively using this
binary addition, which is associative and commutative.

Equation (24) means that m(M)i,j = � if (i, j) is the smallest pair (according
to the lexicographic order based on ≺) such that Mi,j is minimal among the
weights different from ⊥. The function s uses the entry in row h and column h
to store the sum of the weights different from ⊥.

5 Correctness of the Minimum Spanning Tree Algorithm

In this section we present a minimum spanning tree algorithm and prove its
correctness. In particular, we show how the algebras introduced in the previous
sections are used to reason about graph properties. The algorithm is shown
in Fig. 2. It is a while-program with variables whose values range over an M-
algebra S.

The input of the algorithm is a weighted graph g ∈ S and a root node r ∈ S.
The algorithm constructs a minimum spanning tree t ∈ S and maintains a set
of visited nodes v. Both r and v are represented as vectors. The algorithm starts
with an empty tree t and the single visited node r. The expression vvT � g
restricts g to the edges starting in v and ending outside of v. In each iteration
an edge e is chosen with minimal weight among these edges; then e is added to
t and the end node of e is added to v. When there are no edges from v to its
complement set, the while-loop finishes and the output of the algorithm is t.

We show correctness of the algorithm relative to two assumptions:

1. The while-loop terminates. This follows since a new edge is added to the
spanning tree in each iteration and the graph is finite. Such termination proofs
can also be done algebraically [23], but this is not part of the present paper.

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 61

input g, r
t ← ⊥
v ← r

while vvT � g �= ⊥ do
e ← m(vvT � g)
t ← t 	 e

v ← v 	 eT�
end
output t

Fig. 2. A relational minimum spanning tree algorithm

2. There exists a minimum spanning tree. This follows since the number of
spanning trees of a finite graph is finite. A proof of this is not part of the
present paper, but could be based on cardinalities of relations [28].

We do not assume that the graph g is connected. As a consequence, the above
algorithm will produce a minimum spanning tree of the component of g that
contains r. In M-algebras, the nodes in this component are given by

c(g, r) = rTg
∗

which is the converse of a vector that represents the set of nodes reachable from
r in the graph g ignoring edge weights. It follows that for connected g the result
is a minimum spanning tree of the whole graph. The correctness proof uses the
following predicates.

Definition 5. Let S be an M-algebra and let g, r, t, v ∈ S. Then t is a spanning
tree of g with root r if t is a forest, t is regular and

t ≤ c(g, r)Tc(g, r) � g (25)

c(g, r) ≤ rTt∗ (26)

Such a t is a minimum spanning tree of g with root r if, additionally,

s(t � g) ≤ s(u � g)

for each spanning tree u of g with root r. Next, the precondition requires that
g is symmetric, that r is regular, injective and a vector, and that a minimum
spanning tree of g with root r exists. Next, the loop invariant requires the
precondition and vT = rTt∗ and that t is a spanning tree of vvT � g with root
r, and that t ≤ w for some minimum spanning tree w of g with root r. Finally,
the postcondition requires that t is a minimum spanning tree of g with root r.

By lattice properties and since c(g, r) is the converse of a vector, inequality (25)
is equivalent to the conjunction of t ≤ g and t ≤ c(g, r)T and t ≤ c(g, r). The
first of these inequalities states that all edges of t are contained in g (ignoring

62 W. Guttmann

the weights). The second inequality states that each edge of t starts in a node
in the component of g that contains r. The third inequality expresses the same
for the end nodes of the edges of t.

Also inequality (26) is concerned with the component of g that contains r.
It states that all nodes in this component are reachable from r using edges in t.
Observe that rTt∗ = c(t, r) since t is regular, so together with t ≤ g we obtain
c(g, r) = c(t, r) as a consequence.

Symmetry of g specifies that the graph is undirected. The properties of r in
the precondition state that r represents a single node. Assumption 2 amounts
to the existence of a minimum spanning tree in the precondition.

The verification conditions to establish the postcondition are automatically
generated from the precondition and the loop invariant using Hoare logic. We use
an implementation of Hoare logic that comes with Isabelle/HOL; see [36,37]. The
generated conditions are predicates whose variables range over an M-algebra; all
calculations take place in this algebra or its reducts. The high-level structure of
the proof is standard; the difference here is that the whole argument is carried
out in new algebraic structures that directly model weighted graphs.

Theorem 5. Assume the precondition stated in Definition 5 holds. Then the
postcondition stated there holds after the algorithm in Fig. 2 finishes.

In the following we discuss several parts of the proof, which are carried out in
different algebraic structures. Our aim is not completeness, but to show that
many results used in the proof actually hold in more general settings. We focus
on the preservation of the loop invariant for the current tree t and the current
set of visited nodes v. Let t′ = t � e and v′ = v � eT� be the values of these
variables at the end of the body of the while-loop.

First, the proof involves showing that t′ is a spanning tree of v′v′T � g with
root r, that is, of the subgraph of g restricted to nodes in v′. In particular, this
requires that t′ is injective. To this end, we use the following property given in
[39] that also holds in Stone relation algebras.

Lemma 1. Let S be a Stone relation algebra. Let t, e ∈ S such that t and e are
injective and etT ≤ 1. Then t � e is injective.

The assumptions of Lemma 1 are established as follows:

– Injectivity of t follows from the invariant.
– e is an atom by axiom (20), so e� is injective, whence e is injective.
– etT = ⊥ ≤ 1 follows by another general result of Stone relation algebras from

e ≤ vvT and t ≤ vvT and that v is a vector.

We also require that t′ is contained in the subgraph of g restricted to the nodes
in v′. For this we use the following result of Stone relation algebras.

Lemma 2. Let S be a Stone relation algebra. Let t, e, v, g ∈ S such that t ≤
vvT � g and e ≤ vvT � g. Then t′ ≤ v′v′T � g where t′ = t � e and v′ = v � eT�.

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 63

Next, we also require that t′ is acyclic. To show this, we use the following result
of Stone-Kleene relation algebras.

Lemma 3. Let S be a Stone-Kleene relation algebra. Let t, e, v ∈ S such that t
is acyclic, v is a vector and e ≤ vvT and t ≤ vvT. Then t � e is acyclic.

Note that this lemma does not require that t is a tree or that e contains just
one edge. It is a much more general statement that can be used in reasoning
about graphs in other contexts than the minimum spanning tree algorithm – in
fact, it holds not only for weighted graphs but for any other instance of Stone-
Kleene relation algebras. The same observation applies to the previous lemmas
and many others used in the correctness proof.

Next, the invariant maintains that v is the set of nodes reachable from r in t,
which is formulated as vT = rTt∗. To preserve this property, we use the following
result of Stone-Kleene relation algebras.

Lemma 4. Let S be a Stone-Kleene relation algebra. Let t, e, r, v ∈ S such that
v is a vector, e ≤ vvT and et = ⊥ and vT = rTt∗. Then v′T = rTt′∗ where
t′ = t � e and v′ = v � eT�.

The assumption et = ⊥ follows similarly to etT = ⊥ for Lemma 1.
Finally, we discuss how to preserve the property that the currently con-

structed spanning tree t can be extended to a minimum spanning tree. The
situation is shown in Fig. 3. Assuming that there is a minimum spanning tree
w of g such that t ≤ w, we have to show that there is a minimum spanning
tree w′ of g such that t′ = t � e ≤ w′ where e = m(vvT � g) is an edge of g
with minimal weight going from a node in v to a node not in v. We do this by
explicitly constructing the new minimum spanning tree w′. To this end, we need
to find the edge f in w that crosses the cut from v to v, and replace it with the
edge e – this does not increase the weight due to minimality of e. An algebraic
expression for the edge f is

f = w � vvT � �ewT∗

The three terms on the right hand side enforce that f is in w, that f starts in
v and ends in v, and that there is a path in w from the end node of f to the
end node of e. It can be shown algebraically that f is an atom, that is, that f
represents the unique edge satisfying these conditions. An algebraic expression
for the path p from the end of f to the end of e is

p = w � v vT � �ewT∗

The three terms on the right hand side enforce that the edges in p are in w, that
they start and end in v, and that there is a path in w from each of their end
nodes to the end node of e. The required tree w′ is then obtained by removing
the edge f from w, turning around the path p, and inserting the edge e. An
algebraic expression for w′ is

w′ = (w � f � p) � pT � e

64 W. Guttmann

v

v

tr

• •

•
•

•

•
•

•

•

• •

•
•

•

•

• •

f

e

p
v

v

tr

• •

•
•

•

•
•

•

•

• •

•
•

•

•

• •

f

e

pT

Fig. 3. Replacing the edge f in w (left) with the minimal edge e in w′ (right) where t
is the tree in the oval and v is the set of nodes in t

We then show that w′ so defined is a minimum spanning tree of g with root r
and that t � e ≤ w′. In the following we focus on the part of this proof that
shows s(w′ � g) ≤ s(u� g) for each spanning tree u of g with root r. This follows
by the calculation

s(w′ � g) = s(w � f � p � g) + s(pT � g) + s(e � g) (27)

≤ s(w � f � p � g) + s(p � g) + s(f � g) (28)

= s(((w � f � p) � p � f) � g) (29)
= s(w � g) (30)
≤ s(u � g) (31)

Equation (27) holds by axioms (14) and (15) since w � f � p and pT and e
are pairwise disjoint (that is, their pairwise meet given by � is ⊥). A similar
argument justifies Eq. (29). Axiom (21) is used to show s(e � g) ≤ s(f � g) in
inequality (28). Axiom (16) is used to show that replacing p with pT does not
change the weight there. Equation (30) follows by a simple calculation, most of
which takes place in Stone algebras. Finally, Eq. (31) holds since w is a minimum
spanning tree of g with root r.

This is the main part of the overall proof where the operations and axioms
of M-algebras are used. Most of the proof, however, can already be carried out
in Stone-Kleene relation algebras or weaker structures as discussed above. We
expect such results to be useful for reasoning about other graph algorithms.

6 Related Work

In this section we compare the present paper with related work on algorithms
for minimum spanning trees. Often the correctness of such algorithms is argued
informally with varying amounts of mathematical rigour and details; for example,
see [15,31]. Our results are fully verified in Isabelle/HOL [38] based on formal
definitions and models.

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 65

A formal derivation of Prim’s minimum spanning tree algorithm in the B
event-based framework using Atelier B is presented in [1]. The paper also dis-
cusses the role of refinement in this process, which is not part of the present
paper. The B specification is based on sets and relations, uses an inductive def-
inition of trees, and represents weights by functions, whence objects of several
different sorts are involved.

Our formalisation is based on Stone-Kleene relation algebras, which gener-
alise relation algebras and Kleene algebras, and can be instantiated directly by
weight matrices. The generalisation is crucial as weight matrices do not support
a Boolean complement; accordingly we do not use implementations of relation
algebras such as [2,24]. Nevertheless we can build on well-developed relational
concepts and methods for our new algebras – such as algebraic properties of
trees – which are useful also in other contexts.

We mostly apply equational reasoning based on a single-sorted algebra. This
is well supported by automated theorem provers and SMT solvers such as those
integrated in Isabelle/HOL via the Sledgehammer tool [11,42] that we heavily
use in the verification. Typically the tool can automatically find proofs of steps
at a granularity comparable to manual equational reasoning found in papers.
Automation works less well in some cases, for example, chains of inequalities,
applications of isotone operations, and steps that introduce intermediate terms
that occur on neither side of an equation. On the other hand, in some cases the
tool can automatically prove a result that would take several manual steps.

A distributed algorithm for computing minimum spanning trees is verified
using the theorem prover Nqthm in [25]. The specification is again based on sets
and a weight function. The main focus of the paper is on the distributed aspects
of the algorithm, which uses asynchronous messages and differs essentially from
Prim’s minimum spanning tree algorithm. The distributed algorithm is the topic
of a number of other papers using a variety of formalisms including Petri nets
and modal logic.

Relation algebras are used to derive spanning tree algorithms in [6]. The given
proof is created manually and not verified using a theorem prover. It uses rela-
tions and, in absence of weighted matrices, an incidence matrix representation
and a weight function in a setting with several different sorts.

Constraint-based semirings are used to formulate minimum spanning tree
algorithms in [10]. These semirings abstract from the edge weights and represent
graphs by sets of edges. The semiring structure is not lifted to the graph level,
whereas we lift Stone algebras to Stone relation algebras – and similarly for
Kleene algebras – and can therefore exploit the algebraic structure of graphs.
Detailed proofs are not presented and there is no formal verification of results.
The paper is mainly concerned with extending the algorithms to partially ordered
edge weights, which is not part of the present paper.

Semirings with a pre-order, so-called dioids, are used to formulate various
shortest-path problems in [20]. The corresponding algorithms are generalisations
of methods for solving linear equations over these structures. Other approaches
to path problems are based on Kleene algebras; for example, see [26], which also

66 W. Guttmann

discusses many previous works in this tradition. Semirings and Kleene algebras
are suitable for path problems as they capture the essential operations of choos-
ing between alternatives, composing edges and building paths. It is not clear
how to model the minimum spanning tree problem using Kleene algebras only.

Relational methods based on allegories are used for algorithm development in
[8], but there relations mostly represent computations rather than the involved
data. An extension to quantitative analysis is discussed in [40].

7 Conclusion

The generalisation of Boolean algebras to Stone algebras gives a promising way to
extend correctness reasoning from unweighted to weighted graphs. When applied
to relation algebras, many results continue to hold with no changes or small
changes. In combination with Kleene algebras, we could carry out most of the
correctness proof of Prim’s minimum spanning tree algorithm.

A small part of the proof needed some additional operations; we captured a
few key properties in the present paper, but the underlying structure should be
studied further. To this end, we will look at variants of the minimum spanning
tree algorithm and other graph algorithms. We will also consider the integration
of termination proofs, complexity reasoning and combinatorial arguments using
cardinalities of relations.

Using algebras for proving the correctness of programs is well supported by
Isabelle/HOL. We have benefited from the existing verification condition genera-
tor for Hoare logic, from the structuring mechanisms that allow the development
of hierarchies of algebras and their models, and heavily from the integrated auto-
mated theorem provers, SMT solvers and counterexample generators.

Acknowledgements. I thank the anonymous referees for helpful feedback including
the suggestion to generalise Lemma 1 to its present form. I thank Rudolf Berghammer
for discussions about the cardinality of relations and ways to generalise it. I thank
Peter Höfner and Bernhard Möller for discussing alternative approaches to minimum
spanning trees in Kleene algebras. I thank the participants of the 73rd meeting of IFIP
WG 2.1, the 14th Logic and Computation Seminar of Kyushu University and the 2016
Workshop on Universal Structures in Mathematics and Computing for the opportunity
to talk about this work and for their valuable feedback. The presentation at Kyushu
University was part of a JSPS Invitation Fellowship for Research in Japan.

References

1. Abrial, J.-R., Cansell, D., Méry, D.: Formal derivation of spanning trees algorithms.
In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651,
pp. 457–476. Springer, Heidelberg (2003). doi:10.1007/3-540-44880-2 27

2. Armstrong, A., Foster, S., Struth, G., Weber, T.: Relation algebra. Archive of
Formal Proofs (2016). First version (2014)

3. Armstrong, A., Gomes, V.B.F., Struth, G., Weber, T.: Kleene algebra. Archive of
Formal Proofs (2016). First version (2013)

http://dx.doi.org/10.1007/3-540-44880-2_27

Relation-Algebraic Verification of Prim’s Minimum Spanning Tree Algorithm 67

4. Berghammer, R., Fischer, S.: Combining relation algebra and data refinement to
develop rectangle-based functional programs for reflexive-transitive closures. J.
Log. Algebr. Methods Program. 84(3), 341–358 (2015)

5. Berghammer, R., von Karger, B.: Relational semantics of functional programs. In:
Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science,
chap. 8, pp. 115–130. Springer, Wien (1997)

6. Berghammer, R., von Karger, B., Wolf, A.: Relation-algebraic derivation of span-
ning tree algorithms. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 23–43.
Springer, Heidelberg (1998). doi:10.1007/BFb0054283

7. Berghammer, R., Rusinowska, A., de Swart, H.: Computing tournament solutions
using relation algebra and RelView. Eur. J. Oper. Res. 226(3), 636–645 (2013)

8. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall, Englewood Cliffs
(1997)

9. Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. XXV, 3rd edn. Amer-
ican Mathematical Society, Providence (1967)

10. Bistarelli, S., Santini, F.: C-semiring frameworks for minimum spanning tree prob-
lems. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp.
56–70. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03429-9 5

11. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with
SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 11

12. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer, Berlin (2005)
13. Comer, S.D.: On connections between information systems, rough sets and alge-

braic logic. In: Rauszer, C. (ed.) Algebraic Methods in Logic and in Computer Sci-
ence. Banach Center Publications, vol. 28, pp. 117–124. Institute of Mathematics,
Polish Academy of Sciences (1993)

14. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge (1990)

16. Desharnais, J., Grinenko, A., Möller, B.: Relational style laws and constructs of
linear algebra. J. Log. Algebr. Methods Program. 83(2), 154–168 (2014)

17. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

18. Freyd, P.J., Ščedrov, A.: Categories, Allegories. North-Holland Mathematical
Library, vol. 39. Elsevier Science Publishers (1990)

19. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)
20. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer, Heidelberg

(2008)
21. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem.

Ann. Hist. Comput. 7(1), 43–57 (1985)
22. Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices.

W. H. Freeman and Co., San Francisco (1971)
23. Guttmann, W.: Algebras for correctness of sequential computations. Sci. Comput.

Program. 85(Part B), 224–240 (2014)
24. Guttmann, W., Struth, G., Weber, T.: A repository for Tarski-Kleene algebras. In:

Höfner, P., McIver, A., Struth, G. (eds.) Automated Theory Engineering. CEUR
Workshop Proceedings, vol. 760, pp. 30–39 (2011)

25. Hesselink, W.H.: The verified incremental design of a distributed spanning tree
algorithm: extended abstract. Formal Aspects Comput. 11(1), 45–55 (1999)

http://dx.doi.org/10.1007/BFb0054283
http://dx.doi.org/10.1007/978-3-642-03429-9_5
http://dx.doi.org/10.1007/978-3-642-22438-6_11
http://dx.doi.org/10.1007/978-3-642-22438-6_11

68 W. Guttmann

26. Höfner, P., Möller, B.: Dijkstra, Floyd and Warshall meet Kleene. Formal Aspects
Comput. 24(4), 459–476 (2012)

27. Jarńık, V.: O jistém problému minimálńım (Z dopisu panu O. Bor̊uvkovi). Práce
moravské př́ırodovědecké společnosti 6(4), 57–63 (1930)

28. Kawahara, Y.: On the cardinality of relations. In: Schmidt, R.A. (ed.)
RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg (2006).
doi:10.1007/11828563 17

29. Kawahara, Y., Furusawa, H.: Crispness in Dedekind categories. Bull. Inf. Cybern.
33(1–2), 1–18 (2001)

30. Kawahara, Y., Furusawa, H., Mori, M.: Categorical representation theorems of
fuzzy relations. Inf. Sci. 119(3–4), 235–251 (1999)

31. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol.
1, 3rd edn. Addison-Wesley, Reading (1997)

32. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

33. Macedo, H.D., Oliveira, J.N.: A linear algebra approach to OLAP. Formal Aspects
Comput. 27(2), 283–307 (2015)

34. Maddux, R.D.: Relation-algebraic semantics. Theor. Comput. Sci. 160(1–2), 1–85
(1996)

35. Mareš, M.: The saga of minimum spanning trees. Comput. Sci. Rev. 2(3), 165–221
(2008)

36. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects Comput. 10(2), 171–186 (1998)

37. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen,
R. (eds.) Proof and System-Reliability, pp. 341–367. Kluwer Academic Publishers
(2002)

38. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

39. Oliveira, J.N.: Extended static checking by calculation using the pointfree
transform. In: Bove, A., Barbosa, L.S., Pardo, A., Pinto, J.S. (eds.) LerNet
2008. LNCS, vol. 5520, pp. 195–251. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03153-3 5

40. Oliveira, J.N.: Towards a linear algebra of programming. Formal Aspects Comput.
24(4), 433–458 (2012)

41. Oliveira, J.N.: Weighted automata as coalgebras in categories of matrices. Int. J.
Found. Comput. Sci. 24(6), 709–728 (2013)

42. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics, pp. 3–13 (2010)

43. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst.
Tech. J. 36(6), 1389–1401 (1957)

44. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer, Berlin (1993)
45. Struth, G.: Abstract abstract reduction. J. Log. Algebr. Program. 66(2), 239–270

(2006)
46. Tarski, A.: On the calculus of relations. J. Symbol. Log. 6(3), 73–89 (1941)
47. Winter, M.: A new algebraic approach to L-fuzzy relations convenient to study

crispness. Inf. Sci. 139(3–4), 233–252 (2001)

http://dx.doi.org/10.1007/11828563_17
http://dx.doi.org/10.1007/978-3-642-03153-3_5
http://dx.doi.org/10.1007/978-3-642-03153-3_5

Certified Impossibility Results and Analyses
in Coq of Some Randomised Distributed

Algorithms

Allyx Fontaine1(B) and Akka Zemmari2

1 Université de la Guyane, UMR ESPACE-DEV, Cayenne, France
allyx.fontaine@gmail.com

2 Université de Bordeaux, LaBRI UMR CNRS 5800, Bordeaux, France
akka.zemmari@labri.fr

Abstract. Randomised algorithms are generally simple to formulate.
However, their analysis can become very complex, especially in the field
of distributed computing. In this paper, we formally model in Coq a
class of randomised distributed algorithms. We develop some tools to
help proving impossibility results about classical problems and analysing
this class of algorithms. As case studies, we examine the handshake and
maximal matching problems. We show how to use our tools to formally
prove properties about algorithms solving those problems.

1 Introduction

Randomised distributed problems were studied intensively in the past few
decades. Generally, randomised distributed algorithms are defined in a con-
cise way. However, their analysis remains delicate and complex, which makes
their proof difficult. Model checkers give an automatic way to check whether
the results of the algorithms verify a certain specification, however they proceed
exhaustively, leading to an explosion of space complexity. An alternative is to
use proof assistants. They assist the user to prove properties and certify the
proof at its end. The proof assistant Coq [Tea] is powerful to model and prove
properties or impossibility results thanks to its higher order logic.

1.1 The Theoretical Model

There exists various models for distributed systems depending on the features
we allow: message passing model, shared memory model, mobile robots model,
etc. Here, we restrict our study to the standard message passing model. It con-
sists of a point-to-point communication network described by a connected graph
G = (V, E), where the vertices V represent network processes and the edges E rep-
resent bidirectional communication channels. Processes communicate by message
passing: a process sends a message to another by depositing the message in the
corresponding channel.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 69–81, 2016.
DOI: 10.1007/978-3-319-46750-4 5

70 A. Fontaine and A. Zemmari

We assume the system is fully synchronous, namely, all processes start at the
same time and time proceeds in synchronised rounds. A round of each process is
composed of the following three steps. Firstly, it sends messages to neighbours;
secondly, it receives messages from neighbours; thirdly, it performs some local
computations. Note that we consider only reliable systems: no fault can occur
on processes or communication links. This hypothesis is strong but it allows
to analyse complexities that give a lower bound for systems based on weaker
assumptions (and therefore more realistic).

The network G is anonymous: unique identities are not available to distin-
guish the processes. We do not assume any global knowledge of the network, not
even its size or an upper bound on its size. The processes do not require any
position or distance information. The anonymity hypothesis is often seen for pri-
vacy reasons. In addition, each process can be integrated in a large-scale network
making it difficult or impossible to guarantee the uniqueness of identifiers.

Each process knows from which channel it receives or to which it sends a
message, thus one supposes that the network is represented by a connected
graph with a port numbering function defined as follows (where NG(u) denotes
the set of vertices of G adjacent to u): given a graph G = (V, E), a port numbering
function φ is a set of local functions {φu | u ∈ V} such that for each vertex u ∈ V,
φu is a bijection between NG(u) and the set of natural numbers between 1 and
|NG(u)|.

A probabilistic algorithm makes some random choices based on some given
probability distributions. A distributed probabilistic algorithm is a collection of
local probabilistic algorithms. Since the network is anonymous, their local prob-
abilistic algorithms are identical. We assume that choices of vertices are inde-
pendent. A Las Vegas algorithm is a probabilistic algorithm which terminates
with a positive probability (in general 1) and always produces a correct result.

1.2 Our Contribution

We provide a library to prove properties on (randomised) distributed algo-
rithms. We use the Coq proof assistant, library Alea [APM09] and plugin ssreflect
[GMT08]. We first define, in Sect. 2, the algorithm class of anonymous distrib-
uted algorithms according to the model previously described. We explain why our
definitions are valid. Our main contribution is the tools we developed to enable
the user to analyse anonymous distributed algorithms described in Sect. 3.

Section 4 illustrates how to use those tools by analysing solutions for two
case studies: the handshake and maximal matching problems. A communication
takes place only if the participant processors are waiting for the communication:
this is termed handshake. A solution of the handshake problem gives a matching
of the graph. A matching is a subset M of E such that no two edges of M have
a common vertex. A matching M is said to be maximal if any edge of G is in
M or has an extremity linked to an edge in M . First, we show that randomisa-
tion may be required to solve distributed problems in particular the handshake
problem. Hence, we formally prove an impossibility result which is: “there is
no deterministic algorithm in this class that solves the handshake problem”.

Certified Impossibility Results and Analyses in Coq 71

This also proves that there is no deterministic algorithm that solves the (maxi-
mal) matching problem. Then we implement a solution of the handshake problem
and we prove that this solution is correct. We analyse the handshake and the
maximal matching problems by proving some probabilistic properties.

We believe this is the first work about formal proof of anonymous synchro-
nous randomised distributed message passing algorithms. The examples, used
as case studies, are certified. Lemmas and theorems, presented in frame in our
paper, are denoted by their name in the Coq development available at [FZ].

1.3 Related Works

Distributed Algorithms. Several models are used to represent distributed
algorithms. Models such as fault-tolerant [KNR12], population protocols [DM09],
mobile robots [CRTU15] are also studied and certified with proof assistants.

C.T. Chou [Cho95] uses the HOL proof assistant to show the correctness of
distributed algorithms, modelled by labelled transition systems. Specifications
are expressed in terms of temporal logic, and their proofs of correctness use
simulation proofs with the help of joint invariants.

The approach of D. Méry et al. [MMT11] is directly related to the design of
correct-by-construction programs. From the formal specifications of the distrib-
uted algorithms, they use the refinement for controlling their correctness with
Event-B.

The development Loco library [CF11] by P. Castéran and V. Filou consists
of a set of libraries on labelled graphs and graph relabelling systems. It allows
the user to specify tasks, and to prove the correctness of relabelling systems with
reference to these tasks and also impossibility results.

Randomised Distributed Algorithms. In our model, we consider that the
algorithm operates in rounds, applying a local algorithm to each vertex. This
removes the non-determinism due to the latency. But several approaches take
into account the dual paradigm of randomised distributed systems: probabilis-
tic aspect and non-determinism due to the response time that changes from one
processor to another. They require models with non-deterministic choice between
several probability distributions. These choices can be made by a scheduler or
an opponent. Equivalent models are following this idea: probabilistic automata
[PS95], Markov decision processes [Der70]. To specify properties of randomised
distributed algorithms, one can use the temporal logic with probabilistic opera-
tors and a threshold.

The Model Checking is a tool used to ensure system correction. However,
used with probabilities, it leads to an explosion of space complexity. There are
methods for reducing the explosion. A qualitative analysis of randomised dis-
tributed algorithms is feasible thanks to the model checker PRISM [KNP02].
M. Kwiatkowska et al. [KNS01] use PRISM model checker and Cadence proof
assistant, to obtain automated proofs. Consensus protocol is proved for its non-
probabilistic part with Cadence and for its probabilistic part with PRISM.

72 A. Fontaine and A. Zemmari

J. Hurd et al. [HMM05] formalise in higher order logic the language pGCL
used to reason on probabilistic choices or choices made by an adversary. They
prove the mutual exclusion algorithm of Rabin: consider N processes, sometimes
some of them need to access a critical zone; the algorithm consists in electing
one of them. However they do not model the processor concurrently but use an
interpretation consisting in reducing the number of processes to 1.

1.4 Preliminaries

Different evaluations of the same probabilistic expression lead to different values.
To reason about such expression in a functional language, a solution consists in
studying the distribution of this expression rather than its result. In Alea, a
probabilistic expression (e : τ) is interpreted as a distribution whose type is
(τ → [0, 1]) → [0, 1]. This monadic type is denoted distr τ . We will use the
notation (μ e) to represent the associated measure of expression e. Let Q be
a property and let 1Q be its characteristic function. The probability that the
result of the expression e satisfies Q is represented by (μ e) 1Q.

To construct monadic expressions, Alea provides the following functions.
Munit a returns the Dirac distribution at point a. Mlet x = d1 in d2 evaluates
d1, links the result to x and then evaluate d2 where d1 and d2 are random expres-
sions (not necessarily of the same type). Random n returns a number between 0

and the natural number n with a uniform probability 1/(n + 1).
Most of proofs presented in this paper are based on both transformations

[APM09]:

Lemma Munit simpl: ∀ (P: τ) (f: τ → [0, 1]), (μ (Munit P)) f = (f P).

Lemma Mlet simpl: ∀ (P: distr τ) (Q: τ → distr τ ′) (f: τ ′ → [0, 1]),

(μ (Mlet x = P in (Q x))) f = (μ P) (fun x ⇒ (μ (Q x)) f).

2 Our Formal Model

We provide semantics and functions to express anonymous randomised distrib-
uted algorithms. They can be used by the user to define his/her own algorithms
in the distributed systems we focus on. Once the algorithms are defined, the user
can do tests by evaluating them, prove correctness and analyse them.

2.1 Formal Distributed Systems

Synchronous anonymous message passing model can be represented by a con-
nected graph G = (V, E) with a port numbering function φ. To encode the
graph, we use an adjacency function Adj that, given two vertices, returns a
boolean saying either they are connected or not. The edge that links two
adjacent vertices v and w is denoted by {v, w}. We model the port number-
ing function φ : V �→ (seq V) as the ordered sequence of the neighbours of
a vertex. For all v, φ(v) = [v1, v2] means that v has two neighbours: the

Certified Impossibility Results and Analyses in Coq 73

first one is v1 and the second one is v2. Two axioms are required: the func-
tion φ only links adjacent vertices and does not contain duplicated vertices:

Hypothesis Hφ1 : ∀ v w, Adj v w = v ∈ (φ w).

Hypothesis Hφ2 : ∀ v, uniq (φ v).

Each process sends a message to its neighbour by putting it in the corre-
sponding link. A port (pair of vertices) represents the link whereby a vertex put
its message. We define P as the set of ports. Thus, if v sends a message to its
ith neighbour, it sends its message by the port (v, w) where w is the ith element
of the sequence (φ v). We model the exchange of messages, in a global way,
by a port labelling function over the graph G. The set of labels over ports is
denoted Ψ . A port labelling function ψ : P �→ Ψ maps a port to its associated
label. The state of each process is represented by a label λ(v) associated to the
corresponding vertex v ∈ V. Hence, each vertex has a status represented by a
vertex labelling function λ : V �→ Λ where Λ is the set of labels over the vertices.
Consider σ = (λ, ψ) the pair of labelling functions which maps a vertex (resp. a
port) to its state. Type of such pair, the global state of the graph, will be denoted
by State.

v1

v2

v3 v4

v5

1
1

3

1

2 2

2
1

4 1

Graph supplied with a port num-
bering φ such that (φ v1) = [v2],
(φ v2) = [v1, v3, v4, v5], (φ v3) =
[v2, v4], (φ v4) = [v2, v3], (φ v5) =
[v2].

For instance, v2 only distinguishes its four
neighbours but it knows nothing about its
identity or the ones of its neighbours. We
can see, with a global view, that v5 is the
fourth neighbour of v2 according to φ; the
fact that v2 sends a message m to its fourth
neighbour consists in replacing the label of
the port (v2, v5) by m.

A processor sends (write a message on the
corresponding port) and receives (reads the
corresponding port) messages. We define the
writing (resp. reading) area of a vertex v as the set of port labels it is able to
update (resp. to read), that is port labels of the form (v, w) (resp. (w, v)) where
w is a neighbour of v. From a global state σ, we define the local view of a vertex
v as the triplet composed by its local state, the sequence of local states of the
port in its writing and in its reading area given with the order of φ and extracted
from σ. The local view of a vertex corresponds to the local information it owns.
We define two local functions for a vertex to model received message from all
neighbours (read) and sent messages to all neighbours (write):

– read:State × V → Λ×(seq Ψ)×(seq Ψ): consider σ and v, (read σ v) returns
the local view of v in σ.

– write:State×V×Λ × (seq Ψ) → State: consider σ, v, λ, ψ, (write σ v λ ψ)
returns the new global state obtained from the old one σ such that the local
state of v is updated by λ and the one of its writing area by the sequence ψ.

74 A. Fontaine and A. Zemmari

2.2 Syntax and Semantics

Randomisation appears in local computations (Λ × (seq Ψ)) made by a ver-
tex. All of those local computations will create a random State. We define the
inductive type for randomisation GR, that will be used to construct random local
computations GR (Λ × (seq Ψ)) and global states GR State. In Haskell [Has],
monads are structures that represent computations and the way they can be
combined. To express randomisation in Coq in a monadic form, we introduce
three abstract operators Greturn, Gbind and Grandom.

Inductive GR (B:Type): Type :=

| Greturn (b:B)

| Gbind {A :Type}(a:GR A)(f : A → GR B)

| Grandom (n:nat)(f : nat → GR B).

To improve the readability of the code, we use the following abbreviations.
Let stmts be any statement block, n be an integer and f a function:

Gbind x (fun v⇒{<stmts>}) ↔ Glet v = x in {<stmts>}.
Grandom n f ↔ Glet x = (random n) in f.

Once one has set out a randomised algorithm thanks to our syntax, one would
like to simulate, to prove the correctness or to analyse this algorithm. For those
purposes, we define [FZ] three semantics that interpret their input, a monad of
type GR, in an operational, set, or distributional way. The operational semantic
Opsem, that takes as a parameter a random number generator, is used to evaluate
computations. The set monad Setsem is used to handle the set of transitional
and final results of a randomised algorithm. We can then prove properties of
correctness by reasoning on this set. The distributional monad Distsem is used
to reason about distribution. We define it according to the monad of Alea by
using the operators Munit, Mlet and Random [APM09].

2.3 Randomised Distributed Algorithms

We model a distributed algorithm by local algorithms executed by each processes
during a round. We represent local algorithms by rewriting rules: from its local
view, a vertex v can rewrite its own state and its writing area by applying a
local computation of type GLocT. A round GRound is the state obtained from
the application of a local computation to all vertices. Note that the update of
the global state is not made concurrently but sequentially (see Sect. 3.1). Let
LCs be a sequence of local computations, then a step GStep corresponds to the
application of rounds taking successively as input the local computations of LCs.
The execution of an algorithm with at most n steps is modelled by (GMC n LCs

s init) where s is the list of vertices and init is the initial global state.

Certified Impossibility Results and Analyses in Coq 75

Definition GLocT := Λ → (seq Ψ) → (seq Ψ) → GR(Λ*seq Ψ).

Fixpoint GRound (s:seq V)(res: State)(LCs:GLocT):GR State:=

match s with |nil ⇒ Greturn res

|v::t ⇒Glet s=(GRound t res LCs) in Glet p=(LCs (read res v)) in

Greturn (write s v p)

end.

Fixpoint GStep (LCs:seq GLocT)(s:seq V)(res:State):GR State:=

match LCs with | nil ⇒ Greturn res

|a1::a2 ⇒ Glet y = (GRound s res a1) in (GStep a2 s y)

end.

Fixpoint GMC(n:nat) (LCs:seq GLocT) (s:seq V)(init:State):GR State:=

match n with |O ⇒ Greturn init

| S m ⇒ Glet y = (GStep LCs s init) in (GMC m LCs s y)

end.

According to the semantic, the result of the distributed algorithm (of type GR

State) is either a possible global state that can be obtained from the algorithm
with a random number generator (operational semantic); the set of all global
states that the algorithm can produce (set semantic); or the distribution of
global states resulting from the algorithm (distributional semantic).

3 General Results

In this section, we only use the distributional semantic. To ensure readability, let
e: GR B be an randomised expression of type B, then instead of writing (Distsem

(Greturn e)), we write (Dreturn E). Similarly, we introduce new functions begin-
ning with D (instead of F) as distributional: Dlet, DRound, etc. Let LC be a local
computation and LCs be a sequence of local computations.

3.1 Validity of Our Model

The algorithm simulates the sending of messages by updating the state σ for
each vertex using the deterministic functions read and write. As the writing
areas are pairwise disjoint (relabellings do not overlap), two calls of write, each
applied to a different vertex, permute.

Lemma write comm: ∀ v w, v �= w →
(write (write σ w c2) v c1) = (write (write σ v c1) w c2).

The global function depends formally on the implementation of the sequence
of vertices (enum V). It describes sequentially the simulation of the application
of the local function simultaneously on all the vertices. In fact, our system is
distributed, this implies that several vertices can relabel their writing area at the
same time. However, to reason over such algorithm, we want it to be sequential.
Then we have to show that the order of application of the local algorithm is not
relevant. This property is ensured thanks to the permutability of function write.

76 A. Fontaine and A. Zemmari

Thus, the result will be the same than the one obtained if vertices would execute
this algorithm at the same time.

Lemma DRoundCommute3: Let σ be a global state of G and LC be a discrete local
computation. Let lv be a sequence of vertices of G. Let lv′ be a permutation of lv,
then:

DRound lv σ LC = DRound lv’ σ LC.

3.2 Tools to Prove Properties on Algorithms of Our Model

Composition. A way to prove properties on function DRound is to proceed by
induction on the sequence of vertices, especially if we want to prove a property
about a vertex v. The method is based on the decomposition of the randomised
expression into the measure of one vertex and the measure for the remaining. As
an example, we can prove properties such as the termination with probability
one as stated below.

Lemma DRound total: ∀ σ s, (∀ v, Term (LC (read v))) →
(μ (DRound s σ LC)) I = 1.

Non-null Probability. Probability that an event occurs in a randomised algo-
rithm is not null if there is a possible execution of the algorithm whereby this
event is verified. Therefore, it suffices to highlight a witness.

Lemma proba not null: Let A be a randomised algorithm and E an event. Let t
be a witness, if (μ A) 1.=t > 0 and (E t) then (μ A) 1(E t) > 0.

Termination. A randomised distributed algorithm repeats a step until a certain
property is verified by the labelling graph. In general, this property is that all
the vertices stop to interact with each other, i.e. until all vertices are inactive.
This lead us to consider the algorithm with a property of termination TermB.

Fix DLV (sV: seq V)(σ: State) (LCs: seq DLocT) (TermB: State → bool)

: distr (State) := if (TermB σ) then Dreturn σ
else Dlet r = (DStep LCs sV σ) in DLV sV r LCs TermB

In Coq we need to highlight a variant which decrements at each round in order
to prove the termination. However there exists some algorithms which terminate
with probability 1 but in which some executions could possibly be infinite. To
deal with this kind of programs, there is, in Alea, a tool to handle limits of
sequences of distributions. Hence, when a recursive function is introduced, we
interpret it as a fix point and then compute the least upper bound.

Certified Impossibility Results and Analyses in Coq 77

Lemma termglobal: For all randomised update of a global state to another
rd : State → distr State, for all global state σ, for all ended property TermB,
for all variant (cardTermB: State → nat), for all real c between 0 and 1 and for
all state property (PR:State→bool), if:
1. ∀ s, Term (rd s)

2. ∀ s, cardTermB s = 0 → TermB s = true

3. 0 < c
4. ∀ s, 0<cardTermB s → PR s → c≤ μ (rd s) I(cardTermB .<cardTermB s)

5. ∀ s, PR s → μ (rd s) I(cardTermB s<cardTermB .) = 0
6. ∀ s f, PR s → μ (rd s) IPR. ∧ f. = μ (rd s) If
7. PR σ

then: Term (fglobal rd TermB σ).

From Lemma termglobal, we obtain Lemma DPLV total: function DLV termi-
nates by taking as input the state update (DStep LCs (enum V)). Thus, to prove
that a Las Vegas algorithm terminates with probability 1, it suffices to show
that the probability for a certain variant (such that, if it is null, it implies the
termination) to decrement is non-null and to increase is null after a step (DStep

LCs (enum V)). The property PR specify the global states with a property always
true: the two last hypotheses mean that it has no impact on the probability
computations and that it is verified by the initial state.

4 Applications

As a case study, we focus on the Handshake problem. We first show that we
require randomisation, we define a randomised solution and we prove its cor-
rectness. Then, we analyse this solution. As a generalisation of this problem, we
analyse a solution to the maximal matching problem.

4.1 Correctness of an Handshake Solution

Handshake Specification. We specify an handshake solution as a structure
hsAlgo containing three components.

– HsR is the local computation sequence (that each node executes in successive
rounds).

– HsP is the local handshake function (each node knows if it is in handshake).
– HsI is the initial state.

Hypotheses required by the above components are the following.

– HsI1: the initial state is consistent, i.e., for each v, if v is in handshake with
one of its neighbours (say w), then w is also in handshake with v.

– HsI2 : the initial state is uniform, i.e. each vertex has the same label and each
port also.

– HsP1 : the global handshake function (obtained from HsP) applied to a vertex
v returns numbers lesser than the degree of v.

– HsRind: consistency is preserved by a step of the algorithm.

78 A. Fontaine and A. Zemmari

We assume an important hypothesis on the graph: it must contain at least an
edge, otherwise no handshake can occur. The aim of this algorithm is to realise
handshakes (hsRealisation:Λ Ψ (A: hsAlgo Λ Ψ)), i.e., for any graph, there is
an execution in which one reachable state contains a handshake.

Impossibility Result. We have seen that the difference between deterministic
algorithms and randomised algorithms is the use of random. We show the interest
of randomised algorithms by proving that there is no deterministic algorithm
that solves the handshake problem for any graph. We define a property Adet

(l:seq GLocT) verifying that all the computational rules are deterministic.

Lemma NotReal:∀ Λ Ψ(A:hsAlgo Λ Ψ), Adet(HsR A)→∼(hsRealisation A).

The Randomised Algorithm. The algorithm randHSLoc is defined as follows:
each vertex v chooses uniformly at random one of its neighbours c(v), sends 1 to
c(v) and 0 to the others. There is a handshake between v and c(v) if v receives 1
from c(v). The function (randSendChosen n l) returns a boolean sequence of size
|l| where each component takes the value 0 except the nth.

Definition randHSLoc (λ:Λ) (ψout ψin:seq Ψ) : GR (Λ × seq Ψ) :=

match |ψin| with |O ⇒ Greturn (None, nil) (*isolated vertex*)

|S n ⇒ Glet k=(random n) in Greturn(None,randSendChosen(k+1) ψin)

end.

Correctness of the Randomised Algorithm. To define formally our algo-
rithm, we first define the components. The rule sequence randHsR corresponds
to a single local rule randHSLoc. The function randHsP returns None if the vertex
is not in a handshake or Some i if the vertex is in handshake with its ith neigh-
bour. The initial state randHsI is the one where all labels are valued at None

and all the labels of the ports at 0. We prove the hypotheses: consistency of the
initial state (randHSI1), uniformity of the initial state (randHsI2), domain of the
handshake function (randHsP1) and stability of consistency by a computation
step (randHsRind). We then build the algorithm: randhs. We prove that the only
hypothesis that differs is the determinism: NonADet. We finally prove that there
exists at least an execution of the algorithm that realises a handshake Real.

Definition randhs : (hsAlgo Λ Ψ) :=

(Build hsAlgo randHsI1 randHsI2 randHsP1 randHsRind).

Lemma NonADet: ∼ Adet (HsR randhs).

Lemma Real : hsRealisation randhs.

4.2 The Handshake Algorithm in Coq

The local computation we consider here (DHSLoc) is similar to randHSLoc except
that we applied it only on active vertices, that is on the active subgraph. Active
vertices are required to construct the maximal matching of the next section. We
denote by DHS the global algorithm based on the local algorithm DHSLoc.

Certified Impossibility Results and Analyses in Coq 79

Definition DHSLoc (λ:Λ) (ψoutψin: seq Ψ): dist (Λ*seq Ψ) :=

if (active λ) then

match (numberActive ψin) with

|O ⇒ Dreturn (Some |ψout|, nseq |ψout| false)

|S n ⇒ Dlet k = (Random n) in

Dreturn (λ,sendChosen k.+1 ψin)

end

else Dreturn (λ,ψout).

Definition DHSRound (sV: seq V)(σ:State) := DRound sV σ DHSLoc.

Composition. As the order is irrelevant, sV can be rewritten into v :: (sV \v),
where sV is the sequence of vertices in the graph. We can apply composition tech-
nique to prove the lemma below where P (v, w) is the property “v chooses w”.

Lemma DHS degv global: ∀ G σ {v, w}, (μ (DHS sV σ)) IP (v,w) = 1/d(v).

Analysis of the Success. Let HS(e) denote the event “there is a handshake
on the edge e”. We define H(e) as the characteristic function of HS(e). The
goal of our establishment of a model is to write the formal proof of results from
[MSZ03]. To be able to prove this theorem, the general results were used, as for
example Lemma proba not null.

Theorem DHS deg: ∀ sV σ, μ (DHS (enum V) σ) (∃ e, H(e)) ≥ 1 − e−1/2.

4.3 The Maximal Matching Algorithm

Here is the definition of the maximal matching algorithm. We show that this
algorithm terminates with probability 1. This algorithm consists in iterating
the handshake algorithm (DMMLoc2) only by considering the active vertices where
vertices in handshake becomes inactive (DMMLoc1). At the beginning, every vertex
is active. At the end, every vertex is inactive (termB).

Definition DMMLoc1 (λ:Λ) (ψout ψin:seq Ψ) : dist (Λ × seq Ψ) :=

if (active λ) then

if (agreed ψout ψin) then

Dreturn (Some (index true ψout) , ψout)

else Dreturn (None, map (fun x ⇒ true) ψout)

else Dreturn (λ, ψout).

Definition DMMLoc2 (λ:Λ) (ψout ψin:seq Ψ) : dist (Λ × seq Ψ) :=

DHSLoc λ ψout ψin.

Definition termB (f: State) : bool :=

[∀ v, active (f.1 v)].

Definition DMMLV (sV: seq V) (σ: State) :=

DLV sV σ (DMMLoc1::DMMLoc2::nil) termB.

80 A. Fontaine and A. Zemmari

The general lemma DPLV total (see Lemma termglobal) implies that this
algorithm terminates with probability 1.

Theorem DMMLV term: ∀ σ, μ (DMMLV (enum V) σ) I = 1.

Proof. To prove this lemma, we used the general result termglobal. We first show
that the probability to have a handshake during a round is strictly positive which
means that the number of active vertices decrements with a non null probability.
Hence as a variant we take the number of active vertices. The property always
true PR in our labelling is that every active vertex sends 1 to all of its neighbour
and every inactive vertex sends 0. We then prove the 7 hypotheses of Lemma
termglobal.

5 Conclusion

We develop on this paper tools to reason about (randomised) distributed algo-
rithms in anonymous networks. We prove negative results but also we prove prop-
erties over randomised algorithms which solve handshake and maximal matching
problems. More particularly, for the handshake problem, we analyse the prob-
ability of at least a handshake in a round. We then iterate this algorithm to
construct a maximal matching. We prove that this algorithm terminates with
probability 1.

Many of the techniques used in this paper can be applied to analyse solutions
for other similar problems like symmetry break, local election algorithms and
distributed computing of maximal independent sets. One of the future work
consists in proving properties about time complexity by providing tools to handle
the number of rounds.

Acknowledgement. The authors are grateful to P. Castéran who follows this work
all along. We particularly thank him for his first proof in Coq of the impossibility result
stated in Sect. 4.1 and for the development of the semantics that is the base of their
development. They also thank C. Paulin-Mohring and A. Mahboubi for their help using
Alea and ssreflect respectively.

References

[APM09] Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq.
Sci. Comput. Program. 74(8), 568–589 (2009)

[CF11] Castéran, P., Filou, V.: Tasks, types and tactics for local computation sys-
tems. Studia Informatica Universalis 9(1), 39–86 (2011)

[Cho95] Chou, C.T.: Mechanical verification of distributed algorithms in higher-
order logic. Comput. J. 38(2), 152–161 (1995)

[CRTU15] Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a
certification. Inf. Process. Lett. 115(3), 447–452 (2015)

[Der70] Derman, C.: Finite State Markovian Decision Processes. Mathematics in
Science and Engineering. Academic Press, Orlando (1970)

Certified Impossibility Results and Analyses in Coq 81

[DM09] Deng, Y., Monin, J.F.: Verifying self-stabilizing population protocols with
Coq. In: TASE, pp. 201–208 (2009)

[FZ] Fontaine, A., Zemmari, A.: RDA: a Coq Library on Randomised Distributed
Algorithms. http://www.allyxfontaine.com/RDA

[GMT08] Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension
for the Coq system. Rapport de recherche RR-6455, INRIA (2008)

[Has] http://www.haskell.org/haskellwiki/monad
[HMM05] Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mech-

anized in ol. Electr. Notes Theor. Comput. Sci. 112, 95–111 (2005)
[KNP02] Kwiatkowska, M.Z., Norman, G., Parker, D., Prism: probabilistic symbolic

model checker. In: Computer Performance Evaluation/TOOLS, pp. 200–204
(2002)

[KNR12] Küfner, P., Nestmann, U., Rickmann, C.: Formal verification of distrib-
uted algorithms. In: Baeten, J.C.M., Ball, T., Boer, F.S. (eds.) TCS 2012.
LNCS, vol. 7604, pp. 209–224. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33475-7 15

[KNS01] Kwiatkowska, M.Z., Norman, G., Segala, R.: Automated verification of a
randomized distributed consensus protocol using cadence SMV and PRISM.
In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp.
194–206. Springer, Heidelberg (2001)

[MMT11] Méry, D., Mosbah, M., Tounsi, M.: Refinement-based verification of local
synchronization algorithms. In: Butler, M., Schulte, W. (eds.) FM 2011.
LNCS, vol. 6664, pp. 338–352. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21437-0 26

[MSZ03] Métivier, Y., Saheb, N., Zemmari, A.: Analysis of a randomized rendezvous
algorithm. Inf. Comput. 184(1), 109–128 (2003)

[PS95] Pogosyants, A., Segala, R.: Formal verification of timed properties for ran-
domized distributed algorithms. In: PODC, pp. 174–183 (1995)

[Tea] “Coq Development Team”. The Coq Proof Assistant Reference Manual.
coq.inria.fr

http://www.allyxfontaine.com/RDA
http://www.haskell.org/haskellwiki/monad
http://dx.doi.org/10.1007/978-3-642-33475-7_15
http://dx.doi.org/10.1007/978-3-642-33475-7_15
http://dx.doi.org/10.1007/978-3-642-21437-0_26
http://dx.doi.org/10.1007/978-3-642-21437-0_26
https://coq.inria.fr/

Calculating Statically Maximum Log Memory
Used by Multi-threaded Transactional Programs

Anh-Hoang Truong1, Ngoc-Khai Nguyen2(B), Dang Van Hung1,
and Duc-Hanh Dang1

1 VNU University of Engineering and Technology, Hanoi, Vietnam
2 Hanoi University of Natural Resources and Environment, Hanoi, Vietnam

nnkhai@hunre.edu.vn

Abstract. During the execution of multi-threaded and transactional
programs, when new threads are created or new transactions are started,
memory areas called logs are implicitly allocated to store copies of shared
variables so that the threads can independently manipulate these vari-
ables. It is not easy to manually calculate the peak of memory allo-
cated for logs when programs have arbitrary mixes of nested transac-
tions and new thread creations. We develop a static analysis to compute
the amount of memory used by logs in the worst execution scenarios of
the programs. We prove the soundness of our analysis and we show a
prototype tool to infer the memory bound.

Keywords: Memory bound · Transactional memory · Static analysis

1 Introduction

We address the problem of determining the memory bound of transactional
programs at compile time to ensure that they can run smoothly without out of
memory errors. To describe the problem more precisely, we use a core language
in which transactional and multi-threading statements are based on [12] and
other features are generalized so that transactional programs in other imperative
languages can be translated to our language for the memory estimation problem.
The key features we borrow from [12] allow programmers to mix creating new
threads and opening new transactions.

When one transaction is nested in another, we called the former parent trans-
action, and the latter child one. A child transaction must commit before its par-
ent does. When a transaction is started, a memory area called log is allocated
for storing a copy of shared variables. A transaction that started but has not
committed yet is called an open transaction. Inside open transactions, the pro-
grammers can also create new threads. A new thread in this case will make a
copy of transaction logs of its parent thread. When a parent thread commits a

This research is funded by Vietnam National Foundation for Science and Technology
Development (NAFOSTED) under grant number 102.03-2014.23.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 82–99, 2016.
DOI: 10.1007/978-3-319-46750-4 6

Calculating Statically Maximum Log Memory 83

transaction, all the child threads that are created inside the parent transaction
must join the commit with their parent. This kind of commits is called joint
commit, and the time when these commits occur is joint commit point. Joint
commits act as implicit synchronizations of parallel threads. If a transaction has
no child threads, the commit is a normal (local) commit. Both types of commits
release the memory allocated for the logs. Now, we can formulate the problem as
follows. Given the size of transaction logs in the program, compute the maximal
memory requirement for the whole program.

In our previous studies [13,15,16], we built type systems to count the max-
imum number of logs that can coexist at runtime. This number gives us raw
information about the memory used by transaction logs. To infer precisely the
maximal amount of memory that transaction logs may use, we need information
about the size of each log. Therefore, in this work we extend the start transaction
statement in our previous work to contain this information. But this does not
mean the programmers have to annotate this size information as it can be syn-
thesized by identifying shared variables of transactions. Then, we develop a type
system to estimate the maximum memory that transaction logs may require. It
turns out that the ideas of type structures in our previous work can be reused,
but the type semantics and typing rules are novel and different from those in
our previous works. The type system with its soundness proofs and a prototype
tool are our main contributions in this work.

Estimating resource usage in general and estimating memory resource in
particular has always been an active research problem. In [17], Wegbereiter gave
methods to analyze the complexity of Lisp programs by using recursive func-
tion. Hughes and Pareto [11] introduce a strict, first-order functional language
with a type system such that well-typed programs run within the space speci-
fied by the programmer. Hofmann and Jost [10] compute the linear bounds on
heap space for a first-order functional language. Later, they use a type system
to calculate the heap space bound as a function of input for an object oriented
language. Wei-Ngan Chin et al. [8] studied memory usages of object-oriented
programs. In [7] the authors statically compute upper bounds of resource con-
sumption of a method using a non-linear function of method’s parameters. The
bounds are not precise and their work is not type-based. Braberman et al. [4,6]
calculate symbolic approximation of memory bounds for Java programs. In [5]
the authors propose type systems for component languages with parallel com-
position but the threads run independently. Albert et al. have many works in
resource estimation for programs. In [3], they compute the heap consumption of
a program as a function of its data size. In [1,2], they studied the problem in the
context of distributed and concurrent programs. In [14], Pham et al. proposes a
fast algorithm to statically find the upper bounds of heap memory for a class of
JavaCard programs. In [9], Jan Hoffmann and Zhong Shao also use type system
to estimate resource usage of parallel programs but for a functional language.

The works mentioned above focus only on sequential or functional language.
The language that we study here is different as it is a multi-threaded and nested
transactional language with complex and implicit synchronization. The type

84 A.-H. Truong et al.

system that we develop in this work is significantly different from the ones in
our previous work even though it looks similar. Note that compared to our
previous work, the semantics of several type elements are completely different.

The rest of the paper is structured as follows. In the next section we infor-
mally explain the problem and the approach via a motivating example. Section 3
introduces the formal syntax and operational semantics of the calculus. Section 4
presents a new type system. The soundness of the analysis is represented in
Sect. 5. A prototype tool with its main algorithm to compute memory bound is
described in Sect. 6. Section 7 concludes and outlines our future work.

2 Motivating Example

We use the sample program in Listing 1.1, borrowed from [15], to explain the
problem and our approach. Note that this example focuses on the core of the lan-
guage. Real programs will have many other constructs of programming languages
such as procedures, method calls, message passing, variables, and other computa-
tion primitives. These programs can be converted to equivalent programs, w.r.t.
transactional and multi-threading behaviours, in our core language.

In this code snippet, the statements onacid and commit are for starting and
closing a transaction [12]. The statement spawn is for creating a thread with the
code represented by the parameters of the statement. The onacid statement in
our previous works has no parameters, but in this work it is associated with a
number to denote the size of the memory needed to allocate to the log of the
transaction at runtime.

Listing 1.1. A nested multi-threaded program.

1 onacid (1); // thread 0

2 onacid (2);

3 spawn(onacid (4);commit;commit;commit);// thread 1

4 onacid (3);

5 spawn(onacid (5);commit;commit;commit;commit);// thread 2

6 commit;

7 onacid (6);commit;

8 commit;

9 onacid (7);commit;

10 commit

The behavior of this program is depicted in Fig. 1. The starting transaction
statement onacid and ending transaction statement commit are denoted by [and
] in the figure, respectively. The statement spawn creates a new thread running
in parallel with its parent thread and is described by the horizontal lines. The
new thread duplicates the logs of the parent thread for storing a copy of the
value of variables of the parent thread so that it can manipulate these variables
independently.

In this example, when spawning thread 1, thread 0 has opened two transac-
tions, so thread 1 makes two copies of thread 0’s logs and hence on line 3 the
parameter of spawn contains the last two commits to close them. These commits

Calculating Statically Maximum Log Memory 85

must be synchronized with the commits in lines 8 and 10 of the thread 0, and
form a so-called joint commit. Joint commits are described by the rectangular
dotted line in Fig. 1. The right-hand edges of the boxes mark these synchroniza-
tions. The left-hand edges are the corresponding open transactions that the joint
commits must jointly close.

Fig. 1. Threads dependencies and join commits.

We now try to manually calculate the maximum memory used by logs to
answer the question: How much more memory is required by the software trans-
actional memory mechanism?

• At the point 1 : The total memory used for logs, denoted by m1, is the sum
of:
• log memory for the first two and the fourth transactions of thread 0:

1 + 2 + 3 = 6,
• log memory for thread 1: (1 + 2) + 4 = 7, since thread 1 clones two logs of

its parent thread,
• log memory for thread 2: (1 + 2 + 3) + 5 = 11 since thread 2 clones three

logs of its parent thread.
So m1 = 6 + 7 + 11 = 24.

• At the point 2 : The total memory used for logs, denoted by m2, is the sum
of:
• log memory for the first three transactions of thread 0: 1 + 2 + 6 = 9,
• log memory for thread 1: (1 + 2) + 4 = 7 as above,
• log memory for thread 2: (1 + 2) = 3, since thread 2 now has only two logs

copied from its parent thread.
So m2 = 9 + 7 + 3 = 19.

• At the point 3 : Similarly, we have m3 = 8 + 1 + 1 = 10.

So in the worst case, the maximum memory allocated to logs is
max(m1,m2,m3) = 24 units.

86 A.-H. Truong et al.

Note that our language was inspired and abstracted from [12] as we
focus on transactional and multi-threaded features to estimate the addi-
tional memory, which is implicitly allocated by the implementation the lan-
guage at runtime. The additional commits that a child thread has, e.g., the
last two commits in spawn(onacid(4);commit;commit;commit);, make the
language harder to use but this gives programmers more power to control
when the commits can start. This is because between these commits, there
can be other computations and transactions as well as new threads, e.g.,
spawn(onacid(4);commit;commit;e’;commit;e’’); and e, e’’ may be some
other lengthy computations and the programmers want to do the commits before
them. The analysis that we will present in Sect. 4 will signal error for programs
that do not have matching onacids and commits.

The language can be simplified by allowing the compiler to automatically
insert these commits to the end of the thread, but then programmers will have
less control on the behaviour of the transactions. Or even better, a smarter
compiler can insert the missing commits for a child threads as soon as the shared
variables are no longer being manipulated by the threads. For example, if e’’
in the example in the previous paragraph does not access any shared variables,
then the compiler can insert a commit before e’’. In both situations, the type
system that we present here can compute the worst scenario of log memory that
the runtime required.

So, there is a trade-off in the language design. Our language design here
can cover the other cases where commits are automatically inserted to the child
threads by the compiler. Last, here the language does not have loops because we
believe that spawning threads and creating transactions are expensive operations
and one usually puts these constructs outside loops with unknown number of
iterations. For loops with a fixed number of iterations, the sequential composition
can encode them.

3 Transactional Language

3.1 Syntax

Figure 2 gives the syntax of our language, called TM (transactional memory). In
the first line, program P can be empty, notation 0, or a composition of parallel
threads P ‖ P . p(e) denotes a thread with identifier p executing term e. For
term e, we assume the language has a set of atomic statements A, ranged over
by α. onacid(n) and commit are statements for starting and committing a
transaction. Parameter n in onacid(n) represents the number of memory units
allocated when opening the new transaction. Note that in reality n can be syn-
thesized by the compiler based on the sizes of shared variables in the scope of the
transaction. That means programmers do not have to annotate this size infor-
mation. e1; e2 denotes sequencing of statements and e1 + e2 denotes branching.
The last statement spawn(e) is for creating a new thread executing e.

Calculating Statically Maximum Log Memory 87

P :: 0 P ‖ P p

e :: α onacid commit

e1; e2

(e)

(e)

(n)

e1 e2 spawn

Fig. 2. TM syntax

3.2 Dynamic Semantics

The (global) run-time environment is structured as a collection of local environ-
ments. Each local environment is a sequence of logs with their sizes. We formally
define the local and global environments as follows.

Definition 1 (Local environment). A local environment E is a finite
sequence of log id’s and their size: l1:n1; . . . ; lk:nk. The environment with no
element is called the empty environment, denoted by ε.

For an environment E = l1:n1; . . . ; lk:nk, we denote �E� =
∑k

i=1 ni the number
of memory units used in E, and |E| = k the number of elements in E.

Definition 2 (Global environment). A global environment Γ is a collection
of thread id’s and their local environments, Γ = {p1:E1, . . . , pk:Ek}.
The log memory used by Γ = {p1:E1, . . . , pk:Ek}, denoted by �Γ �, is defined by:
�Γ � =

∑k
i=1�Ei�.

For a global environment Γ and a set P of threads, we call the pair Γ, P a
state. We have a special state error for stuck states—the states at which no other
transition rules can be applied. The dynamic semantics is defined by transition
rules between states of the form Γ, P ⇒ Γ ′, P ′ or Γ, P ⇒ error in Table 1.

Table 1. TM dynamic semantics

p fresh spawn p, p , Γ Γ

Γ, P ‖ p spawn e1 ; e2 Γ , P ‖ p e2 ‖ p e1
S-SPAWN

l fresh start l:n, p, Γ Γ

Γ, P ‖ p onacid n ; e Γ , P ‖ p e
S-TRANS

intranse Γ, l : n p p1, .., pk commit p, Γ Γ

Γ, P ‖ k
1 pi commit; ei Γ , P ‖ k

1 pi ei

S-COMM

i 1, 2

Γ, P ‖ p e1 e2 Γ, P ‖ p ei
S-COND

Γ, P ‖ p α; e Γ, P ‖ p e
S-SKIP

Γ Γ p : E E 0

Γ, P ‖ p commit; e error
S-ERROR-C

Γ Γ p : E E 0

Γ, P ‖ p error
S-ERROR-O

88 A.-H. Truong et al.

Table 1 uses some auxiliary functions described as follows. Note that the
function names are from [12] and congruence rules are applied for processes:
P ‖ P ′ ≡ P ′ ‖ P , P ‖ (P ′ ‖ P ′′) ≡ (P ‖ P ′) ‖ P ′′ and P ‖ 0 ≡ P .

• In the rule S-SPAWN, the function spawn(p, p′, Γ) adds to Γ a new element
with thread id p′ and a local environment cloned from the local environment
of p. Formally, suppose Γ = {p : E} Y Γ ′′ and spawn(p, p′, Γ) = Γ ′, then
Γ ′ = Γ Y {p′ : E′} where E′ = E.

• In the rule S-TRANS, the function start(l : n, p, Γ) creates one more log with the
label l and with the size n units of memory at the end of the local environment
of pi. If start(l:n, pi, Γ) = Γ ′ where Γ = {p1 : E1, . . . , pi : Ei, . . . , pk : Ek}
and l is a fresh label, then Γ ′ = {p1 : E1, . . . , pi : E′

i, . . . , pk : Ek}, where
E′

i = Ei; l : n.
• In the rule S-COMM, the function intranse(Γ, l : n) returns a set of all threads,

denoted by p, in Γ whose local environments contain log id l and this log id
is the last element of the local environments. That is intranse(Γ, l:n) = p =
{p1, .., pk} then:
• for all i P {1..k}, pi has the form E′

i; l : n.
• for all p′ : E′ P Γ such that p′ /P {p1, .., pk} we have E′ does not contain

log id l.
• Also in the rule S-SPAWN, the function commit(p, Γ) removes the last log id in

the local environments of all threads in p. That is, suppose intranse(Γ, l:n) =
p and commit(p, Γ) = Γ ′, then for all p′ : E′ P Γ ′, if p′ P p, then p′ : (E′; l :
n) P Γ . Otherwise, p′ : E′ P Γ .

Note that function spawn copies the labels of the parent thread’s environment
to the local environment of the new thread and the function intranse finds these
labels to identify threads that need synchronization in a joint commit.

The rules in Table 1 have the following meanings:

• The rule S-SPAWN says that a new thread is created with the statement spawn.
The statement spawn(e1) creates a new thread p′ executing e1 in parallel with
its parent thread p, and changes the environment from Γ to Γ ′.

• The rule S-TRANS is for the cases where thread p creates a new transaction
with the statement onacid. A new transaction with label l is created, and
changes the environment from Γ to environment Γ ′.

• The rule S-COMM is for committing a transaction. In this rule
∐k

1 pi(Ei) stands
for p1(e1) ‖ .. ‖ ..pk(ek). If the current transaction of thread p is l, then all
threads in the transaction l have to joint commit when transaction l commits.

• The rule S − COND is to select one of the two branches e1 or e2 to continue.
• The rule S − SKIP is for other computation statements of the language,

which we assume they do not interfere with our multi-threading and transac-
tional semantics, so we can skip them.

• The rules S-ERROR-C and S-ERROR-O are used in cases where there
are mismatches in starting and committing transactions. For instance,
onacid;spawn(commit;commit);commit has a mismatch in the second com-
mit in spawn(commit;commit). p() in S-ERROR-O means there is missing com-
mit(s) in the program.

Calculating Statically Maximum Log Memory 89

4 Type System

The main purpose of our type system is to identify the maximum log memory
that a TM program may require. The type of a term in our system is computed
from what we call sequences of tagged numbers, which is an abstract represen-
tation of the term’s transactional behavior w.r.t. log memory.

4.1 Types

Inspired from our previous works [15], our types are finite sequences over the
set of so called tagged numbers. A tagged number is a pair of a tag and a non-
negative natural number N+. We use four tags, or signs, {+,−,¬, �} for denoting
opening, commit, joint commit and accumulated maximum of memory used by
logs, respectively. The set of all tagged number is denoted by T

N. So T
N =

{+n , −n , �n , ¬n | n P N
+}. The meanings of these tag numbers is described

below.

• The tag number +n says that the open transaction has a log whose size is n
units of memory. Note that this semantics is different from ones in our previous
works where it denotes the number of consecutive onacids.

• The tag number −n means there are n consecutive commits statements,
• The tag number ¬n means there are n threads that require synchronization

at a joint commit,
• The tag number �n says the current maximum of memory units used by the

term is n.

To help the readers better understand types, we give the following type
examples. onacid(2) has type +2 , commit has type −1 , onacid(2);commit
has type +2 −1. Later, we will explain how this type can be converted to
its equivalent form: �2 , by matching and combining + and − elements.
For the sequential composition statement onacid(1); onacid(2); commit;
commit, its type is +1 +2 −1 −1 or its equivalent form +1 �2 −1 or �3. For
spawn(onacid(4);commit;commit;commit), its type is +4 −1 −1 −1 and can
be simplified to �4 ¬1 ¬1 by matching and combining + and − elements and
identifying joint commits elements. Note that we do not combine the two con-
secutive ¬. Instead, we will match and combine with a suitable ¬ of some other
term that will be executed in another thread. �2 �4 and �4 �3 can be converted to
its equivalent type �4 since they all reflect that the maximum units of memory
used is 4.

We will develop rules to associate a sequence of tagged numbers with a term
in TM. During computation, a tag with zero (e.g. +0 , −0 , etc.) may be produced
but it has no effect to the semantics of the sequence so we will automatically
discard it when it appears. To simplify the presentation we also automatically
insert �0 element whenever needed.

In the following, let s range over T
N, T

N̄ be the set of all sequences of tagged
numbers, S range over T

N̄ and let m,n, l, .. range over N. The empty sequence

90 A.-H. Truong et al.

is denoted by ε as usual. For a sequence S we denote by |S| the length of S, and
write S(i) for the ith element of S. For a tagged number s, we denote tag(s)
the tag of s, and |s| the natural number of s (i.e. s = tag(s)|s|). For a sequence
S P T

N̄, we write tag(S) for the sequence of the tags of the elements of S and {S}
for the set of tags appearing in S. Note that tag(s1 . . . sk) = tag(s1) . . . tag(sk).
We also write tag(s) P S instead of tag(s) P {S} for simplicity.

The set T
N̄ can be partitioned into equivalence classes such that all elements

in the same class represent the same transactional behavior, and for each class
we use the most compact sequence as the representative for the class and we call
it canonical element.

Definition 3 (Canonical sequence). A sequence S is canonical if tag(S)
does not contain ‘−−’, ‘��’, ‘+−’, ‘+�−’, ‘+¬’ or ‘+�¬’ and |S(i)| > 0 for all i.

The intuition here is that we can always simplify/shorten a sequence S with-
out changing its interpretation. The seq function below reduces a sequence in
T
N̄ to a canonical one. Note the pattern ’+−’ does not appear on the left, but

we can insert �0 to apply the function. The last two patterns, ’+¬’ and ’+�¬’,
will be handled by the function jc later in Definition 8.

Definition 4 (Simplification). Function seq is defined recursively as follows:

seq(S) = S whenS is canonical

seq(S �m �nS′) = seq(S �max(m,n) S′)

seq(S −m −nS′) = seq(S −(m + n) S′)

seq(S +k �l −nS′) = seq(S �(l + k) −(n − 1) S′)

In this definition, the second and the third lines are for simplifying the represen-
tation. The last line is for local commits—the commits that do not synchronize
with other threads.

As illustrated by Fig. 1, threads are synchronized by joint commits (dotted
rectangles). So these joint commits split a thread into so-called segments and
only some segments can run in parallel. For instance, in the running example,
onacid(5) on line 5 cannot run in parallel with onacid(6) on line 7.

With our type given to a term e, segments can be identified by examining
the type of e in spawn(e) for extra − or ¬. For example, in spawn(e1); e2, if the
canonical sequence of e1 has − or ¬, then the thread of e1 must be synchronized
with its parent which is the thread of e2. Function merge in Definition 6 is used
in these situations, but to define it we need some auxiliary functions:

For S P T
N̄ and for a tag sig P {+,−,¬, �}, we introduce the function

first(S, sig) that returns the smallest index i such that tag(S(i)) = sig. If no
such element exists, the function returns 0. A commit can be a local commit or,
implicitly, a joint commit. At first, we presume all commits to be local commits.
Then, when we discover that there is no local transaction starting statement (i.e.
onacid) to match with a local commit, that commit should be a joint commit.
The following function performs that job and converts a canonical sequence that
has no + element to a so-called joint sequence.

Calculating Statically Maximum Log Memory 91

Definition 5 (Join). Let S = s1 . . . sk be a canonical sequence such that + /P
{S} and assume i = first(S,−). Then, function join(S) recursively replaces −
in S by ¬ as follows:

join(S) = S if i = 0

join(S) = s1..si−1
¬1 join(−(|si| − 1)si+1..sk) otherwise

Note that in Definition 5 the canonical sequence S contains only � elements
interleaved with − or ¬ elements. After applying the join function, we get joint
sequences. These joint sequences contain only � elements interleaved with ¬
elements.

A joint sequence is used to type a term inside a spawn or a term in the main
thread. The joint sequences are merged together in the following definition:

Definition 6 (Merge). Let S1 and S2 be joint sequences such that the number
of ¬ elements in S1 and S2 are the same (can be zero). The merge function is
defined recursively as:

merge(�m1 , �m2) = �(m1 + m2)

merge(�m1
¬n1 S′

1,
�m2

¬n2 S′
2) = �(m1 + m2) ¬(n1 + n2) merge(S′

1, S
′
2)

The definition is well-formed, since S1, S2 are joint sequences so they have only
� and ¬ elements. In addition, the number of �s are the same in the assumption
of the definition. So we can insert �0 to make the two sequences match over
the defined patterns. Note that for the merge function is used for terms like
spawn(e1); e2, in which we compute the type for e1, then apply the join function
to obtain a joint sequence—the type of spawn(e1). Then, we need to compute
a matching joint sequence from e2 to merge with the joint sequence of the type
of spawn(e1).

We need one more function, which we use to type terms of the form e1 + e2.
For these terms, we require that the external transactional behaviors of e1 and e2
are the same, i.e., when removing all the elements with the tag � from them, the
remaining sequences are identical. Let S1 and S2 be such two sequences. Then,
they can always be written as Si = �mi

∗n S′
i, i = 1, 2, ∗ = {+,−,¬}, where S′

1

and S′
2 in turn have the same transactional behaviors. On this condition for S1

and S2, we define the choice operator as follows:

Definition 7 (Choice). Let S1 and S2 be two sequences such that if we remove
all � elements from them, then the remaining two sequences are identical. The
alt function is recursively defined as:

alt(�m1 , �m2) = �max(m1,m2)

alt(�m1
∗n S′

1,
�m2

∗n S′
2) = �max(m1,m2) ∗n alt(S′

1, S
′
2)

4.2 Typing Rules

The language of types T is defined by the following syntax:

T = S | Sρ

92 A.-H. Truong et al.

The second kind of type Sρ is used for term spawn(e) as it needs to synchronizes
with their parent thread if there is any joint commit. The treatments of two cases
are different, so we denote kind(T) the kind of T , which can be empty (normal)
or ρ depending on which case T is.

The type environment encodes the transaction context for the term being
typed. The typing judgment is of the form:

n � e : T

where n P N is the type environment. When n is negative, it means e uses n
units of memory for its logs when executing e. When n is positive, it means e
can free n units of memory of some log.

Table 2. Typing rules

n onacid n : n
T-ONACID

n N

n commit : 1
T-COMMIT

n e : S

n spawn e : join S ρ T-SPAWN
n e : S

n e : join S ρ T-PREP

ni ei : Si i 1, 2 S seq S1S2

n1 n2 e1; e2 : S
T-SEQ

n1 e1 : S1 n2 e2 : Sρ
2 S jc S1, S2

n1 n2 e1; e2 : S
T-JC

n ei : Sρ
i i 1, 2 S merge S1, S2

n e1; e2 : Sρ T-MERGE

n ei : Ti i 1, 2 kind T1 kind T2 Ti S
kind Ti
i

n e1 e2 : alt S1, S2
kind S1

T-COND

The typing rules for our calculus are shown in Table 2. Note that we do
not have rules for typing α as we assume they do not interfere with multi-
threading and transactional semantics, so we can remove them when typing
the programs. We assume that in these rules functions seq, jc,merge, alt are
applicable, i.e., their arguments satisfy the conditions of the functions. The rule
T-SPAWN converts S to the joint sequence and marks the new type by ρ so that
we can merge with its parent in T-MERGE. The rule T-PREP allows us to make
a matching type for the e in T-MERGE. The remaining rules are straightforward
except for the rule T-JC in which we need the new function jc (in Definition 8).
The rule T-JC handles the joint commit between the threads running in parallel.
The last + element in S1, say +n, will be matched with the first ¬ element in
S2, say ¬l (Fig. 3). But after +n, there can be a � element, say �n′, so the local
peak of memory units used by the term having type +n �n′ is n + n′. Before ¬l
there can be a �l′, so when we do the joint commit of terms having type ¬l with
its starting transaction having type +n the type of the segment will be l′ + l ∗n.
After combining +n from S1 and ¬l from S2 we can simplify the new sequences
and repeat the join commits of jc. Thus, the function jc is defined as follows:

Calculating Statically Maximum Log Memory 93

Definition 8 (Joint commit). Function jc is defined recursively as follows:

jc(S′
1
+n �n′ , �l′ ¬l S′

2) = jc(seq(S′
1

�(n + n′)), seq(�(l′ + l ∗ n) S′
2)) if l > 0

jc(�n′ , �l′ S′
2) = seq(�max(n′, l′) S′

2) otherwise

Note that in this definition of jc the pattern matching in the first line has
higher priority than one in the second line.

As our type reflects the behavior of a term, so the type of a well-typed
program contains only a sequence of single �n element where n is the maximum
number of units of memory used when implementing the program.

Fig. 3. Joint commit parallel threads

Definition 9 (Well-typed). A term e is well-typed if there exists a type
derivation for e such that 0 � e : �n for some n.

A typing judgment has a crucial property for our correctness proofs. It states
that the typing environment combined with the type of its term always produces
a ‘well-formed’ structure.

Theorem 1 (Type judgment property). If n � e : T and n � 0, then
sim(+n , T) = �m for some m (i.e. sim(+n , T) has the form of single element
with tag �) and m � n where sim(T1, T2) = seq(jc(S1, S2)) with S1, S2 is T1, T2

without ρ.

Proof. By induction on the typing rules in Table 2.

• The case T-ONACID does not apply as n < 0.
• The case T-COMMIT we have seq(jc(+n , −1)) = �n so m = n.
• For T-SEQ, by induction hypotheses (IH) we have seq(jc(+ni , Si)) =

seq(+ni Si) = �mi with i = 1, 2 since Si have no ¬ elements. We need to
prove that sim(+(n1 + n2) , S) = �m and m � m1 + m2. We have

sim(+(n1 + n2) , S) = seq(jc(+(n1 + n2) , seq(S1S2)))

= seq(+n2
+n1 S1S2) ¬ /P S1S2

= seq(+n2 (+n1 S1)S2) Definition 4

= seq(+n2
�m1 S2) IH

= �(m1 + m2) IH, Definition 4

94 A.-H. Truong et al.

• For T-JC, by induction hypotheses we have seq(+n1 S1) = �m1 and
seq(jc(+n2 , S2)) = �m2 . Similarly to the previous case, we have

sim(+(n1 + n2) , S) = seq(jc(+(n1 + n2) , jc(S1, S2))) S = jc(S1, S2)

= seq(jc(+(n1 + n2) S1, S2)) jc

= seq(jc(+n2
�m1 , S2)) IH

= �max(n2 + m1,m2) jc, IH

� �max(n2 + n1) m1 � n1 by IH

• For T-MERGE, by induction hypotheses we have seq(jc(+n1 , S1)) = �m1 and
seq(jc(+n2 , S2)) = �m2 . Similarly to the previous case, we have

seq(jc(+n , S)) = seq(jc(+n , merge(S1, S2))) S = merge(S1, S2)

= seq(jc(+n , S1)) + seq(jc(+n , S2)) properties of S1, S2

= �(m1 + m2) IH

• For the remaining rules, the lemma holds by the induction hypotheses. ��

Typing the running example program. Let us try to make a type derivation
for the program in Listing 1.1. We denote el

m for the part of the program from
line l to line m. First, using T-SEQ, T-ONACID, T-COMMIT we have:

6 � onacid(5); commit; commit; commit; commit : �5 −1 −1 −1 (1)

Then, by applying the rule T-SPAWN, we have:

6 � e55 : (�5 ¬1 ¬1 ¬1)ρ (2)

Now, we want to use T-MERGE and we need a term such that its type matches
the type of e55. We find that e610 satisfies this condition since its type can be
derived using T-SEQ, T-ONACID, T-COMMIT as follows:

6 � e610 : −1 �6 −1 �7 −1

By applying T-PREP, we have a matching type with (2). So we can apply T-MERGE

to get the type for e510 as follows:

6 � e510 : (�5 ¬2 �6 ¬2 �7 ¬2)ρ

With −3 � e44 : +3 , we can apply T-JC to get the type of e410 as follows:

3 � e410 : �11 ¬2 �7 ¬2 (3)

as

jc(+3 , �5 ¬2 �6 ¬2 �7 ¬2) = jc(seq(�3), seq(�(5 + 3 ∗ 2) �6 ¬2 �7 ¬2))

= jc(�3 , �11 ¬2 �7 ¬2) = seq(�11 ¬2 �7 ¬2) = �11 ¬2 �7 ¬2

Calculating Statically Maximum Log Memory 95

Similarly, we can calculate the type for the term on line 3: 3 � e33 :
(�4 −1 −1)ρ. This type matches (3) so we can apply T-MERGE and get the type
for e310 as follows:

3 � e310 : �15 ¬3 �7 ¬3

Type for line 1 to line 2 is: −3 � e12 : +1 +2. Apply T-JC for e12 and e310 we get:

0 � e110 : �24

since

jc(+1 +2 , �15 ¬3 �7 ¬3) = jc(seq(+1 �2), seq(�21 �7 ¬3))

= jc(+1 �2 , �21 ¬3) = jc(seq(�3), seq(�24)) = jc(�3 , �24) = �24

The program is well-typed and the maximum memory that it needs in this
case is 24 units. In the next section, we will show the soundness of the type
system.

5 Correctness

To prove the correctness of our type system, we need to show that a well-typed
program does not use more memory than the amount expressed in its type. Let
our well-typed program be e and its type is �n. We need to show that when
executing e according to the semantics in Sect. 3, the total number of units of
memory used for logs by the program in the global environment is always smaller
than or equal to n.

A state is a pair Γ, P where Γ = {p1 : E1, . . . , pk : Ek} and P =
∐k

1 pi(ei).
We say Γ satisfies P , notation Γ |= P , if there exist S1, . . . , Sk such that
�Ei� � ei : Si for all i = 1, . . . , k. For a component i, Ei represents the number of
units of memory that have been created or copied in thread pi, and Si represents
the number of units of memory that will be created when executing ei. Therefore,
total memory used by thread pi is expressed by sim(+�Ei� , Si), where the sim
function is defined in Theorem 1. We will show that sim(+�Ei� , S) = �n for
some n. We denote this value n as �Ei, Si�. Then, the total memory of logs of a
program state, included in Γ and the potential logs that will be created when
executing the remaining program, denoted by �Γ, P �, and is defined by:

�Γ, P � =
k∑

i=1

�Ei, Si�

Since �Γ, P � represents the maximum number of units from the current state
and �Γ � is the number of units in the current state, we have the following lemma.

96 A.-H. Truong et al.

Lemma 1. If Γ |= P , then �Γ, P � � �Γ �.

Proof. By the definition of �Γ, P � and �Γ �, we only need to show �Ei, Si� � �Ei�
for all i. This follows from Theorem 1. ��
Lemma 2 (Subject reduction). If Γ |= P and Γ, P ⇒ Γ ′, P ′, then Γ ′ |= P ′

and �Γ, P � � �Γ ′, P ′�.

Proof (Sketch). The proof is done by checking one by one all the semantics rules
in Table 1. For each rule, we need to prove two parts: (i) Γ ′ |= P ′ and (ii)
�Γ, P � � �Γ ′, P ′�.

• For S-SPAWN, by the assumption we have Γ |= P and {p : E} P Γ and
P = P1 ‖ p(spawn(e1); e2) and �E� � spawn(e1); e2 : S for some P1, S. By
the definition of function spawn we have Γ ′ = Γ Y {p′ : E} and by the rule
S-SPAWN, we have P ′ = P1 ‖ p′(e1) ‖ p(e2).

- For (i), by definition of |= we only need to prove that �E� � e1 : S1 and
�E� � e2 : S2 for some S1, S2 because P ′ differs from P only in the terms
e1 and e2 of p′ and p.
Since �E� � spawn(e1); e2 : S and spawn(e1); e2 can only be typed by
T − MERGE, we have �E� � spawn(e1) : S′

1 and �E� � e2 : S2 for some
S′
1 and S2. By T − SPAWN we have �E� � e1 : S1 where S′

1 = join(S1)ρ.
So (i) holds and we also have S = merge(S1, S2).

- For (ii), first we denote ni = seq(jc(+�E� , Si)) with i = 1, 2. We have:

�Γ, P � − �Γ ′, P ′�
= �E,S� − (�E,S1� + �E,S2�) def. of �.�

= seq(jc(+�E� , S)) − (n1 + n2))) def. of �.�

= seq(jc(+�E� , merge(S1, S2))) − (n1 + n2) S = merge(S1, S2)
= (n1 + n2) − (n1 + n2) properties of S1, S2

= 0

So (ii) holds.
• The remaining cases can be proved similarly but due to lack of space we omit

here1

Now we come to the correctness property of our type system. A well-typed
program will not use more units of memory than the one stated in its type.

Theorem 2 (Correctness). Suppose 0 � e : �n and p1 : ε, p1(e) ⇒∗ Γ, P , then
�Γ � ≤ n.

Proof. For the starting environment we have: �p1 : ε, p1(e)� = sim(0, �n) = �n.
So from Lemma 2 and Theorem 1, the theorem holds by induction on the length
of transitions. ��
1 Full proof version avaiable at https://github.com/truonganhhoang/tm-infer/blob/

master/tm-full.pdf.

https://github.com/truonganhhoang/tm-infer/blob/master/tm-full.pdf
https://github.com/truonganhhoang/tm-infer/blob/master/tm-full.pdf

Calculating Statically Maximum Log Memory 97

6 Type Inference

We have implemented a prototype tool2 in F# language that can check and infer
types for well-typed programs. Listing 1.3 is the main infer function, which is
similar to the algorithm in [15], that takes a term and an ’environment’ headseq
in line 3. The differences are in the implementation of other functions such
as seq, jc and merge. Listing 1.2 shows the simplified implementation of seq in
Definition 4 where in line 1 T.P, T.M, T.X, T.J denote tags +,−, �,¬, respectively.
The function finds the patterns defined in Definition 4 and simplifies them.

A program or term is encoded as a list of branches and leaves. The algorithm
travels the program from the first statement to the last statement and makes
recursive calls when hitting spawn statements. When we reach the end of term
in line 5 we need to compact the result type by calling the seq function (Defin-
ition 4). Otherwise, we check if the next statement x is a branch or a leaf. If it
is a leaf we just update the headseq with the new leaf (line 10) and then repeat
the inference process. In case x is a branch (line 12), we infer its term br and
merge it with the remaining part xs. The merged type is combined with the
head ’environment’ to produce the final result.

We tested our tool on several examples. The code contains automated tests
and all test cases are passed, i.e., actual results are equal to our expected ones.

Listing 1.2. seq function used in infer

1 type T = P = 0 | M = 1 | X = 2 | J = 3

2 let rec seq (lst : TagSeq) : TagSeq =

3 match lst with

4 | [] -> []

5 | (_,0)::xs -> seq xs

6 | (T.X,l)::(T.X,m)::xs -> seq ((T.X,max l m)::xs)

7 | (T.M,l)::(T.M,m)::xs -> seq ((T.M,l+m)::xs)

8 | (T.P,l)::(T.M,m)::xs -> seq ((T.X,l)::(T.M,m-1)::xs)

9 | (T.P,l)::(T.X,n)::(T.M,m)::xs -> seq ((T.X,l+n)::(T.M,m-1)

10 ::xs)

11 | x::xs -> x::(seq xs)

Listing 1.3. Main type inference algorithm

1 type TagNum = T * int

2 type Tree = | Branch of Tree list | Leaf of TagNum

3 let rec infer (term: Tree list) (headseq: TagNum list) =

4 match term with

5 | [] -> seq headseq (* simplifies the result *)

6 | x::xs ->

7 match x with

8 | Leaf tagnum ->

9 (* expand the head part *)

10 let new_head = seq (List.append headseq [tagnum]) in

11 infer xs new_head

2 Available at https://github.com/truonganhhoang/tm-infer.

https://github.com/truonganhhoang/tm-infer

98 A.-H. Truong et al.

12 | Branch br -> (* a new thread *)

13 (* infer the child and parent tail *)

14 let child = join (infer br []) in

15 let parent = join (infer xs []) in

16 (* merge the child and the parent tail *)

17 let tailseq = seq (merge child parent) in

18 (* join commit with the head *)

19 jc headseq tailseq

7 Conclusion

We have presented a generalized language whose main features are a mixing of
multi-threading and nested transactions. A key new feature in the language is
that it contains size information of transaction logs, which in practice can be
automatically synthesized by identifying shared variables in the transactions.
Then, based on the size information, we can infer statically the maximum mem-
ory units needed for transaction logs. Although the language is not easy to use
directly as it is designed to give control power to programmers on the behavior of
transactions, the analysis we presented can be applied to popular transactional
languages as they are special cases of our presented language. The type system
of our analysis looks similar to the ones in our previous works, but the semantics
of type elements and typing rules are novel and the maximum memory obtained
from well-typed programs is of practical value.

We are extending our tool to take real world transactional programs as input
and produce the worst execution scenarios of the program where maximum log
memory are used.

References

1. Albert, E., Arenas, P., Fernández, J.C., Genaim, S., Gómez-Zamalloa, M., Puebla,
G., Román-Dı́ez, G.: Object-sensitive cost analysis for concurrent objects. Softw.
Test. Verification Reliab. 25(3), 218–271 (2015)

2. Albert, E., Correas, J., Román-Dı́ez, G.: Peak cost analysis of distributed sys-
tems. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS, vol. 8723, pp. 18–33.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10936-7 2

3. Albert, E., Genaim, S., Gomez-Zamalloa, M.: Heap space analysis for Java byte-
code. In: Proceedings of the 6th International Symposium on Memory Manage-
ment, ISMM 2007, pp. 105–116. ACM, New York (2007)

4. Aspinall, D., Atkey, R., MacKenzie, K., Sannella, D.: Symbolic and analytic tech-
niques for resource analysis of java bytecode. In: Wirsing, M., Hofmann, M.,
Rauschmayer, A. (eds.) TGC 2010. LNCS, vol. 6084, pp. 1–22. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-15640-3 1

5. Bezem, M., Hovland, D., Truong, H.: A type system for counting instances of
software components. Theoret. Comput. Sci. 458, 29–48 (2012)

6. Braberman, V., Garbervetsky, D., Hym, S., Yovine, S.: Summary-based inference
of quantitative bounds of live heap objects. Sci. Comput. Program. Part A 92,
56–84 (2014). Special issue on Bytecode 2012

http://dx.doi.org/10.1007/978-3-319-10936-7_2
http://dx.doi.org/10.1007/978-3-642-15640-3_1

Calculating Statically Maximum Log Memory 99

7. Braberman, V.A., Garbervetsky, D., Yovine, S.: A static analysis for synthesizing
parametric specifications of dynamic memory consumption. J. Object Technol.
5(5), 31–58 (2006)

8. Chin, W.-N., Nguyen, H.H., Qin, S., Rinard, M.: Memory usage verification for
OO programs. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp.
70–86. Springer, Heidelberg (2005). doi:10.1007/11547662 7

9. Hoffmann, J., Shao, Z.: Automatic static cost analysis for parallel programs. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 132–157. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46669-8 6

10. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. vol. 38, pp. 185–197. ACM, New York, January 2003

11. Hughes, J., Pareto, L.: Recursion and dynamic data-structures in bounded space:
towards embedded ML programming. SIGPLAN Not. 34(9), 70–81 (1999)

12. Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus.
Sci. Comput. Program. 57(2), 164–186 (2005)

13. Mai Thuong Tran, T., Steffen, M., Truong, H.: Compositional static analysis for
implicit join synchronization in a transactional setting. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 212–228. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40561-7 15

14. Pham, T.-H., Truong, A.-H., Truong, N.-T., Chin, W.-N.: A fast algorithm to
compute heap memory bounds of Java Card applets. In: Cerone, A., Gruner, S.
(eds.) Sixth IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2008, Cape Town, South Africa, 10–14 November 2008, pp. 259–
267. IEEE Computer Society (2008)

15. Truong, A.-H., Hung, D., Dang, D.-H., Vu, X.-T.: A type system for counting
logs of multi-threaded nested transactional programs. In: Bjørner, N., Prasad, S.,
Parida, L. (eds.) ICDCIT 2016. LNCS, vol. 9581, pp. 157–168. Springer, Heidelberg
(2016). doi:10.1007/978-3-319-28034-9 21

16. Vu, X.-T., Mai Thuong Tran, T., Truong, A.-H., Steffen, M.: A type system for find-
ing upper resource bounds of multi-threaded programs with nested transactions.
In: Symposium on Information and Communication Technology 2012, SoICT 2012,
Halong City, Quang Ninh, Viet Nam, 23–24 August 2012, pp. 21–30 (2012)

17. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975)

http://dx.doi.org/10.1007/11547662_7
http://dx.doi.org/10.1007/978-3-662-46669-8_6
http://dx.doi.org/10.1007/978-3-642-40561-7_15
http://dx.doi.org/10.1007/978-3-319-28034-9_21

Design, Synthesis and Testing

Synthesis of Petri Nets with Whole-Place
Operations and Localities

Jetty Kleijn1, Maciej Koutny2, and Marta Pietkiewicz-Koutny2(B)

1 LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
2 School of Computing Science, Newcastle University,

Newcastle upon Tyne NE1 7RU, UK
marta.koutny@ncl.ac.uk

Abstract. Synthesising systems from behavioural specifications is an
attractive way of constructing implementations which are correct-by-
design and thus requiring no costly validation efforts. In this paper, sys-
tems are modelled by Petri nets and the behavioural specifications are
provided in the form of step transition systems, where arcs are labelled
by multisets of executed actions. We focus on the problem of synthesis-
ing Petri nets with whole-place operations and localities (wpol-nets),
which are a class of Petri nets powerful enough to express a wide range
of system behaviours, including inhibition of actions, resetting of local
states, and locally maximal executions.

The synthesis problem was solved for several specific net classes and
later a general approach was developed within the framework of τ -nets.
In this paper, we follow the synthesis techniques introduced for τ -nets
that are based on the notion of a region of a transition system, which we
suitably adapt to work for wpol-nets.

Keywords: Concurrency · Theory of regions · Transition system · Syn-
thesis problem · Petri net · Step semantics · Locality · Whole-place
operations net

1 Introduction

The starting point of a scientific investigation that aims at describing and ana-
lysing a dynamic system or an experiment is very often a record of a series of
observations as depicted, for example, by a graph like that in Fig. 1(a). The
observation graph captures important information about the system, e.g., the
fact that it can be in three different states in which the quantity of some crucial
resource ξ has been measured to be equal to 2, 1, or 0 units. Other relevant
information is that the moves between these three states result from executions
of three distinct actions: A, B, and C. Moreover, these actions can sometimes be
performed simultaneously (for example, B and C), as well as individually (for
example, A).

Suppose now that one would like to construct a formal system model match-
ing the observations depicted by the graph in Fig. 1(a). Such a model could then
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 103–120, 2016.
DOI: 10.1007/978-3-319-46750-4 7

104 J. Kleijn et al.

ξ = 2 ξ = 1

ξ = 0

B&C

B
A

A

(a)

2
init

1

0

{b, c}

{b}{a}{a}
(b)

Fig. 1. A record of real-life observations of a system (a); and its step transition system
representation (b).

be used for further analyses of the real-life system using suitable techniques and
tools. Since the observation graph conveys a mix of state and action information,
a natural way of proceeding might be to develop a Petri net model, as Petri nets
deal explicitly with both state and action based issues and are able to express
different relationships between actions and/or states: causality, simultaneity, and
competing for resources.

To construct a Petri net model for the observation graph in Fig. 1(a), we
first convert it into a slightly more formal representation in terms of a transition
system as shown in Fig. 1(b) where the actions A, B, and C are respectively
represented by net-transitions a, b, and c, the arcs are labelled by sets of executed
net-transitions, and the nodes are labelled by integers representing the volume
of the crucial resource ξ. Moreover, one node is designated as the initial state.
A key idea is that the quantity of the crucial resource can be represented by a
specific place (local state) p1 in a Petri net model to be constructed, and the
overall aim of the synthesis process is to build a Petri net whose reachability
graph is isomorphic to the graph in Fig. 1(b), and the tokens assigned to place
p1 in different markings (global states) are as specified by the integers labelling
the nodes.

It is natural to aim at a model as simple as possible, and so one might attempt
to synthesise from Fig. 1(b) a Place/Transition net (pt-net). since these are the
simplest Petri net model allowing one to represent integer-valued quantities.
However, such an attempt would fail, as the transition system in Fig. 1(b) does
not represent the behaviour of any pt-net. The first reason is that to be so it
should have contained two more arcs, labelled by {b} and {c}, outgoing from the
initial state. Another problem is that it contains two {a}-labelled arcs coming
to the same (initial) state from two distinct states. Since pt-nets are backward-
deterministic, they would never produce this kind of behaviour.

The Petri net model we will use to construct a suitable formal model for
behavioural descriptions like that in Fig. 1(b), will be nets with whole-place
operations (i.e., the weight of an arc may depend on the current total number of
tokens in a subset of places) and localities (wpol-nets). Grouping net-transitions
in different localities and introducing an execution semantics that allows only
maximal multisets of enabled net-transitions to ‘fire’ within a given locality helps
to overcome the first problem mentioned above. Allowing the weights of connec-
tions between places and transitions to depend on the current marking and, in

Synthesis of Petri Nets with Whole-Place Operations and Localities 105

consequence, introducing whole-place operations addresses the second problem
concerning the backward non-deterministic behaviour.

The synthesis of a wpol-net from a transition system specification will be
based on the notion of a region of a transition system [2,3,10] suitably adapted to
wpol-nets and their locally maximal execution semantics, a special kind of step
firing policy (see [7,13]). This paper shows for the first time how to synthesise a
net, whose execution depends dynamically on the current marking (distribution
of ‘resources’), under an additional constraint in the form of a step firing policy.

Synthesising systems from behavioural specifications is an attractive way of
constructing implementations which are correct-by-design and thus requiring
no costly validation efforts. The synthesis problem was solved for many spe-
cific classes of nets, e.g., [4,5,8,14–17]. Later, a general approach was developed
within the framework of τ -nets that takes a net-type as a parameter [3]. In this
paper, we focus on the problem of synthesising wpol-nets from behavioural spec-
ifications provided by step transition systems. wpol-nets are nets with whole-
place operations (wpo-nets) extended with transition localities. wpo-nets in
turn are derived from transfer/reset nets [9] and affine nets [11], extending pt-
nets with whole-place operations [1]. A solution to the synthesis problem for
wpo-nets was outlined in [12], and we use some of the ideas introduced there in
this paper, at the same time dealing with the additional constraint of the locally
maximal execution semantics.

The paper is organised as follows. The next section recalls some basic notions
concerning transition systems, pt-nets, and τ -nets. Section 3 introduces wpo-
nets and wpol-nets, and Sects. 4 and 5 present a solution to the synthesis prob-
lem for wpol-nets, treating them as a special kind of τ -nets. The paper ends
with a brief conclusion that outlines some directions for future work.

2 Preliminaries

An abelian monoid is a set S with a commutative and associative binary oper-
ation +, and an identity element 0. The result of composing n copies of s ∈ S

is denoted by n · s. and so 0 = 0 · s. Two examples of abelian monoids are: (i)
SPT = N × N, where N are all non-negative integers, with the pointwise arith-
metic addition operation and 0 = (0, 0) and (ii) the free abelian monoid 〈T 〉
generated by a set T . SPT will represent (weighted) arcs between places and
transitions in pt-nets, whereas 〈T 〉 will represent steps (multisets of transitions)
of nets with transition set T . The free abelian monoid 〈T 〉 can be seen as the set
of all finite multisets over T , e.g., aab = aba = baa = {a, a, b}. We use α, β, γ, . . .
to range over the elements of 〈T 〉. For t ∈ T and α ∈ 〈T 〉, α(t) denotes the
multiplicity of t in α, and so α =

∑
t∈T α(t) · t. Then t ∈ α whenever α(t) > 0,

and α ≤ β whenever α(t) ≤ β(t) for all t ∈ T . The size of α is |α| =
∑

t∈T α(t).

Transition systems. A (deterministic) transition system 〈Q, S, δ〉 over an abelian
monoid S consists of a set of states Q and a partial transition function1 δ :
1 Transition functions are not related to (Petri) net-transitions.

106 J. Kleijn et al.

p1

(a)

t1 t2
2

M0

t1 , t2 {t2 , t2 , t2}
{t1 , t2}, {t2 , t2}

t1 , t2 t2

{t2, t2}
(b)

Fig. 2. A pt-net (a); and its concurrent reachability graph (b).

Q × S → Q such that δ(q,0) = q for all q ∈ Q. An initialised transition system
〈Q, S, δ, q0〉 is a transition system with an initial state q0 ∈ Q such that each
state q ∈ Q is reachable, i.e., there are s1, . . . , sn and q1, . . . , qn = q (n ≥ 0) with
δ(qi−1, si) = qi, for 1 ≤ i ≤ n. For every state q of a transition system TS , we
denote by enbTS (q) the set of all s which are enabled at q, i.e., δ(q, s) is defined.
TS is bounded if enbTS (q) is finite for every state q of TS . Moreover, such a TS
is finite if it has finitely many states. In diagrams, 0-labelled arcs are omitted
and singleton steps written without brackets.

Initialised transition systems T over free abelian monoids — called step tran-
sition systems or concurrent reachability graphs — represent behaviours of Petri
nets. Net-types are non-initialised transition systems τ over abelian monoids
used to define various classes of nets.

Let T = 〈Q, 〈T 〉, δ, q0〉 and T ′ = 〈Q′, 〈T 〉, δ′, q′
0〉 be step transition systems.

T and T ′ are isomorphic, T ∼= T ′, if there is a bijection f with f(q0) = q′
0 and

δ(q, α) = q′ ⇔ δ′(f(q), α) = f(q′), for all q, q′ ∈ Q and α ∈ 〈T 〉.

Place/Transition nets. A Place/Transition net (pt-net, for short) is a tuple
N = 〈P, T,W,M0〉, where P and T are disjoint sets of places and transitions,
W : (P × T) ∪ (T × P) → N is a weight function, and M0 is an initial marking
belonging to the set of markings defined as mappings from P to N. We use
the standard conventions concerning the graphical representation of pt-nets, as
illustrated in Fig. 2(a).

For all p ∈ P and α ∈ 〈T 〉, we denote W (p, α) =
∑

t∈T α(t) · W (p, t) and
W (α, p) =

∑
t∈T α(t) · W (t, p). Then a step α ∈ 〈T 〉 is enabled and may be

fired at a marking M if, for every p ∈ P , M(p) ≥ W (p, α). We denote this by
α ∈ enbN (M). Firing such a step leads to the marking M ′, for every p ∈ P
defined by M ′(p) = M(p) − W (p, α) + W (α, p). We denote this by M [α〉M ′.
The concurrent reachability graph CRG(N) of N is the step transition system
formed by firing inductively from M0 all possible enabled steps, i.e., CRG(N) =
〈[M0〉, 〈T 〉, δ,M0〉 where

[M0〉 = {Mn | ∃α1, . . . , αn ∃M1, . . . Mn−1 ∀1 ≤ i ≤ n : Mi−1[αi〉Mi}

is the set of reachable markings and δ(M,α) = M ′ iff M [α〉M ′. Figure 2(b)
shows the concurrent reachability graph of the pt-net in Fig. 2(a).

Synthesis of Petri Nets with Whole-Place Operations and Localities 107

Petri nets defined by net-types. A net-type τ = 〈Q, S,Δ〉 is a parameter in the
definition of τ -nets. It specifies the values (markings) that can be stored in places
(Q), the operations and tests (inscriptions on the arcs) that a net-transition may
perform on these values (S), and the enabling condition and the newly generated
values for steps of transitions (Δ).

A τ -net is a tuple N = 〈P, T, F,M0〉, where P and T are respectively disjoint
sets of places and transitions, F : (P × T) → S is a flow mapping, and M0 is an
initial marking belonging to the set of markings defined as mappings from P to
Q. N is finite if both P and T are finite.

For all p ∈ P and α ∈ 〈T 〉, we denote F (p, α) =
∑

t∈T α(t) · F (p, t). Then
a step α ∈ 〈T 〉 is enabled at a marking M if, for every p ∈ P , F (p, α) ∈
enbτ (M(p)). We denote this by α ∈ enbN (M). Firing such a step produces the
marking M ′, for every p ∈ P defined by M ′(p) = Δ(M(p), F (p, α)). We denote
this by M [α〉M ′, and then define the concurrent reachability graph CRG(N) of
N as the step transition system formed by firing inductively from M0 all possible
enabled steps.

As in [3,7], it is possible to encode a pt-net N = 〈P, T,W,M0〉 as a τ -
net without affecting its concurrent reachability graph, It is enough to take
F (p, t) = (W (p, t),W (t, p)). Thus F (p, t) = (i, o) means that i is the weight of
the arc from p to t, and o the weight of the arc in the opposite direction. With
this encoding, N becomes a τPT -net where τPT = 〈N, SPT ,ΔPT 〉 is an infinite
net-type over SPT defined earlier, with ΔPT given by ΔPT (n, (i, o)) = n − i + o
provided that n ≥ i (see Fig. 5(a)).

3 Nets with Whole-Place Operations

Assuming an ordering of places, markings can be represented as vectors. The
i-th component of a vector x is denoted by x(i). For x = (x1, . . . , xn) and y =
(y1, . . . , yn), (x, 1) = (x1, . . . , xn, 1) and x⊗y = x1 · y1 + · · ·+xn · yn. Moreover,
⊗ will also denote the multiplication of two-dimensional arrays.

A net with whole-place operations (wpo-net) is a tuple N = 〈P, T,W,m0〉,
where P = {p1, . . . , pn} is a finite set of ordered places, T is a finite set of
transitions disjoint with P , W : (P ×T)∪(T ×P) → N

n+1 is a whole-place weight
function, and m0 is an initial marking belonging to the set N

n of markings.
For p ∈ P and α ∈ 〈T 〉, W (p, α) =

∑
t∈T α(t) · W (p, t) and W (α, p) =∑

t∈T α(t) · W (t, p). Then α is enabled at a marking m if, for every p ∈ P ,

m(p) ≥ (m, 1) ⊗ W (p, α). (1)

We denote this by α ∈ enbN (m). An enabled α can be fired leading to a new
marking such that, for every p ∈ P ,

m′(p) = m(p) + (m, 1) ⊗ (W (α, p) − W (p, α)). (2)

We denote this by m[α〉m′, and define the concurrent reachability graph CRG(N)
of N as one built by firing inductively from m0 all possible enabled steps.

108 J. Kleijn et al.

(a)
p1

p4

p3p2

t1 t2p3 p1
2 ·p2

(b)
m0 m1 m2 m3 m4 m5

t2 t1 t2 t1 t2

(c)

⎡

⎢

⎢

⎣

W (p1, t1)
W (p2, t1)
W (p3, t1)
W (p4, t1)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

W (t1, p1)
W (t1, p2)
W (t1, p3)
W (t1, p4)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

W (p1, t2)
W (p2, t2)
W (p3, t2)
W (p4, t2)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

W (t2, p1)
W (t2, p2)
W (t2, p3)
W (t2, p4)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎦

Fig. 3. A wpo-net generating the first six Fibonacci numbers (a); its concurrent reach-
ability graph (b); and the weight function (c).

It is convenient to specify the weight function using arc annotations which
are linear expressions involving the pi’s. For example, if n = 3 then W (p3, t) =
(3, 0, 1, 5) can be written down as 3 · p1 + p3 + 5. A place pj (1 ≤ j ≤ n) is
a whole-place if W (p, t)(j) > 0 or W (t, p)(j) > 0, for some p ∈ P and t ∈ T .
In such a case we also write pj � p. Note that it may happen that p = pj ;
for example, if W (p1, t) = p1. This is useful, e.g., for simulating inhibitor arcs
(see W (p2, t2) = 2 · p2 in Fig. 3(a)). In diagrams, arcs with ‘0’ annotation are
dropped, and ‘1’ annotations are not shown.

Figure 3 shows a modified example, taken from [9], of a wpo-net for the gen-
eration of the first six Fibonacci numbers. Its markings are as follows: m0 =
(1, 0, 0, 5), m1 = (1, 1,1, 4), m2 = (2, 0, 1, 3), m3 = (2, 1,3, 2), m4 = (5, 0, 3, 1),
and m5 = (5, 1,8, 0). Hence, the markings of places p1 and p3, in alterna-
tion, represent the first six Fibonacci numbers (written above in bold). As
W (t1, p1)(3) = 1 > 0, W (t2, p3)(1) = 1 > 0 and W (p2, t2)(2) = 2 > 0, the
net has three whole-places, p1, p2 and p3 with p3 � p1, p1 � p3 and p2 � p2.
Moreover, p4, acting as a simple counting place, is a non-whole-place.

A wpo-net with localities (or wpol-net) is a tuple N = 〈P, T,W,m0, 	〉 such
that N ′ = 〈P, T,W,m0〉 is a wpo-net, and 	 : T → {1, 2, . . . , l}, where l ≥ 1, is
the locality mapping of N and {1, 2, . . . , l} are the localities of N . In diagrams,
nodes representing transitions assigned the same locality are shaded in the same
way, as illustrated in Fig. 4(a) for transitions b and c. Finally N inherits the
notations introduced for N ′.

Synthesis of Petri Nets with Whole-Place Operations and Localities 109

p4p3

p2 p1

(a)

a b

c

p1

2

M0

M1

M2{b, c} b

a

a

(b)

M0 {b, c} b

bcb

b

c

c
a

a

a

{b, c}
(c)

Fig. 4. A wpol-net (a); its concurrent reachability graph (b); and the concurrent reach-
ability graph of the underlying wpo-net (c).

wpol-nets are executed under the locally maximal step firing policy. A step
α ∈ 〈T 〉 is resource enabled at a marking m if, for every p ∈ P , the inequality (1)
is satisfied. Such a step is then control enabled if there is no t ∈ T such that
there exists a transition t′ ∈ α with 	(t) = 	(t′) and the step t + α is resource
enabled at m. A control enabled step α can be then fired leading to the marking
m′, for every p ∈ P given by the formula (2).

In general (see [7]), a step firing policy is given by a control disabled steps
mapping cds : 2〈T 〉 → 2〈T 〉\{0} that, for a set of resource enabled steps at
some reachable marking, returns the set of steps disabled by this policy at that
marking. For the locally maximal step firing policy this mapping will be denoted
by cds lmax and we will identify this policy with its cds lmax mapping:2

cds lmax(X) = {α ∈ X \ {0} | ∃β ∈ X : 	(β) ⊆ 	(α) ∧ α ≤ β ∧ α �= β}.

Step firing policies are a means of controlling and constraining the potentially
huge number of execution paths generated by a concurrent system. The concur-
rent reachability graph of a net executed under a step firing policy contains only
the control enabled steps (see Fig. 4(b, c)).

4 Synthesis of WPOL-nets

The net synthesis problem we consider here aims to devise a procedure which
constructs a wpol-net with a concurrent reachability graph (reflecting the use

2 Control disabled steps mappings are defined in [7] in the context of τ -nets, and this
is how cds lmax will be used in Sect. 4.

110 J. Kleijn et al.

of the locally maximal step firing policy) that is isomorphic to a given step
transition system T = 〈Q, 〈T 〉, δ, q0〉.

The synthesis problem was first investigated in the literature for individual
classes of Petri nets, and later a general approach was developed for τ -nets,
where each class of nets is represented by its own net-type τ . The key aspect
of any solution to the synthesis problems is to discover all the necessary net
places from T and their connections with transitions of T from τ . All necessary
information needed to construct a place in a net that realises T is encapsulated
in the notion of a region, which depends on parameter τ . Before we give the
definition of a region relevant to our problem, we need to realise that for nets
with whole-place operations, discovering places for the net to be constructed
is more complicated than in previously considered synthesis problems (except
for [12]), as the markings of places dynamically depend on the markings of
other places. Therefore, instead of discovering individual places of the net to be
constructed, one needs a procedure to discover clusters of related places, each
cluster containing places that depend only on one another. We will therefore
re-define wpol-nets as nets containing clusters of — at most k — related places
(k-wpol-nets) and express them as τ -nets, so that we can synthesise them as
τ -nets, using the general framework of net synthesis theory.

4.1 k-WPOL-nets and Their Net-Type

wpol-nets allow arc weights to depend on the current marking of all places. This
may be too generous, e.g., in the case of systems where places are distributed
among different neighbourhoods, forming the scopes where their markings can
influence the token game. One way of capturing this is to restrict the number of
places which can influence arc weights.

A k-restricted wpol-net (k-wpol-net, k ≥ 1) is a wpol-net N for which
there is a partition P1�· · ·�Pr of the set of places such that each Pi has at most
k places and, for all p ∈ Pi and p′ /∈ Pi, p �� p′ �� p. In other words, the places
can be partitioned into clusters of bounded size so that there is no exchange of
whole-place marking information between different clusters.

Although k-wpol-nets (as well as wpol-nets) are not τ -nets in the sense
of the original definition as the change of a marking of a place does not only
depend on its marking and the connections to the transitions, they still fit the
ideas behind the definition of τ -nets. All we need to do is to define a suitably
extended net-type capturing the behaviour of sets of k places rather than the
behaviour of single places. More precisely, for each k ≥ 1, the k-wpol-net-type
is a transition system3:

τk = 〈Nk, (Nk+1)k × (Nk+1)k,Δk〉
where

Δk : N
k × ((Nk+1)k × (Nk+1)k) → N

k

3 As will be explained later, the same net-type can be defined for a given kind of nets
to be executed without any specific policy or with some policy. Therefore, we can
re-use here the τk

wpo net-type introduced in [12], which coincides with τk.

Synthesis of Petri Nets with Whole-Place Operations and Localities 111

(a)

0 1 2

(0 , 2)

(2 , 0)

(0 , 1)

(1 , 0)

(0 , 1)

(1 , 0)

(1 , 2)

(2 , 1)

(b)

(0 , 3)

(1 , 3) (2 , 3) (3 , 3)

(4 , 3)(2 , 4)

(2 , 2)

A B

CD E

F

A =

⎛

⎝

⎡

⎣

0 0
0 0
1 0

⎤

⎦ ,

⎡

⎣

0 0
0 0
0 0

⎤

⎦

⎞

⎠ B =

⎛

⎝

⎡

⎣

0 0
0 0
0 0

⎤

⎦ ,

⎡

⎣

0 0
0 0
1 0

⎤

⎦

⎞

⎠ C =

⎛

⎝

⎡

⎣

0 0
0 0
0 0

⎤

⎦ ,

⎡

⎣

0 0
0 0
0 1

⎤

⎦

⎞

⎠

D =

⎛

⎝

⎡

⎣

1 0
0 0
0 0

⎤

⎦ ,

⎡

⎣

0 0
0 0
0 0

⎤

⎦

⎞

⎠ E =

⎛

⎝

⎡

⎣

0 0
0 0
0 0

⎤

⎦ ,

⎡

⎣

1 0
0 0
0 0

⎤

⎦

⎞

⎠ F =

⎛

⎝

⎡

⎣

0 0
0 0
0 1

⎤

⎦ ,

⎡

⎣

0 0
0 0
0 0

⎤

⎦

⎞

⎠

Fig. 5. Fragments of two infinite net-types: τpt (a); and τ2 (b).

is a partial function such that Δk(x, (X,Y)) is defined if x ≥ (x, 1) ⊗ X and, if
that is the case,

Δk(x, (X,Y)) = x + (x, 1) ⊗ (Y − X).

Note that here we treat tuples of vectors in (Nk+1)k as (k + 1) × k arrays.
Having defined a net-type τk, a τk-net is a tuple N = 〈P, T, F,M0, 	〉, where

P = {P1, . . . , Pr} is a set of disjoint sets of implicitly ordered places comprising
exactly k places each, T is a set of transitions being different from the places in
the sets of P, F : (P × T) → (Nk+1)k × (Nk+1)k is a flow mapping, M0 is an
initial marking belonging to the set of markings defined as mappings from P to
N

k, and 	 is a locality mapping for the transitions in T .
For all Pi ∈ P and α ∈ 〈T 〉, we set F (Pi, α) =

∑
t∈T α(t) · F (Pi, t). Then a

step α ∈ 〈T 〉 is resource enabled at a marking M if, for every Pi ∈ P, F (Pi, α) ∈
enbτk(M(Pi)). We denote this by α ∈ enbN (M). Firing such a step (for now
we ignore the firing policy) produces the marking M ′, for every Pi ∈ P, defined
by M ′(Pi) = Δk(M(Pi), F (Pi, α)). We denote this by M [α〉M ′, and then define
the concurrent reachability graph CRG(N) of N as the step transition system
formed by firing inductively from M0 all possible enabled steps.

However, we want to execute N under the locally maximal step firing policy.
The related control disabled steps mapping cds lmax, when applied to N , would
control disable at each marking M all the resource enabled steps that belong to

112 J. Kleijn et al.

cds lmax(enbN (M)). That is,

enbN ,cdslmax
(M) = enbN (M) \ cds lmax(enbN (M)) (3)

is the set of steps enabled at a reachable marking M under cds lmax. We then use
CRGcdslmax

(N) to denote the induced reachable restriction of CRG(N), which
may be finite even for an infinite CRG(N).

4.2 Synthesising k-WPOL-nets as τk-nets

First we need to express a k-wpol-net N = 〈P, T,W,m0, 	〉, with set of places
P = {p1, . . . , pn} and clusters P1, . . . , Pr, as a τk-net. Suppose that each set Pi

in the partition has exactly k places. (If any of the sets Pi has m < k places,
we can always add to it k − m fresh dummy empty places disconnected from
the original transitions and places.) We then define N̂ = 〈P, T, F,M0, 	〉 so that
P = {P1, . . . , Pr} and, for all Pi ∈ P and t ∈ T : (i) F (Pi, t) = (X,Y) where X
and Y are arrays respectively obtained from the arrays [W (p1, t), . . . , W (pn, t)]
and [W (t, p1), . . . ,W (t, pn)], where W (·, ·) are column vectors, by deleting the
rows and columns corresponding to the places in P \ Pi; and (ii) M0(Pi) is
obtained from m0 by deleting the entries corresponding to the places in P \ Pi.

It is straightforward to check that the concurrent reachability graphs of N
and N̂ are isomorphic (when we execute both nets under the cds lmax policy or
ignore the policy in both nets). Conversely, one can transform any τk-net into
an equivalent k-wpol-net, and trivially each wpol-net is a |P |-wpol-net.

We can turn the wpo-net of Fig. 3(a) into a wpol-net with locality mapping
	 such that 	(t1) = 1 and 	(t2) = 2. The result can be represented as a τ2-
net N̂ = 〈{P1, P2}, {t1, t2}, F,M0, 	〉, where P1 = {p1, p3} and P2 = {p2, p4},
M0(P1) = (1, 0), M0(P2) = (0, 5) and:

F (P1, t1) =

⎛

⎝

⎡

⎣
0 0
0 0
0 0

⎤

⎦ ,

⎡

⎣
0 0
1 0
0 0

⎤

⎦

⎞

⎠ F (P1, t2) =

⎛

⎝

⎡

⎣
0 0
0 0
0 0

⎤

⎦ ,

⎡

⎣
0 1
0 0
0 0

⎤

⎦

⎞

⎠

F (P2, t1) =

⎛

⎝

⎡

⎣
0 0
0 0
1 1

⎤

⎦ ,

⎡

⎣
0 0
0 0
0 0

⎤

⎦

⎞

⎠ F (P2, t2) =

⎛

⎝

⎡

⎣
2 0
0 0
0 1

⎤

⎦ ,

⎡

⎣
0 0
0 0
1 0

⎤

⎦

⎞

⎠

The above discussion implies that k-wpol-net synthesis can be reduced to
the following two problems of τk-net synthesis.

Problem 1 (feasibility). Let T = 〈Q, 〈T 〉, δ, q0〉 be a bounded step transition
system, k be a positive integer, and 	 be a locality mapping for T .
Provide necessary and sufficient conditions for T to be realised by some τk-net,
N̂ , executed under the cds lmax policy defined by 	 (T ∼= CRGcdslmax

(N̂)).

Problem 2 (effective construction). Let T = 〈Q, 〈T 〉, δ, q0〉 be a finite step
transition system, k be a positive integer, and 	 be a locality mapping for T .

Synthesis of Petri Nets with Whole-Place Operations and Localities 113

Decide whether there is a finite τk-net realising T when executed under the
cds lmax policy defined by 	. Moreover, if the answer is positive construct such a
τk-net.

To address Problem 1, we define a τk-region of T = 〈Q, 〈T 〉, δ, q0〉 as a pair:

〈σ : Q → N
k, η : T → (Nk+1)k × (Nk+1)k〉

such that, for all q ∈ Q and α ∈ enbT (q),

η(α) ∈ enbτk(σ(q)) and Δk(σ(q), η(α)) = σ(δ(q, α)),

where η(α) =
∑

t∈T α(t) · η(t). Moreover, for every state q of Q, we denote by
enbT ,τk(q) the set of all steps α such that η(α) ∈ enbτk(σ(q)), for all τk-regions
〈σ, η〉 of T . Hence for every state q of T , we have

enbT (q) ⊆ enbT ,τk(q). (4)

In the context of the synthesis problem, a τk-region represents a cluster
of places whose local states (in τk) are consistent with the global states (in
T). Then, to deliver a realisation of T , one needs to find enough τk-regions to
construct a τk-net N̂ satisfying T ∼= CRGcdslmax

(N̂). The need for the existence
of such τk-regions is dictated by the following two regional axioms:

Axiom 1 (state separation). For any pair of states q �= r of T , there is a
τk-region 〈σ, η〉 of T such that σ(q) �= σ(r).

Axiom 2 (forward closure). For every state q of T , enbT (q) = enbT ,τk(q) \
cds lmax(enbT ,τk(q)).

The above axioms provide a full characterisation of realisable transition sys-
tems. The first axiom links the states of T with markings of the net to be
constructed, making sure that a difference between two states of T is reflected
in a different number of tokens held in the two markings of the net representing
the said states. The second axiom means that, for every state q and every step
α in 〈T 〉 \ enbT (q), we have either of the following:

1. There is a τk-region 〈σ, η〉 of T such that η(α) /∈ enbτk(σ(q)) (the step α is
not region enabled) or

2. α ∈ cds lmax(enbT ,τk(q)) (the step α is not control enabled, meaning that it
is rejected by the cds lmax policy).

Note that when a τk-net under cds lmax realises T , every cluster of places of the
net still determines a corresponding τk-region of the transition system, without
taking cds lmax into account. This is why the same kind of regions would be used
if we are asked to synthesise a wpo-net (rather than a wpol-net).

Before we prove the main result of the paper that gives the solution to
Problem 1, we need two auxiliary results. The first one presents an impor-
tant property enjoyed by control disabled steps mappings, and in particular
by cds lmax.

114 J. Kleijn et al.

Proposition 1. Let X be a finite set of resource enabled steps at some reachable
marking of some τk-net and Y be its subset (Y ⊆ X). Then:

X \ cds lmax(X) ⊆ Y =⇒ cds lmax(X) ∩ Y ⊆ cds lmax(Y).

Proof. Let α ∈ cds lmax(X) ∩ Y . We need to show that α ∈ cds lmax(Y). From
α ∈ cds lmax(X) it follows that there is β ∈ X such that 	(β) ⊆ 	(α) and α < β.
We now consider two cases:

Case 1: β ∈ Y . Then α ∈ cds lmax(Y).

Case 2: β ∈ X \Y . Then, by X \cds lmax(X) ⊆ Y , we have that β ∈ cds lmax(X).
Hence, there is γ ∈ X such that 	(γ) ⊆ 	(β) and β < γ. If γ ∈ Y we can
continue as in case 1, with γ replacing β and obtain α ∈ cds lmax(Y) due to the
transitivity of ⊆ and <. Otherwise, we continue as in case 2 with γ replacing β
and so γ ∈ cds lmax(X). Then we can repeat the same argument. Now, because
X is a finite set, one must find sooner or later in this iteration some step φ ∈ Y
such that case 1 holds with φ replacing β, and so α ∈ cds lmax(Y). ��

The second auxiliary result associates a region of a step transition system
T with a particular cluster of places of the net to be synthesised from T . The
mappings σ and η hold all the information about the associated cluster of places,
their connections to transitions in the net and their markings for every state of
the net. In fact, for the mapping σ, if we know η, it is enough to know its value
for the initial state q0 to uniquely compute the values for the remaining states
of T .

Proposition 2. Let T ∼= CRGcdslmax
(N̂) for a τk-net N̂ = 〈P, T, F,M0, 	〉.

Then, for each cluster Pi ∈ P (i = 1, . . . , r), there is exactly one τk-region 〈σ, η〉
of T such that σ(q0) = M0(Pi) and η(α) = F (Pi, α) for all steps α ∈ 〈T 〉.
Proof. All step transition systems we consider in this paper are deterministic.
Observe that both δ and Δk are functions rather than relations. Also observe
that T is reachable (i.e., each of its states is reachable from the initial one).
Hence, σ(q0) and η : 〈T 〉 → (Nk+1)k × (Nk+1)k determine at most one map
σ : Q → N

k such that Δk(σ(q), η(α)) = σ(δ(q, α)) whenever α ∈ enbT (q), and
therefore they determine at most one τk-region of T .

We now define the map σ. Let Pi ∈ P (i = 1, . . . , r). By assumption
T ∼= CRGcdslmax

(N̂), and CRGcdslmax
(N̂) is a sub-graph of CRG(N̂). Let

σ : Q → N
k be defined as follows: σ(q) = f(q)(Pi), where f(q) is the

image of q through the isomorphism ∼= (f(q) is a marking of N̂). Then, for
every α ∈ enbT (q), we have, from T ∼= CRGcdslmax

(N̂), that α is resource
enabled at f(q) in N̂ , and hence F (Pi, α) ∈ enbτk(f(q)(Pi)) and the mark-
ing of Pi after α is fired is f(δ(q, α))(Pi) = Δk(f(q)(Pi), F (Pi, α)). There-
fore, we have, for σ defined as above and η(α) = F (Pi, α) (as stated in the
assumptions), that η(α) ∈ enbτk(σ(q)) and σ(δ(q, α)) = Δk(σ(q), η(α)). Hence
〈σ, η〉, with σ defined as above, is a τk-region of T associated with Pi. Also,
σ(q0) = f(q0)(Pi) = M0(Pi) as ∼= is an isomorphism preserving the initial states.
Therefore, the result holds. ��

Synthesis of Petri Nets with Whole-Place Operations and Localities 115

Theorem 1. Let T = 〈Q, 〈T 〉, δ, q0〉 be a bounded step transition system and
cds lmax be the locally maximal step firing policy associated with a locality map-
ping 	 defined for T .

Then T can be realised by a τk-net (k ≥ 1) under cds lmax iff Axioms 1 and 2
are satisfied.

Proof. (=⇒) T can be realised by the τk-net N̂ under cds lmax. That means that
T ∼= CRGcdslmax

(N̂). Let f : Q → (P → N
k) be a bijection linking the states of

T with the reachable markings of N̂ . First, we prove that:

enbT ,τk(q) ⊆ enb
̂N (f(q)). (5)

Let α �∈ enb
̂N (f(q)). Then there is a cluster Pi ∈ P (1 ≤ i ≤ r) in N̂ such

that F (Pi, α) �∈ enbτk(f(q)(Pi)). Let 〈σ, η〉 be the τk-region of T induced by Pi

according to Proposition 2. Then σ(q) = f(q)(Pi) and η(α) = F (Pi, α). Hence,
η(α) �∈ enbτk(σ(q)) and so α �∈ enbT ,τk(q).

To show Axiom 1 let q �= r in Q. As T ∼= CRGcdslmax
(N̂), we have f(q) �=

f(r), and therefore f(q)(Pi) �= f(r)(Pi), for some 1 ≤ i ≤ r. Let 〈σ, η〉 be the τk-
region of T induced by Pi according to Proposition 2. Then σ(q) = f(q)(Pi) �=
f(r)(Pi) = σ(r). Hence, σ(q) �= σ(r).

To show Axiom 2, we first show that, for all α ∈ 〈T 〉 and q ∈ Q:

α �∈ enbT (q) =⇒ α �∈ enbT ,τk(q) \ cds lmax(enbT ,τk(q)). (6)

Let q ∈ Q and α �∈ enbT (q). From (3) and T ∼= CRGcdslmax
(N̂), either:

(i) α �∈ enb
̂N (f(q)) or

(ii) α ∈ enb
̂N (f(q)) ∩ cds lmax(enb

̂N (f(q))).

If (i) holds then, by (5), we have α �∈ enbT ,τk(q) and so (6) holds. In (ii) two cases
are possible. If α �∈ enbT ,τk(q) we have (6); otherwise α ∈ enbT ,τk(q) and we set
the following: X = enb

̂N (f(q)) and Y = enbT ,τk(q). By (5), we have Y ⊆ X.
Moreover, by (3 and 4) and T ∼= CRGcdslmax

(N̂), we have X \ cds lmax(X) ⊆ Y .
Hence, by Proposition 1 and the fact that T is bounded, α ∈ cds lmax(X) ∩ Y ⊆
cds lmax(enbT ,τk(q)), and so (6) holds.

To finish the proof of Axiom 2, we show that, for all q ∈ Q:

enbT (q) ⊆ enbT ,τk(q) \ cds lmax(enbT ,τk(q)). (7)

By isomorphism T ∼= CRGcdslmax
(N̂) and (3), we have enbT (q) = enb

̂N (f(q)) \
cds lmax(enb

̂N (f(q))). Hence enbT (q) ∩ cds lmax(enb
̂N (f(q))) = ∅. Thus, by (5)

and cds lmax(Y) ⊆ cds lmax(X) (for Y ⊆ X), enbT (q)∩cds lmax(enbT ,τk(q)) = ∅.
Moreover, by (4), which always holds, we can conclude that (7) holds.

(⇐=) Let R be the set of all τk-regions of T . Let N̂ = 〈P, T, F,M0, 	〉 be a
τk-net defined as follows: P = R, M0(Pi) = σ(q0) and F (Pi, t) = η(t) for any
Pi = 〈σ, η〉 ∈ P and t ∈ T . We will show that if T satisfies Axioms 1 and 2 then
T ∼= CRGcdslmax

(N̂).

116 J. Kleijn et al.

We denote by RMcdslmax
the set of all reachable markings in CRGcdslmax

(N̂)
and by M

α−−→ M ′ the directed arcs in this graph. We now define a relation
∼ ⊆ Q × RMcdslmax

as the smallest relation that includes q0 ∼ M0 and such
that

q ∼ M , δ(q, α) = q′ and M
α−−→ M ′ implies q′ ∼ M ′.

We prove first that ∼ is a partial bijection between Q and RMcdslmax
. By con-

struction of N̂ , M0(Pi) = σ(q0) for every Pi = 〈σ, η〉 of N̂ . Now let q ∼ M

with δ(q, α) = q′ and M
α−−→ M ′, and assume for the sake of an induction

that M(Pi) = σ(q) for every Pi = 〈σ, η〉 of N̂ . As 〈σ, η〉 is a τk-region of
T , σ(δ(q, α)) = Δk(σ(q), η(α)). As Pi = 〈σ, η〉 is a cluster of places in N̂
and F (Pi, t) = η(t) for all t ∈ T by construction of N̂ , we have σ(δ(q, α)) =
Δk(M(Pi), F (Pi, α)). From M

α−−→ M ′, we have M ′(Pi) = Δk(M(Pi), F (Pi, α)).
As a result, M ′(Pi) = σ(δ(q, α)) = σ(q′) and we have q′ ∼ M ′. So, q ∼ M implies
M(Pi) = σ(q) for all Pi = 〈σ, η〉 of N̂ . Furthermore, from Axiom 1, q �= r implies
σ(q) �= σ(r) for some τk-region 〈σ, η〉 of T . Therefore, the relation ∼ is a partial
bijection between Q and RMcdslmax

.
Next, we show that the following implication is satisfied:

q ∼ M =⇒ enbT ,τk(q) = enb
̂N (M). (8)

Let α ∈ enbT ,τk(q). This means that η(α) ∈ enbτk(σ(q)), for all τk-regions
〈σ, η〉 of T . It was shown above that, for every cluster of places Pi = 〈σ, η〉 of N̂ ,
M(Pi) = σ(q), where q ∼ M . Furthermore, by construction of N̂ , F (Pi, t) = η(t),
for all t ∈ T , and Pi = 〈σ, η〉. Hence, η(α) = F (Pi, α). Therefore, F (Pi, α) ∈
enbτk(M(Pi)), for every cluster of places Pi of N̂ . This in turn means that α is
resource enabled at M in N̂ : α ∈ enb

̂N (M).
To show the reverse inclusion, let α ∈ enb

̂N (M). Then, by the fact that α is
resource enabled at M , in N̂ , we have F (Pi, α) ∈ enbτk(M(Pi)), for every cluster
Pi of N̂ . From the construction of N̂ , it follows that F (Pi, t) = η(t) for all t ∈ T

and Pi = 〈σ, η〉, hence η(α) ∈ enbτk(M(Pi)). For every cluster Pi = 〈σ, η〉 of N̂ ,
M(Pi) = σ(q) when q ∼ M . So, η(α) ∈ enbτk(σ(q)) for every τk-region of T .
Hence, α ∈ enbT ,τk(q).

We now observe that q ∼ M implies enbT (q) = enb
̂N ,cdslmax

(M), which fol-
lows from (8), Axiom 2, and (3). Hence ∼ is a bijection between Q and RMcdslmax

,
and so T ∼= CRGcdslmax

(N̂). ��
To solve Problem 2 using the feasibility result provided by Theorem 1 one

needs to find an effective representation of the τk-regions of T . Similarly as
in [12], one can define a system of equations and inequalities encoding the
conditions that must be satisfied by τk-regions. Let Q = {q0, q1, . . . , qm} and
T = {t1, . . . , tn}. The encoding employs the following variables:

– x0,x1, . . . ,xm are k-vectors of non-negative integer variables which encode
the mapping σ; and

Synthesis of Petri Nets with Whole-Place Operations and Localities 117

– X1, . . . ,Xn and Y1, . . . ,Yn are (k + 1) × k arrays of non-negative integer
variables which encode the mapping η.

We then define the homogeneous system ST :
{

xs − (xs, 1) ⊗ ∑n
i=1α(ti) · Xi ≥ 0 for all δ(qs, α) = qr

xr − xs − (xs, 1) ⊗ ∑n
i=1α(ti) · (Yi − Xi) = 0 in T .

(9)

Then the non-negative integer solutions of ST are in a one-to-one correspondence
with the τk-regions of T . Therefore, Axioms 1 and 2 can be checked using the
solutions of ST .

In the case of pt-net synthesis, a similar procedure has been shown to be
effective since the homogeneous system considered there was linear and one could
always find a sufficiently representative finite basis for all the solutions. Here,
however, the situation is much harder as the system ST is quadratic. In practice,
one would often want to impose bounds on the allowed range of the whole-place
coefficients used in arc annotations. Then Problem 2 has a solution since one
could replace ST by finitely many linear systems that can be dealt with using the
techniques developed for pt-nets. However, one can consider a modified version
of Problem 2 without bounding the whole-place coefficients and still obtain a
solution, as described in the next section.

5 Synthesis with Known Whole-Places

We will now outline how one can develop a fully satisfactory procedure for syn-
thesis problems like that discussed in the introduction.

Problem 3 (effective construction with known whole-places). Let T =
〈Q, 〈T 〉, δ, q0〉 be a finite step transition system, m be a positive integer, and κ
be a mapping assigning tuples in N

m to Q. Decide whether there is a wpol-net
N with implicitly ordered places p1, . . . , pm, . . . , pn realising T such that:

1. each whole-place pi of N satisfies i ≤ m, and
2. for every state q ∈ Q, it is the case that κ(q) = (μ(q)(1), . . . , μ(q)(m)), where

μ is a bijection from Q to the reachable markings of N establishing the iso-
morphism between T and the concurrent reachability graph of N .

Moreover, if the answer is positive, construct such a wpol-net N .

Figure 1(b) defines an instance of the above problem with m = 1. We will now
describe how the above problem can be solved using results from the last section.

Since T is finite, there are only finitely many semantically distinct ways in
which one can assign localities to the transitions in T . We can explore them all
one-by-one, and below we assume that 	 is a fixed locality mapping for T . Note
that for the the example in Fig. 1(b), we must have 	(b) = 	(c) since otherwise
the initial state would have to enable also a step α with b ∈ α and c /∈ α. Hence
here one only needs to consider two locality assignments.

We next discuss the coefficients on the arcs adjacent to p1, . . . , pm. Suppose
first that i, j ≤ m and W (pi, t) = v1 · p1 + · · · + vm · pm + v0 in a net solving
Problem 3, and μ is a corresponding bijection. We consider two cases:

118 J. Kleijn et al.

– κ(q)(j) > 0, for some δ(q, α) = q′ with t ∈ α. Then, since α is enabled at μ(q),
it must be the case that κ(q)(i) ≥ vj · κ(q)(j) · α(t), and so

vj ≤ min
{

κ(q)(i)

κ(q)(j) · α(t)

∣
∣
∣
∣ δ(q, α) = q′ and t ∈ α

}
.

Hence, the range of possible values for vj is finite.
– κ(q)(j) = 0, for each δ(q, α) = q′ with t ∈ α. Then we can assume vj =

1 + max{κ(q)(i) | q ∈ Q}. This does not ‘contradict’ any of the arcs in T and,
at the same time, ensures a maximal disabling power of coefficient vj .

Suppose next that i, j ≤ m and W (t, pi) = v1 · p1 + · · · + vm · pm + v0. We again
consider two cases:

– κ(q)(j) > 0, for some δ(q, α) = q′ with t ∈ α. Then, since executing α at μ(q)
leads to μ(q′), it must be the case that κ(q′)(i) ≥ vj · κ(q)(j) · α(t), and so

vj ≤ min
{

κ(q′)(i)

κ(q)(j) · α(t)

∣
∣
∣
∣ δ(q, α) = q′ and t ∈ α

}
.

Hence, the range of possible values for vj is again finite.
– κ(q)(j) = 0, for each δ(q, α) = q′ with t ∈ α. Then we set vj = 0.

Note that for the example in Fig. 1(b), all coefficients vj satisfy 0 ≤ vj ≤ 1.
Moreover, as {b, c} is an enabled step, it is not possible to have both W (p1, b) =
p1 + v and W (p1, c) = p1 + w.

As a result, we need to take into account only finitely many assignments
of values to the whole-place coefficients of arcs between the transitions in T
and p1, . . . , pm. We can consider them one-by-one and, after filtering out those
inconsistent with κ, carry out independent searches for a solution. Therefore,
below we assume that such whole-place coefficients are fixed, and proceed further
unless the net constructed so far is a solution (the initial marking is κ(q0)).

Having fixed transition localities and whole-place coefficients involving the
potential whole-places, we can proceed with the main part of the decision proce-
dure, i.e., the construction of additional non-whole-places that can use p1, . . . , pm

in their arc annotations.
First, we derive the system ST as in (9) with k = m+1, implicitly assuming

that the first m components correspond to p1, . . . , pm, and the k-th component
corresponds to a generic non-whole-place p being constructed. We then delete all
equations and inequalities which concern p1, . . . , pm, i.e., those beginning with
x(i)

s , for 1 ≤ i ≤ m. We finally replace by concrete values all those variables which
are ‘fixed’ by the mapping κ, and the fact that p must be a non-whole-place.
The homogeneous system S ′

T obtained in this way is linear.
Assume some arbitrary ordering of the variables of S ′

T . Using the results
from [6], one can find a finite set p1, . . . ,pr of non-negative integer solutions of
S ′

T such that each non-negative integer solution p of S ′
T is a linear combination

p =
∑r

l=1 al ·pl with non-negative rational coefficients al. For every non-negative
integer solution p of S ′

T , let ψ(p) be a corresponding τk-region.

Synthesis of Petri Nets with Whole-Place Operations and Localities 119

The pl’s are fixed and some of them turned into new places if Problem 3 has
a solution under the fixed localities and coefficients. This, in turn, is the case if
we can verify Axioms 1 and 2. Clearly, if r = 0 then the problem is not feasible
for the current fixed parameters. Otherwise, we proceed as follows.

To check state separation (Axiom 1), let qi and qj be a pair of distinct states
of T . If κ(qi) �= κ(qj), then we are done. Suppose then that κ(qi) = κ(qj), and ρ
is a τk-region separating qi and qj . Then there is a solution p =

∑r
l=1 al ·pl such

that ρ = ψ(p). This means that p assigns different values to qi and qj . Hence,
since the coefficients al are non-negative, there must be pl which also assigns
different values to qi and qj . Therefore, ψ(pl) separates qi and qj . We therefore
only need to check the pl’s in order to establish the separation of qi and qj . If a
suitable pl is found, we add a non-whole-place p corresponding to the last place
of ψ(pl) to the net being constructed.

Checking forward closure (Axiom 2) is carried out for each state qi, and
considers steps α ∈ 〈T 〉 that are not enabled at qi in T . Moreover, one does not
need to consider α �= 0 in the following cases:

– α is already disabled by the whole-places, or |α| > max , where max is the max-
imum size of steps labelling arcs in T . In the latter case, one can always add a
standard pt-net place which is connected with each transition by an incoming
and outgoing arc of weight 1, and is initially marked with max tokens. Such a
non-whole-place disables all steps with more than max transitions, and does
not disable any other steps.

– There is β �= α enabled at qi such that 	(β) ⊆ 	(α) and α ≤ β.

In all other cases, α is not τk-region enabled at qi iff ψ(p) disables α, for
some solution p =

∑r
l=1 al ·pl. Hence, since the coefficients al are non-negative,

α is not τk-region enabled at qi iff there is pl such that ψ(pl) disables α. We
therefore only need to check the pl’s in order to establish the disabling of α. If a
suitable pl is found, we add a non-whole-place p corresponding to the last place
of ψ(pl) to the net being constructed.

Finally, if one can validate all cases of state separation and forward closure,
the resulting net is a solution to Problem 3, and otherwise there is no solution.

6 Conclusions

Among the possible directions for future work, we single out two challenges.
The first one is the development of a synthesis approach for wpo-nets executed
under more general step firing policies, e.g., those based on linear rewards of
steps, where the reward for firing a single transition is either fixed or it depends
on the current net marking [7]. The second task, more specific to k-wpol-nets,
is to investigate the relationship between the locality mapping and the grouping
of the places into clusters.

Acknowledgements. We would like to thank the anonymous reviewers for useful
comments and suggestions.

120 J. Kleijn et al.

References

1. Abdulla, P.A., Delzanno, G., Van Begin, L.: A language-based comparison of exten-
sions of Petri nets with and without whole-place operations. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 71–82.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-00982-2 6

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts in The-
oretical Computer Science. An EATCS Series. Springer, Heidelberg (2015)

3. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998). doi:10.
1007/3-540-65306-6 22

4. Bernardinello, L., De Michelis, G., Petruni, K., Vigna, S.: On the synchronic struc-
ture of transition systems. In: Desel, J. (ed.) Structures in Concurrency Theory.
Workshops in Computing, pp. 69–84. Springer, London (1995)

5. Busi, N., Pinna, G.M.: Synthesis of nets with inhibitor arcs. In: Mazurkiewicz,
A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 151–165. Springer,
Heidelberg (1997). doi:10.1007/3-540-63141-0 11

6. Chernikova, N.: Algorithm for finding a general formula for the non-negative solu-
tions of a system of linear inequalities. USSR Comput. Math. Math. Phys. 5,
228–233 (1965)

7. Darondeau, P., Koutny, M., Pietkiewicz-Koutny, M., Yakovlev, A.: Synthesis of
nets with step firing policies. Fundam. Informaticae 94, 275–303 (2009)

8. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Informatica 33,
297–315 (1996)

9. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and unde-
cidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol.
1443, pp. 103–115. Springer, Heidelberg (1998). doi:10.1007/BFb0055044

10. Ehrenfeucht, A., Rozenberg, G.: Partial 2-structures; Part I: basic notions and
the representation problem, and Part II: state spaces of concurrent systems. Acta
Informatica 27, 315–368 (1990)

11. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
Petri net extensions. Inf. Comput. 195, 1–29 (2004)

12. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Applying Regions.
Theoret. Comput. Sci. (2016)

13. Koutny, M., Pietkiewicz-Koutny, M.: Synthesis of Petri nets with localities. Sci.
Ann. Comp. Sci. 19, 1–23 (2009)

14. Mukund, M.: Petri nets and step transition systems. Int. J. Found. Comput. Sci.
3, 443–478 (1992)

15. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems. The-
oret. Comput. Sci. 96, 3–33 (1992)

16. Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with
inhibitor arcs. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248,
pp. 310–327. Springer, Heidelberg (1997). doi:10.1007/3-540-63139-9 43

17. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 517–528. Springer, Heidelberg (1996). doi:10.1007/3-540-60922-9 42

http://dx.doi.org/10.1007/978-3-642-00982-2_6
http://dx.doi.org/10.1007/3-540-65306-6_22
http://dx.doi.org/10.1007/3-540-65306-6_22
http://dx.doi.org/10.1007/3-540-63141-0_11
http://dx.doi.org/10.1007/BFb0055044
http://dx.doi.org/10.1007/3-540-63139-9_43
http://dx.doi.org/10.1007/3-540-60922-9_42

Schedulers and Finishers: On Generating
the Behaviours of an Event Structure

Annabelle McIver1, Tahiry Rabehaja1(B), and Georg Struth2

1 Department of Computing, Macquarie University, Sydney, Australia
tahiry.rabehaja@mq.edu.au

2 Department of Computer Science, The University of Sheffield, Sheffield, UK

Abstract. It is well known that every trace of a transition system can
be generated using a scheduler. However, this basic completeness result
does not hold in event structure models. The reason for this failure is
that, according to its standard definition, a scheduler chooses which
action to schedule and, at the same time, finishes the one scheduled
last. Thus, scheduled events will never be able to overlap. We propose to
separate scheduling from finishing and introduce the dual notion of finish-
ers which, together with schedulers, are enough to regain completeness
back. We then investigate all possible interactions between schedulers
and finishers, concluding that simple alternating interactions are enough
to express complex ones. Finally, we show how finishers can be used to
filter behaviours to the extent to which they capture intrinsic system
characteristics.

1 Introduction

Formal software analysis is principally based on the meaning given to compu-
tations. Often this semantics is defined as the set of behaviours a program can
perform. For instance, the sequential behaviours of a labelled transition system
are given by traces. In general, these behaviours are generated by schedulers. For
labelled transition systems, schedulers are complete in the sense that each and
every trace of the system can be generated by a scheduler. This completeness,
however, fails if we are to model truly-concurrent behaviours using event struc-
tures. This paper introduces the concept of finishers which complement sched-
ulers by providing a complete technique for the generation of all the behaviours
of an arbitrary event structure.

A trace belonging to the language of a labelled transition system systemat-
ically records a totally ordered sequence of actions that are performed sequen-
tially over time. In other words, a new action, to be appended to the end of the
trace, cannot start unless the last action in that trace has terminated. The total
order between the actions captures exactly how a sequential (or interleaved) sys-
tem behaves. However, there are cases where we need to model situations with

This research was supported by an iMQRES from Macquarie University, the ARC
Discovery Grant DP1092464 and the EPSRC Grant EP/J003727/1.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 121–138, 2016.
DOI: 10.1007/978-3-319-46750-4 8

122 A. McIver et al.

overlapping actions [13], or parallel executions with inter-process communica-
tion [8]. Totally ordering the actions fails to capture these situations faithfully
and the most natural solution is to weaken the total ordering of actions into
a partial ordering of events [3,8,9,17,20,23]. Thus, the behaviours of an event
structure are encoded as labelled partially ordered sets, or lposets for short,
where comparable events must occur in the given order and incomparable ones
are concurrent. These concurrent events may happen in any order (interleaving)
or they may overlap (true-concurrency).

Every trace of a labelled transition system can be generated by a scheduler.
Intuitively, the scheduler walks through the transition system and resolves all
choices by selecting one of the next available actions based on the execution
history. The same technique can be defined for event structures but it is not
complete because such a scheduler forces sequential dependencies, specified by
the order in which events are scheduled. In other words, the scheduler does two
different jobs in one go: it determines which events have occurred and which are
scheduled to happen. By assigning the first task to a different entity, which we
call finishers, we are able to schedule an event without terminating the actions
of all previously scheduled events.

In this paper, the sole role of a scheduler is to choose an event that is available
or enabled, given the current history of the computation encoded as a lposet.
Once an event is scheduled, its associated action is considered to be ready to
run or has started to execute but not yet terminated. Termination is the job of
a finisher. Intuitively, a finisher looks at a lposet corresponding to the scheduled
events ordered with causal dependencies, and decides which part of that lposet
can be safely terminated. Thus, a finisher has at least two basic properties:
finished events must have been scheduled sometime in the past and they must
remain finished as the computation progresses. Through this dichotomy, we show
that each and every behaviour of an event structure results from the interaction
between a scheduler and a finisher.

The main contributions of this paper are listed below.

1. We give an insight into the basic nature of schedulers and introduce finishers
to account for the dual counterpart of scheduling (Sect. 3.2).

2. We show that schedulers and finishers provide a complete technique to generate
each and every behaviour of an event structure (Theorem1). This technique
gives a novel operational perspective at the dynamics of event structures.

3. We show that all complex interactions between schedulers and finishers can
be obtained from simple alternating interactions (Theorem2).

4. We introduce how to use finishers to filter behaviours that satisfy intrinsic
characteristics such as safety or feasibility properties (Sect. 6).

This paper is organised as follows. Section 2 gives a summary of the important
notions related to event structures. Section 3 introduces schedulers and finishers
whose alternating interactions are elaborated in Sect. 4 to generate all the behav-
iours of an event structure. Section 5 shows that arbitrary interactions between
schedulers and finishers can be expressed using the simpler alternating interac-
tions. Finally, Sect. 6 exposes how to use finishers to express intrinsic properties

Schedulers and Finishers: On Generating the Behaviours 123

of true-concurrent systems, and Sect. 7 discusses works that are related to our
approach. Most of the results of this paper are proved in the appendix and proof
sketches are added to achieve a smooth reading flow.

2 Bundle Event Structure

Event structures come in many variations such as stable and prime event struc-
tures [23], bundle event structure [9], configuration structures [20] and there are
even quantitative extensions [7,11,18,21]. In this paper, we use Langerak’s bun-
dle event structure [9] to model concurrent computations. Bundle event struc-
tures form a sound model of Hoare et al.’s Concurrent Kleene Algebra and
thus provide a compositional algebraic program verification framework, which
is describe in our previous work [10,11,18]. Notice, however, that the notion of
scheduler and finisher (and their fundamental properties) can be readily applied
to stable and prime event structures as well as configuration structures.

A bundle event structure has events as its fundamental objects. Intuitively,
an event is the occurrence of an action at a certain moment in time. Thus, an
action can be repeated, but each of its occurrences is associated with a unique
event. For instance, the act of writing a bit into a register is an action that
repeats over time and each occurrence of the writing is a particular event.

Events are (partially) ordered by a causality relation which we denote by
�→: if an event e′ causally depends on e, written {e} �→ e′, then e must happen
before e′ can happen. For instance, the events of writing a bit and reading it
from the register are causally dependent.

It is possible for an event e′′ to depend on two mutually conflicting events,
that is, the event e′′ may occur only after either of the events e or e′ has hap-
pened. In this case, we write {e, e′} �→ e′′ and the relationship between e and e′ is
called conflict, written e#e′, because both events cannot occur simultaneously.

A set x that contains mutually conflicting events is called a bundle set, that
is, for every e, e′∈x such that e�=e′, we have e#e′. We will also write x#x when
x is a bundle set.

Definition 1. A bundle event structure, or simply an event structure, is a
tuple (E,#, �→, λ), such that E is a set of events, the conflict relation #⊆E×E
is an irreflexive and symmetric binary relation on E; the relation �→⊆PE×E is
a bundle relation, that is, for any event e∈E, x�→e implies that x is a bundle
set; and the map λ:E→Σ is a labelling function which associates actions from
an alphabet Σ to events.

In the sequel, we fix an event structure E with E as its set of events.

2.1 Trace and Configuration

The maximal behaviours of a bundle event structure can be expressed using
three equivalent techniques, namely: event traces, configurations, and lposets.
The following two definitions are from Langerak’s work [9].

124 A. McIver et al.

Definition 2. A finite sequence of events e1e2 · · · en from E is called an event
trace if for every i≥1, ei /∈{e1, . . . , ei−1}, ei is not in conflict with any of the
events e1, . . . , ei−1, and for every bundle relation x�→ei, there exists j<i such
that ej∈x. The set of all traces of E is denoted by T (E) or simply T if no
confusion may arise.

Intuitively, an event trace is a conflict-free sequence of events such that every
event in the trace is enabled from all previous events.

Given a trace α = e1e2 · · · en, we denote ≤α the ordering of the events in
that trace, that is, e1≤αe2≤αe3 · · · en−1≤αen. A configuration is obtained by
forgetting the order of the trace α.

Definition 3. A configuration is a subset x⊆E such that x={e1, . . . , en} for
some event trace e1 · · · en referred to as a linearization of x. The set of all con-
figurations of E is denoted by C(E) or simply C if no confusion may arise.

Example 1. Consider the bundle event structure E depicted in Fig. 1 where the
actions are left implicit since the behaviours of an event structure is provided
by the configurations as per Definition 3. The events e1 (resp. e3) and e2 can
occur concurrently. The configurations of E are ∅, {e1}, {e2}, {e1, e2}, {e1, e3},
{e1, e2, e3} and {e1, e2, e3, e4}
�

e1 e2

e3

e4

The events e1 (resp. e3) and e2 are concurrent and the event e4 requires both events e3
and e2 to have occurred before it can happen. Thus, it requires two causality relations
{e2 →�} e4 and {e3 →�} e4.

Fig. 1. An example of event structure.

2.2 Labelled Partially Ordered Set

A labelled partially ordered set (lposet) is constructed from a configuration by
recovering the coarsest partial order on events. More generally, a lposet is a tuple
(x,≤, λ) such that ≤ is a partial order on x and λ:x→Σ is a labelling of the
events in x with actions from Σ. Recall, from Szpilrajn’s theorem, that a partial
order is the intersection of its linearizations [1]. If x is a configuration of a bundle
event structure E , then the lposet generated by x is defined by (x,≤x, λx) where

≤x =
⋂

α linearization of x

≤α

Schedulers and Finishers: On Generating the Behaviours 125

and λ is the restriction of the labelling function of E to x. We refer to this order
as the canonical order of x. The canonical order ≤x is the coarsest causal order
that the events in x must obey. It is dictated by the bundle relation of E and
all other behaviour, such as traces, must at least contain it. The set of lposets
of E is denoted by L(E) or simply L if no confusion may arise. In the sequel, we
do not distinguish between a configuration x and its associated canonical lposet
(x,≤x, λx) as long as the event structure E is provided by the context.

Example 2. The configuration {e1, e2, e3} of the event structure depicted in
Fig. 1 has exactly three linearisations: e2e1e3, e1e2e3 and e1e3e2. Since e1 occurs
before e3 in all three traces and e2 occurs before as well as after e1 and e3 in some
traces, we deduce that the canonical order ≤{e1,e2,e3} is the reflexive closure of
{(e1, e3)} which is a partial order on the set {e1, e2, e3}.
�

In this paper, a lposet u is also denoted by (set(u),≤u, λu) so that we can
refer explicitly to the set of events set(u), order relation ≤u or labelling function
λu respectively. A lposet u implements another lposet v (or u is subsumed by
v) if there exists a label-preserving monotonic bijection f :set(v)→set(u). If u
implements v then we write u�sv (s stands for subsumption [3]). Intuitively, if
u implements v, then the order in which actions are executed in v are respected
in u. The lposet u may specify some extra causal dependency but concurrent
events in u must also be concurrent in v. If we assume that concurrency generates
nondeterminism, then we can deduce that u is more deterministic than v which
is compatible with the notion of program refinement [14]. Two lposets u, v are
equivalent if u�sv and v�su. For finite lposets, equivalence is the same as iso-
morphism. Two lposets u and v are isomorphic if there exists a label-preserving
bijection f :set(v)→set(u) such that f and f−1 are monotonic. Following Pratt
and Gischer [3,17], we do not make any distinction between equivalent lposets .

3 Behaviours, Schedulers and Finishers

In the previous section, we have seen that every event structure E is associated
with a set of lposets L. When the concurrent computation modelled by E runs,
we can observe a lposet v∈L or some lposet u which implements v. The reason
is that we allow concurrent events to happen in any order or to overlap. Thus,
the behaviours of the event structure E are members of the downward-closed set

↓L = {u | ∃v∈L · u�sv},

the set of all lposets subsumed by some element of L. In [3], Gischer has shown
that the inclusion of these downward-closed sets provides the order for a true-
concurrent model of Hoare et al.’s Concurrent Kleene Algebra [6]. That sound-
ness result justifies our use of ↓L to express the behaviours of an event structure.

3.1 Prefix Relation on lposet

Computational progress in a sequential system is expressed by using prefixes.
Prefixes are approximations of a computation and, as time passes, the trace is

126 A. McIver et al.

getting longer meaning that the approximation becomes more precise [4]. This
notion is extended to the concurrent setting by defining the prefixes of lposets.

Similarly to traces, it is clear that a prefix v of a lposet u must be a restriction
of u. This is however not enough because when v “progresses” into u (i.e. the
approximation gets better), no new event can occur in-between events of v. In
other words, every newly occurring events of u must happen “after” v. This
property is provided by the ≤u-downward-closure of v as a sub-lposet of u and
is formalised by Property 1 below. In particular, it ensures that if v is a prefix
of u and u∈L, then v∈L.

Definition 4. A lposet v is a prefix of a lposet u, written v�u, iff set(v)⊆set(u),
λv = λu∩(set(v)×Σ), ≤v=≤u ∩(set(v)×set(v)) and

e≤ve′ ∧ e′∈set(u) ⇒ e∈set(u) ∧ e≤ue′. (1)

We have shown elsewhere [10] that � is a partial order. For configurations and
canonical lposets, � is equivalent to ⊆.

Proposition 1. If x, y∈C and x⊆y, then (x,≤x, λx) � (y,≤y, λy).

Proof. The proof consists of showing that if x⊆y then every linearization of x
is the restriction of some linearization of y. Conversely, every linearization of y
extends into a linearization of x. The full proof is given in AppendixA.
�

3.2 Scheduling and Finishing Events

In this paper, we argue that schedulers are but one portion of the technique that
guarantees the generation of every lposet of a given event structure. For instance,
in Fig. 1, no scheduler will be able to generate the lposet (x,≤x ∪{(e2, e3)}, λx)
where x = {e1, e2, e3} because the causality relation e2 ≤ e3 requires that e2
has finished occurring before e3 is scheduled to occur (see Example 3 for more
details). Therefore, we will introduce the dual notion of finisher in Definition 6
to account for finished events.

Definition 5. A scheduler on the BES E is a partial function σ: ↓L⇁E such
that for every lposet u∈↓L in the domain of σ, we have:

i. σ(u)/∈set(u), and
ii. (set(u)∪{σ(u)},≤u ∪≤set(u)∪{σ(u)}, λset(u)∪{σ(u)}) is in ↓L,

where ≤set(u)∪{σ(u)} is the canonical order associated with the configuration
set(u)∪{σ(u)} and λset(u)∪{σ(u)} is the restriction of the labelling function λ
to set(u)∪{σ(u)}. We write σ[u] the lposet given in (ii).

A scheduler will always schedule a fresh event that is enabled (Definition 5 (i)).
However, it is not forced to do so and may stop scheduling after a certain amount
of time. Iterating from the empty lposet, a scheduler σ generates a sequence of
finite lposets ∅ � σ[∅] � σ[σ[∅]] � · · · (Definition 5 (ii)).

As discussed above, the scheduler’s task is limited to scheduling enabled
events and it is up to the finisher to decide when events are terminated.

Schedulers and Finishers: On Generating the Behaviours 127

Definition 6. A finisher is a total function ϕ:↓L→↓L such that:

i. ϕ(u) � u, for every lposet u∈↓L, and
ii. ϕ is �-monotonic.

Intuitively, a lposet u can be thought of as a set of scheduled events ordered
by causal dependencies. The lposet ϕ(u) captures the set of events in u that
have terminated (Definition 6 (i)). Thus, all events scheduled after this “point
of time” will causally depend on the events in ϕ(u). The monotonicity property
(Definition 6 (ii)) ensures that, as new events are scheduled, terminated ones
cannot be unfinished.

Observe that the identity id on ↓L gives a special example of a finisher.
This finisher enforces that every scheduled event will be finished instantaneously.
When the identity finisher id is used, concurrency reduces to interleaving.

Example 3. Let E be the event structure outlined in Fig. 1. We define a scheduler
σ on E such that σ(∅) = e1, σ({e1}) = e2 and σ({e1, e2}) = e3, where each set
in the argument of σ should be read as the canonical lposet associated to the
respective configuration. This scheduler schedules e2 before e3 but that does not
mean that e2 will happen before e3 because that order is not enforced by the
bundle relation of E . The resulting chain of (canonical) lposets is

∅ � {e1} � {e1, e2} � {e1, e2, e3} .

To enforce the behaviour that e3 happens after e2 has occurred, we need
a finisher that satisfies {e2} � ϕ({e1, e2})1. An example of such a finisher is
ϕ(∅) = ∅, ϕ({e1}) = ∅, ϕ({e1, e2}) = {e1, e2}, ϕ({e1, e2, e3}) = {e1, e2, e3}, and
ϕ({e1, e2, e3, e4}) = {e1, e2, e3, e4}.
�

4 Generating Lposets from Schedulers and Finishers

The dynamics of an event structure is obtained through the interactions between
pairs of schedulers and finishers. The state of the event structure E is described
by a tuple (u, v)∈↓L2 such that v � u2. Intuitively, u is the scheduled lposet
while v describes all “finished” events (the order in which these events occurred
is constrained by the order of v).

Example 4. The pair ({e1, e2, e3}, {e1, e2}) of canonical lposets is a state of the
bundle event structure E of Fig. 1. Intuitively, it says that the events e1, e2 and
e3 have been scheduled, and events e1 and e2 have occurred.
�

Let us define how a scheduler operates on the states of an event structure.
Let σ be a scheduler on E , we define σ:↓L2→↓L2 such that σ(u, v) = (u′, v)
where

set(u′) = set(u)∪{σ(u)}
≤u′ = ≤u ∪≤set(u′) ∪ (set(v)×{σ(u)})
λu′ = λset(u′)

1 More generally, we want {e2} � ϕ(u) whenever e3 is enabled at u and e2 occurs in u.
2 ↓L2 abbreviates (↓L)×(↓L).

128 A. McIver et al.

Intuitively, e ≤u′ e′ holds in the new lposet u′ if either:

– e≤ue′: e and e′ have been scheduled and the ordering holds in u, or
– e≤set(u′)e

′: e′ = σ(u) is the newly scheduled event and the order e≤u′e′ is
enforced by the transitive closure of the bundle relation of E , or

– e∈set(v) has already happened and e′ = σ(u) is the newly scheduled event.

In the sequel, we denote the lposet u′ in this construction by σ[u←v], that
is, σ(u, v) = (σ[u←v], v). The intuition behind this notation is that the newly
scheduled event σ(u) causally depends on the finished events of v. Notice that
if v � u then u � σ[u←v] and in particular v � σ[u←v]. Thus if (u, v) is a state
of E then σ(u, v) = (σ[u←v], v) is also a state of E .

Similarly, every finisher ϕ generates a map ϕ:↓L2→↓L2 such that ϕ(u, v) =
(u, ϕ(u)). It is clear from this definition and Definition 6 that if (u, v) is a state
of E , i.e. v � u, then ϕ(u, v) is also a state of E .

Since σ and ϕ preserves the states of E , it also follows that for every state
(u, v), we can construct a increasing chain of states by alternatively applying σ
and ϕ (until σ is undefined in which case the chain stops at the next finishing
operation). That is,

(u, v) � σ(u, v) � ϕ(σ(u, v)) � σ(ϕ(σ(u, v))) � . . . , (2)

where (u, v) � (u′, v′) means u � u′ and v � v′. When the initial state is (∅, ∅),
this chain is called the resolution of the event structure E wrt σ and ϕ, and is
denoted (σϕ)∗. The remainder of this section is devoted to showing that such a
chain is powerful enough to generate each and every lposet in ↓L.

Let us denote by (u0, v0) � (u1, v1) � · · · , where u0=v0=∅, the states
involved in Sequence (2) above. We write sup(σϕ)∗ = (∪iui,∪ivi) where the
union of lposets is defined componentwise — u∪v = (set(u)∪set(v),≤u ∪ ≤v

, λu∪λv). This union is well defined. Firstly, each labelling function λi of ui is the
restriction of the labelling function of the event structure on set(ui). Hence the
union of the λi will again be a function. Secondly, since the sequence is increas-
ing, the union of the order relations will again be a partial order on ∪iset(ui).
Thus, sup(σϕ)∗ is a lposet.

Example 5. Reconsider the event structure given in Fig. 1. The scheduler σ and
finisher ϕ of Example 3 generate the resolution illustrated in Fig. 2a. In the
lposet sup(σϕ)∗, the events satisfy e1≤e3 and e2≤e3, allowing e1 and e2 to be
concurrent. By contrast, Fig. 2b generates the events trace e1e2e3.
�

The following proposition establishes the properties of each and every state
that occurs in the resolution (σϕ)∗.

Proposition 2. Let σ be a scheduler, ϕ be a finisher on E and (u, v) be a state
in (σϕ)∗. The implication

∀e, e′∈set(u) : e ≤u e′ ⇒ e≤set(u)e
′ ∨ e∈set(v) (3)

holds, where ≤set(u) is the canonical order of the configuration set(u).

Schedulers and Finishers: On Generating the Behaviours 129

(∅, ∅)

σ

({e1}, ∅)

ϕ

({e1}, ∅)

σ

({e1, e2}, ∅)

ϕ

({e1, e2}, {e1, e2})

σ

({e1, e2<e3}, {e1, e2})

ϕ

({e1, e2<e3}, {e1, e2<e3})

(a) Resolution (σϕ)∗.

(∅, ∅)

σ

({e1}, ∅)

id

({e1}, {e1})

σ

({e1<e2}, {e1})

id

({e1<e2}, {e1<e2})

σ

({e1<e2<e3}, {e1<e2})

id

({e1<e2<e3}, {e1<e2<e3})

(b) Resolution (σid)∗.
These two figures show a comparison of the resolutions of an event structure wrt a
single scheduler σ and two different finishers ϕ and id. The explicit use of < in the sets
of events shows the causal dependencies resulting from the interaction of the scheduler
and finishers. The other dependencies can be inferred from the bundle relation.

Fig. 2. Two examples of resolutions.

Proof. By simple induction on the reachability of (u, v) from (∅, ∅).
�
The following theorem implies that Property 3 is also sufficient for a pair

(u, v), satisfying v � u, to be a state in some resolution. In particular, if u∈↓L,
then Theorem 1 ensures the existence of a pair (σ, ϕ) of a scheduler and finisher
such that sup(σϕ)∗ = (u, u)3. This is the completeness result we sought.

Theorem 1. Let (u, v)↓L2 such that v � u. If u and v satisfy Property 3, then
there exists a scheduler σ and a finisher ϕ such that (u, v) = sup(σϕ)∗.

Proof. We reason by induction on the size of set(u):

– the empty pair (∅, ∅) is obtained from the scheduler that is undefined every-
where and the finisher id.

3 In fact, every partial order can be generated using Theorem 1 when all pairs of events
in the underlying event structure are concurrent.

130 A. McIver et al.

– Let u and v be finite lposets such that v � u. Let e be a maximal event in
the lposet u. The lposet u′ obtained by removing e from set(u) belongs to ↓L.
We denote by ↓e = ({e′ | e′ < e},≤e, λe) where ≤e is the restriction of ≤u on
the set of events strictly below e and similarly for λe. The lposet v′ = v ∩↓e4
is again a lposet in ↓L and v′ � u′. By induction hypothesis, there exists a
scheduler σ′ and a finisher ϕ′ such that (u′, v′) = sup(σ′ϕ′)∗ and σ′(u′) is
undefined. We construct a scheduler σ such that σ(u′) = e, σ(u) is undefined
and it coincides with σ′ otherwise. As for the finisher, we have ϕ(u) = v and
it coincides with ϕ′ otherwise. Since u′ and v′ are finite lposets, (σ′ϕ′)∗ will
give a finite resolution that can be extended to cover (u, v). In fact, we have

• set(σ[u′←v′]) = set(u′)∪{e} = set(u),
• ≤σ[u′←v′]= ≤u′ ∪≤set(u)∪ set(v′) × {e} which coincides with the order

of u because of prefixing and if e′ ≤u e then e′≤ue or e′∈v′ (Property 3).
• λσ[u′←v′] = λset(u) = λu.

Since ϕ(u) = v, we deduce that (u, v) = sup(σϕ)∗.
�

5 Full Resolution of an Event Structure

In the previous subsection, the interaction between a scheduler and a finisher
followed an alternating rule, that is, each scheduling operation is followed by
a finishing operation which, in turn, is followed by the scheduling of a new
event, and so on. In general, these two operations can happen in any order but
the most important characteristic is that scheduled events causally depend on
finished events.

The goal of this subsection is to prove that simpler form of resolution is
enough to generate all possible interactions between a scheduler and a finisher.
Firstly, let us establish some key properties of the successive composition of the
functions σ and ϕ.

Proposition 3. For every natural numbers m,n∈N and (u, v)∈↓L2, if n≥1 then
σm◦ϕn(u, v) = σm◦ϕ(u, v)

Proof. ϕ is idempotent.
�
Thus, for n ≥ 1, we can reduce the expression (σm◦ϕn)k(u, v) into (σm◦ϕ)k(u, v).

Next we show that every given state (u, v), such that v � ϕ(u), is a prefix
of all subsequent states as expected. This ensures that (σm◦ϕ)n satisfies basic
progress requirement properties [4].

Proposition 4. Given σ and ϕ, if v � ϕ(u) then

(u, v) � (σm◦ϕ)n(u, v)

for every m,n∈N.

4 The intersection of two lposets is (x, ≤x, λx)∩(y, ≤y, λy) = (x∩y, ≤x ∩ ≤y, λx ∩ λy).

Schedulers and Finishers: On Generating the Behaviours 131

Proof. It suffices to show that (u, v) � σ(u, v) and (u, v) � ϕ(u, v), which are
clear from the definition of σ and ϕ. The result, with arbitrary m and n, follows
by simple inductions and the transitivity of �.
�

Lastly, we show that the property v � ϕ(u) is an invariant for every state
(u, v) generated from schedulers and finishers. Therefore, if v was finished when
u was scheduled then v remains finished after any subsequent scheduling and
finishing applied to E from u.

Proposition 5. For every (u, v)∈↓L2 such that v � u, if v � ϕ(u) then vn
m �

ϕ(un
m) where (un

m, vn
m) = (σm◦ϕ)n(u, v) and m,n∈N.

Proof. The proof is by induction on n. The full proof is given in AppendixB.
�
We are now ready to introduce the notion of the full resolution of an event

structure E wrt some given scheduler and finisher.

Definition 7. The full interaction of a scheduler σ and a finisher ϕ is the
directed graph

(↓L2, {((u, v), ϕ(u, v)), ((u, v), σ(u, v)) | (u, v)∈↓L2}).

The subgraph composed of nodes that are reachable with a finite path from (∅, ∅)
is denoted by (σ∗ϕ)∗ and is called the full resolution of E wrt σ and ϕ. Note that
we remove self loops in the full resolution graph.5

We start by showing that (σ∗ϕ)∗ is a directed acyclic graph.

Proposition 6. For scheduler σ and finisher ϕ of an event structure E, the
graph (σ∗ϕ)∗ is acyclic.

Proof. Assume that (σ∗ϕ)∗ has a cycle that is not a self-loop. Since ϕ is idem-
potent, that cycle needs to contain at least one application of σ. Moreover, if
there is such a cycle, then it contains a state (u, v) such that u is exactly the
same as the first component of the state obtained after a finite application of σ
and ϕ. But σ strictly increases the left lposet of an arbitrary pair, which makes
it impossible to find such a state (u, v).
�

The following proposition shows that every partial function defined on an
increasing chain of lposets can always be extended into a finisher. This extension
is not necessarily unique but it allows finishers to be defined on a chain of ↓L
rather than on the whole set ↓L.

Proposition 7. If f :↓L⇁↓L is a partial function defined on an increasing
sequence of lposets ∅ = u0 � u1 � · · · and satisfies the two properties of a
finisher, i.e. ui � f(ui) for every i and f is monotonic, then there exists a
finisher ϕ (i.e. totally defined) such that ϕ(ui) = f(ui) for every i.

5 These self loops are mainly due to idempotency of finishers.

132 A. McIver et al.

Proof. It suffices to prove that the extension

ϕ(u) =

⎧
⎪⎨

⎪⎩

f(ui) if there is a maximal i such that ui � u

u if ui � u for every i

∅ otherwise

is indeed a finisher. The full proof is given in AppendixC.
�
We finally show that every full resolution is the union of (alternating) reso-

lutions associated with each and every path in the directed acyclic graph.

Theorem 2. For every scheduler σ and finisher ϕ there exists a (countable)
family of finishers ϕ0, ϕ1, . . . such that the full resolution (σ∗ϕ)∗ is the union of
the family of resolutions (σϕ0)∗, (σϕ1)∗,

Proof. Every expression (σm◦ϕ)n generates a path π in the full resolution
graph. Each path provides a partial function fπ that satisfies the premises of
Proposition 7. Thus, each fπ can be extended into a finisher ϕπ which, together
with σ, generates a resolution. We conclude that (σ∗ϕ)∗ is the union of the
(σϕπ)∗s. The details of the proof are given in AppendixD.
�
Example 6. The full resolution of the event structure given in Fig. 1 wrt the
scheduler and finisher of Example 3 is depicted in Fig. 3. The full resolution
possesses two suprema which are attained by following two different resolutions.
�

6 Using Finishers for Behaviour Filtering

It is sometimes useful to study the behaviours of an event structure that have
certain characteristic properties. For instance, let us consider a concurrent 1-bit
register with write and read actions. It would be beneficial to confine to feasible
behaviours such as the action of reading 0 can only occur after or at the same
time as the writing 0. Such a property is easily expressed using our notion of
finisher: if w (resp. r) is the event carrying the write-0 (resp. read-0) action, then
we are only interested in finishers that satisfy ϕ({r<w}) = ∅.

More general intrinsic properties of the underlying system are encoded by
shrinking the codomain of finishers. If A⊆↓L denotes a subset of lposets that
have the desired characteristic properties, then every resolution with respect to
finishers of type ↓L → A will contain states whose second component (finished
lposet) is in A. If the set A is characterised by a safety property then finishers
of type ↓L → A will only finish safe behaviours.

It should be noted that the set A must, at least, have some basic properties
such as prefix closure. Further investigation is required to elaborate the proper-
ties of such sets and their practical applications. We leave this for future work.

Schedulers and Finishers: On Generating the Behaviours 133

(∅, ∅)

σ

({e1}, ∅)

σ

({e1, e2}, ∅)

σ ϕ

({e1, e2, e3}, ∅)

ϕ

({e1, e2}, {e1, e2})

σ

({e1, e2, e3}, {e1, e2, e3} () {e1, e2<e3}, {e1, e2})

ϕ

({e1, e2<e3}, {e1, e2<e3})

In the full resolution, the supremum depends on the path followed which is given by
how the scheduler and finisher interact. The branching occurs at the state ({e1, e2}, ∅)
where the choice between scheduling e3 and finishing {e1, e2} dictates the causality
dependency between e2 and e3.

Fig. 3. The full resolution of an event structure.

7 Related Works

The notion of scheduler for event structures has been applied to transform such
structures into transition systems rather than applied in the generation of the
behaviours themselves [7,9,22]. The resulting transition systems can be analysed
using standard techniques from the well-developed theories of sequential process
communications [5,12,19,22]. This transformation, however, renders the much-
desired modelling of truly-concurrent behaviours worthless since concurrency
reduces back to interleaving.

To the best of our knowledge, this paper contains the first attempt to under-
stand true-concurrency within the operational perspective provided by sched-
ulers. Note however that other event structure analysis techniques exist such
as the transformation described above [7,9,23], the correspondence with Petri
nets [15,20,23], the algebraic analysis in the style of process and Kleene alge-
bras [7,10,18] and the notions of simulations for event structures [2,11,16]. How-
ever, most of these techniques assume in advance that the set of behaviours of
the underlying event structure has already been computed or provided as part
of the specification. In this paper, we show how to obtain these behaviours in
the first place, using the elementary operations of schedulers and finishers.

8 Conclusion

This paper introduced the notion of finishers by naturally capturing tasks related
to terminated actions in event structures. Finishers are quite simple in nature

134 A. McIver et al.

and are characterised by intuitive algebraic properties, which essentially state
that finished events must have been scheduled sometime in the past and that
they remain finished any time in the future.

The dynamics of an event structure was studied through the interaction
of a scheduler and a finisher which provide a novel operational perspective. A
scheduler and a finisher can be run alternatively, generating a resolution. We have
shown that every subsumed behaviour of an event structure can be approximated
and, ultimately, generated by a resolution. This ensures the completeness of
our technique for finite behaviour generation. Moreover, we have proven that
complex interactions between a scheduler and a finisher can be reduced to the
union of alternating interactions.

Finally, we have shown how finishers can be used to express distinctive
behaviours of a system. This is achieved by reducing the finishers’ co-domains,
which ensures that only these specific behaviours can be finished. This, how-
ever, requires further investigation. More importantly, we need to explore the
connection of this work to seemingly related techniques, such as Interval Logics.

A Proof of Proposition 1

Let E be an event structure and α∈T be an event trace. We write α for the set
of events occurring in α, which is a configuration of E .

Lemma 1. Let α∈T and x∈C such that x⊆α, then the restriction α|x of α to
events in x is an event trace.

Proof. Let α = e1e2 · · · en, x∈C and write α|x = ei1ei2 · · · eim . Let us show that
α|x is an event trace of E . Let eik∈x and z �→eik be a bundle of E . Since α is
an event trace, there exists an event ej such that ej∈z and j < ik. Since x is a
configuration and eik∈x, there exists eil∈z and l<k. By definition, the bundle set
z contains mutually conflicting events only and since α is conflict free, eil = ej .
That is, z∩{ei1 , . . . , eik−1} �= ∅ for every bundle z �→eik . Hence, α|x is an event
trace (it is already conflict free).
�
Lemma 2. Let x, y∈C such that x⊆y. For every event trace α such that α = x,
there exists an event trace α′ satisfying α′ = y and α′|x = α.

Proof. Let α, β be event traces such that α = x, β = y and x⊆y. Let β′ be
the concatenation of two sequences β1β2, where events in β1 are exactly those
of x ordered with ≤β and β2 is composed of events from y\x (set difference)
ordered again with ≤β . We now show that the concatenation α′ = αβ2 is an
event trace. That α′ is conflict-free comes from the configuration y. To show the
second property of an event trace, we need to show that every bundle pointing
to an event e2 in β2 has to intersect α∪β2 at an event occurring before e2 with
respect to the order ≤β . That is clear because β is an event trace (notice that
if z �→e2 holds, it is possible that the sole event in z∩β belongs to α). Moreover,
it is enough to show the property for events in β2 only because α is already an
event trace. Hence α′ is an event trace and α′|x = α.
�

Schedulers and Finishers: On Generating the Behaviours 135

With the help of these two lemmas, we now prove the envisaged characteri-
sation of prefixing with configuration inclusion.

Proposition 8. If x, y∈C and x⊆y, then (x,≤x, λx) � (y,≤y, λy).

Proof. Let x⊆y. Let us first show that ≤x = ≤y∩(x×x). Let e, e′∈x. We need
to show that e≤xe′ iff e≤ye′. Assume e≤xe′, then Lemma 1 implies that e≤ye′

because every event trace for y restricts to an event trace for x. For the converse
implication, let e, e′∈x such that e≤ye′. Lemma 2 implies that every event trace
for x can be obtained as a restriction of some event trace for y. Hence, e≤xe′.
Therefore ≤x = ≤y∩(x×x).

It remains to show that Property 1 holds. Let e, e′∈y, e≤ye′ and e′∈x. It
is enough to show that e∈x because, once that is established, we use ≤x =
≤y∩(x×x) to deduce that e≤xe′. For a contradiction, assume that e/∈x. Then
there exists an event trace β′ = β1β2 as specified in the proof of Lemma2, that
is, β′ = y, β1 = x and e∈β2. Thus, e�≤β′e′ which contradicts the fact that e≤ye′.

�

B Proof of Proposition 5

Proposition 9. For every (u, v)∈↓L2 such that v � u, if v � ϕ(u) then vn
m �

ϕ(un
m) where (un

m, vn
m) = (σm◦ϕ)n(u, v) and m,n∈N.

Proof. Let m be a fixed natural number and let us reason by induction on n.

– For n=0, we have (u0
m, v0

m)=(σm◦ϕ)0(u, v)=(u, v) and thus v0
m=v �

ϕ(u)=u0
m.

– Let us assume vn
m � ϕ(un

m). We have

(un+1
m , vn+1

m) = (σm◦ϕ)n+1(u, v) = (σm◦ϕ)(un
m, vn

m) = σm(un
m, ϕ(un

m)) .

Since σ only operates on the first component of the state, we have vn+1
m =

ϕ(un
m) and

un+1
m = σ[σ[. . . σ[un

m←vn
m] . . . ←vn

m]←vn
m]

︸ ︷︷ ︸
m times

. (4)

The induction hypothesis implies vn
m � un

m, thus Eq. 4 is well defined and
implies un

m � un+1
m . It follows from the monotonicity of ϕ that vn+1

m =
ϕ(un

m) � ϕ(un+1
m).
�

C Proof of Proposition 7

Proposition 10. If f :↓L⇁↓L is a partial function defined on a increasing
sequence of lposets ∅ = u0 � u1 � · · · and satisfies the two properties of a
finisher, i.e. u � f(u) for all u and f is monotonic, then there exists a finisher
ϕ (i.e. totally defined) such that ϕ(ui) = f(ui) for every i.

136 A. McIver et al.

Proof. Let E be an event structure and f be a function satisfying the hypothesis
of the proposition. We construct ϕ as follows

ϕ(u) =

⎧
⎪⎨

⎪⎩

f(ui) if there is a maximal i such that ui � u

u if ui � u for every i

∅ otherwise

Firstly, we show the prefixing property of finishers. Let u∈↓L:

– If there exists a maximal i such that ui � u then ϕ(u) = f(ui) � ui � u.
– If ui � u for all i, then ϕ(u) = u � u.
– Otherwise, ϕ(u) = ∅ � u.

Secondly, we show that ϕ is monotonic. Let u � v.

– If there exists a maximal i such that ui � u, then ϕ(u) = f(ui). There are
three cases based on the value of ϕ(v).

– There exists a maximal j such that uj � v and ϕ(v) = f(uj). Since u � v,
maximality of j implies that ui � uj and hence ϕ(u) = f(ui) � f(uj) =
ϕ(v), by monotonicity of f .

– For all j, uj � v and therefore ϕ(u) = f(ui) � ui � v = ϕ(v).
– The case ϕ(v) = ∅ cannot happen, unless f(ui) = ∅ because ui � v for

every i.
– If ui � u for all i, then ui � v for all i because u � v. Hence ϕ(u) = u � v =

ϕ(v).
– Otherwise, ϕ(u) = ∅ � ϕ(v), whatever ϕ(v) is.
�

D Proof of Theorem2

Theorem 3. For every scheduler σ and finisher ϕ, there exists a (countable)
family of finishers ϕ0, ϕ1, . . . such that the full resolution (σ∗ϕ)∗ is the union of
the family of resolutions (σϕ0)∗, (σϕ1)∗,

Proof. Let σ and ϕ be some scheduler and finisher on the event structure E . The
full resolution (σ∗ϕ)∗ is depicted in Fig. 4.

Given a path π in the directed acyclic graph of Fig. 4, we generate a partial
function fπ such that f(u) = v iff (u, v)∈π. Therefore, fπ satisfies the first
property of a finisher because each node of the tree is a state of E and it is
monotonic because if (ui, vi), (uj , vj)∈π such that ui � uj , then there exist two
indices ki, kj such that f(ui) = ϕ(uki

) and f(uj) = ϕ(ukj
) and uki

� ukj
. Hence

f(ui) � f(uj) and it extends to a finisher ϕπ by Proposition 7. Since the directed
acyclic graph can be recovered from the union of all paths, we deduce that

(σ∗ϕ)∗ = ∪π(σϕπ)∗

where π ranges over all paths in (σ∗ϕ)∗ (which is of course countable).
�

Schedulers and Finishers: On Generating the Behaviours 137

(∅, ∅)

σ

(u1, ∅)
ϕ

(u1, ϕ(u1))

σ

(u1, ∅)

σ

(u12, ϕ(u1))
ϕ

(u02, ∅)
ϕ

(u12, ϕ(u12))

σ

(u12, ϕ(u1))

σ

(u02, ϕ(u02))

σ

(u02, ∅))

σ

············

Fig. 4. Full resolution where unlabelled arrows are added for unchanging states.

References

1. Birkhoff, G.: Lattice theory. Number v. 25, pt. 2 in American Mathematical Society
colloquium publications. American Mathematical Society (1940)

2. Cherief, F.: Back and forth bisimulations on prime event structures. In: Etiemble,
D., Syre, J.-C. (eds.) PARLE 1992. LNCS, vol. 605, pp. 841–858. Springer,
Heidelberg (1992). doi:10.1007/3-540-55599-4 128

3. Gischer, J.L.: The equational theory of pomsets. Theoret. Comput. Sci. 61, 199–
224 (1988)

4. Guttmann, W.: An algebraic approach to computations with progress. J. Logical
Algebraic Methods Programm. 84(3), 326–340 (2015)

5. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

6. Hoare, C.A.R., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra
and its foundations. J. Logic Algebraic Programm. 80(6), 266–296 (2011)

7. Katoen, J.-P.: Quantitative and qualitative extensions of event structures. Ph.D.
thesis, University of Twente (1996)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

9. Langerak, R.: Bundle event structures: a non-interleaving semantics for LOTOS.
In: Formal Description Techniques for Distributed Systems and Communication
Protocols, pp. 331–346 (1992)

10. McIver, A., Rabehaja, T., Struth, G.: An event structure model for probabilistic
concurrent Kleene algebra. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR 2013. LNCS, vol. 8312, pp. 653–667. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-45221-5 43

11. McIver, A., Rabehaja, T., Struth, G.: Probabilistic rely-guarantee calculus. In:
Theoretical Computer Science (2016, In Press)

12. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York Inc.,
Secaucus (1982)

http://dx.doi.org/10.1007/3-540-55599-4_128
http://dx.doi.org/10.1007/978-3-642-45221-5_43
http://dx.doi.org/10.1007/978-3-642-45221-5_43

138 A. McIver et al.

13. Misra, J.: Axioms for memory access in asynchronous hardware systems. ACM
Trans. Program. Lang. Syst. 8(1), 142–153 (1986)

14. Morgan, C.C.: Programming from Specifications. Prentice Hall International Series
in Computer Science. Prentice Hall, New York (1994)

15. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part I. Theoret. Comput. Sci. 13(1), 85–108 (1981)

16. Phillips, I.C.C., Ulidowski, I.: Reverse bisimulations on stable configuration struc-
tures. In: Structural Operational Semantics, pp. 62–76 (2009)

17. Pratt, V.: Modeling concurrency with partial orders. Int. J. Parallel Prog. 15(1),
33–71 (1986)

18. Rabehaja, T.: Algebraic verification of probabilistic and concurrent systems. Ph.D.
thesis, Macquarie University and The University of Sheffield (2014)

19. Roscoe, A.W., Brookes, S.D., Hoare, C.A.R.: A theory of communicating sequential
processes. J. ACM 3, 560–599 (1984)

20. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
Petri nets. Theoret. Comput. Sci. 410(41), 4111–4159 (2009)

21. Varacca, D., Völzer, H., Winskel, G.: Probabilistic event structures and domains.
Theoret. Comput. Sci. 358(2–3), 173–199 (2006)

22. Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen,
M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 561–576. Springer,
Heidelberg (1982). doi:10.1007/BFb0012800

23. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 31

http://dx.doi.org/10.1007/BFb0012800
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31

On the Expressiveness of Symmetric Communication

Thomas Given-Wilson(B) and Axel Legay

Inria, Rennes, France
{thomas.given-wilson,axel.legay}@inria.fr

Abstract. The expressiveness of communication primitives has been explored in
a common framework based on the π-calculus by considering four features: syn-
chronism, arity, communication medium, and pattern-matching. These all assume
asymmetric communication between input and output primitives, however some
calculi consider more symmetric approaches to communication such as fusion
calculus and Concurrent Pattern Calculus. Symmetry can be considered either as
supporting exchange of information between an action and co-action, or as unifi-
cation of actions. By means of possibility/impossibility of encodings, this paper
shows that the exchange approach is related to, or more expressive than, many
previously considered languages. Meanwhile, the unification approach is more
expressive than some, but mostly unrelated to, other languages.

1 Introduction

The expressiveness of process calculi based upon their communication primitives has
been widely explored before [4,7,10,12,16,26]. In [12,16] this is detailed by examining
combinations of four features, namely: synchronism, arity, communication medium, and
pattern-matching. These features are able to represent many popular calculi including:
monadic or polyadic π-calculus [23,24]; Linda [9]; asymmetric variations of Concur-
rent Pattern Calculus (CPC) [10,11,14]; and Psi calculi [1]. However, all these calculi
exploit upon asymmetric input and output behaviour.

Symmetric behaviour has been considered before in process calculi. One example,
fusion calculus [28] shifts away from explicit input and output of names to instead fuse
them together in a symmetric equivalence relation. Another is CPC that shifted away
from input and output primitives to a single primitive that can do both input or output
(and equality tests) via the unification of patterns [14].

This paper abstracts away from specific calculi in the style of [12,16] to provide
a general account of the expressiveness of symmetric communication primitives. Here
symmetric communication does not require that input or output be associated to a par-
ticular action or co-action primitive, indeed all communication primitives can perform
all possible input, output, or equality tests. This captures the spirit of both fusion cal-
culus and CPC’s interaction paradigms, while also generalising to something that can
be applied to any calculus. However, there is some complexity when deciding how this
should be represented in an abstract calculus since there are two reasonable choices. The
first choice is to consider symmetry to support exchange, where an action and co-action
interact and allow both input and output from either side. This exchange approach of
action and co-action with both input and output on both sides aligns with the fusion
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 139–157, 2016.
DOI: 10.1007/978-3-319-46750-4 9

140 T. Given-Wilson and A. Legay

calculus style of interaction. The second choice is to consider symmetry to support
symmetric unification, where a single communication primitive is used for interaction.
This approach of a symmetric unification via a single interaction primitive and allowing
self recognition (as well as exchange) aligns with CPC style interaction.

The solution here is to consider both; leading to the symmetry feature having three
possible instantiations. Asymmetric where there is explicit input (that can only contain
input patterns) and output (that can only contain output terms), e.g.

n(λx, λy).P | n〈a, b〉.Q �−→ {a/x, b/y}P | Q .
Exchange where there are two explicit primitives action and co-action that can mix
input patterns and output terms, e.g.

n(λx, b).P | n〈a, λy〉.Q �−→ {a/x}P | {b/y}Q .
Unification where this is a single communication primitive that contains a single class
of patterns that unify with one-another, e.g.

n(λx • b • c).P | n(a • λy • c).Q �−→ {a/x}P | {b/y}Q .
By extending prior work with symmetry (and removing synchronism since all

exchange and unification languages must be synchronous), the original twelve calculi of
[12] are here expanded to thirty-six. This paper details the relations between the original
twelve calculi and the twenty-four new calculi, yielding the following key results.

In general exchange languages are more expressive than their asymmetric counter-
parts. However, there are methods to encode exchange languages with bounded match-
ing capabilities (i.e. a finite limit to the number of names that can be matched) into
asymmetric languages. Thus indicating that pattern-matching is highly significant as a
factor for determining encodings.

Within the exchange languages, expressiveness increases in a similar manner as
the asymmetric languages. The exceptions occur when pattern-matching is intensional,
since polyadic exchange languages cannot be encoded into monadic languages, but
polyadic asymmetric languages can be encoded into monadic intensional languages.

No unification language can be encoded into an exchange or asymmetric language,
this is due to a self recognising process S that can reduce with itself but not alone -
something that cannot be defined in any asymmetric or exchange language.

Unification languages do not require name-matching to be able to encode name-
matching languages, thus no-matching unification languages can encode name-
matching asymmetric and exchange languages. An interesting result, since no asymmet-
ric or exchange language without (at least) name-matching can encode name-matching.

Within the unification languages, relations between languages are identical to the
asymmetric setting. This indicates that although unification is a different approach to
interaction, the other features are largely unaffected by changing the interaction setting.

The structure of the paper is as follows. Section 2 introduces the considered cal-
culi. Section 3 revises the encoding criteria used for comparing calculi. Section 4 pro-
vides a diagrammatic overview of the results. Section 5 explores new relations concern-
ing asymmetric and exchange languages. Section 6 considers unification languages and
their relations. Section 7 concludes, and discusses choices made here & in related work.

On the Expressiveness of Symmetric Communication 141

2 Calculi

This section defines the syntax, operational, and behavioural semantics of the calculi
considered here. This relies heavily on the well-known notions developed for the π-
calculus, the reference framework, and adapts them when necessary. With the exception
of the symmetric constructs this is similar to prior definitions from [12].

Assume a countable set of names N (denoted a, b, c). Name-matching patterns
(denoted m, n, o), and symmetric patterns (denoted p, q) are defined by:

m, n ::= λx binding name
| �a� name − match

p, q ::= a name
| m name − matchpatterns
| p • q compound.

Binding names (denoted λx, λy, λz) are used to indicate input behaviour, name-matches
�a� test for equality, and compounds combine two symmetric patterns into one (all as in
[12,14]). The free names f n(·), binding names bn(·), and matched namesmn(·) of name-
matching and symmetric patterns are as expected, taking the union of sub-patterns for
compound patterns. A symmetric pattern is linear iff all binding names within the pat-
tern are pairwise distinct. The rest of this paper will only consider linear input patterns.

The symmetric patterns are chosen here to be very general and capture many con-
cepts, however to clearly define the languages in this paper, define the following. The
terms (denoted s, t) are the symmetric patterns that contain no binding names or name-
matches. (These correspond to the terms of [12], the communicable patterns of CPC,
and the output structures of Psi calculi.) The intensional patterns (denoted f , g) are the
symmetric patterns that contain no names, i.e. they consist entirely of name-matching
patterns and compounds. (These correspond to the intensional patterns of [12].)

The (parametric) syntax for the languages is:

P,Q,R : := 0 | ACT .P | COACT .P | (νn)P | P|Q | if s = t then P else Q | ∗ P | √ .

The different languages are obtained by replacing the action ACT and co-action COACT
with the various definitions. The rest of the process forms as are usual: 0 denotes the
null process; restriction (νn)P restricts the visibility of n to P; and parallel composition
P|Q allows independent evolution of P and Q. The if s = t then P else Q represents
conditional equivalence with if s = t then P used when Q is 0 (like the name match of
π-calculus, if s = t then P else Q blocks either P when s � t or Q when s = t). The ∗P
represents replication of the process P. Finally, the

√
is used to represent a success

process or state, exploited for reasoning about encodings as in [10,18].
This paper considers the possible combinations of four features for communication:

arity (monadic vs polyadic data), communication medium (message passing vs shared
dataspaces), pattern-matching (simple binding vs name equality vs intensionality), and
symmetry (asymmetric vs exchange vs unification). As a result there exist thirty-six
languages denoted by Lα,β,γ,δ where:
α = M for monadic data P for polyadic data.
β = D for dataspace-based communication, and C for channel-based communications.
γ = NO for no matching capability, NM for name-matching, and I for intensionality.

142 T. Given-Wilson and A. Legay

Fig. 1. Languages in this paper.

δ = A for asymmetric communication, E for exchange communication, and U for uni-
fication communication.

For simplicity a dash − is used when the instantiation of that feature is unimportant.
Thus the syntax of every language is obtained from the productions in Fig. 1. The

first three lines define the components of communication primitives based upon the
pattern-matching of the language; with input patterns IN, output patterns OUT , com-
bined patterns ALL, and channel structures CH. The rest defines the languages by their
action ACT and co-action COACT using the communication primitives. Here the deno-
tation ·̃ represents a sequence of the form ·1, ·2, . . . , ·n and can be used for names, binding
names, terms, and both kinds of patterns. As usual (νx)P and binding names λx in any
form (including IN and ALL) bind x in P. The corresponding notions of free and bound
names of a process, denoted fn(P) and bn(P), are as usual. An action or co-action is lin-
ear if all binding names occur exactly once; this paper shall only consider linear actions
and co-actions.

Observe that: monadic languages have a single IN, OUT , or ALL in their action
and co-action, while polyadic languages have sequences. Dataspace-based languages
are distinct from channel-based languages by not having a channel CH that is used for
interaction. No-matching languages allow only binding names in IN, name-matching
languages also allow name-matches, and intensional languages allow intensional pat-
terns in IN. No-matching and name-matching languages only allow names in OUT ,
while intensional languages allow terms. Lastly, asymmetric languages only allow IN
in actions and OUT in co-actions, while exchange and unification languages allow ALL
in both (the latter by defining the co-action to be the action).

Note that α-conversion (denoted =α) is assumed in the usual manner. Finally, the
structural equivalence relation ≡ is defined as follows:

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P ≡ P′ if P =α P′ P | 0 ≡ P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P P | (νa)Q ≡ (νa)(P | Q) if a � fn(P) .

On the Expressiveness of Symmetric Communication 143

Most of the asymmetric languages correspond to the communication paradigm of
popular process calculi, including (but not limited to): monadic or polyadic π-calculus;
Linda; asymmetric variations of CPC; and Psi calculi. For details on these and other
languages see [12,16]. With respect to symmetry:LP,C,NO,E is closest in communication
paradigm to the fusion calculus [28] although the scope of binding in communication is
different. LM,D,I,U corresponds to the communication paradigm of CPC; and LM,D,I,E ,
LM,C,I,E , and LM,C,I,U to the communication paradigms of variants of CPC [10].

Remark 1. Most of the languages can be ordered; in particular Lα1,β1,γ1,δ1 is a sub-
language of Lα2,β2,γ2,δ2 if it holds that α1 ≤ α2 and β1 ≤ β2 and γ1 ≤ γ2 and δ1 ≤ δ2,
where ≤ is the least reflexive relation satisfying the following axioms:

M ≤ P D ≤ C NO ≤ NM ≤ I A ≤ E .

This can be understood as a limited language variation being a special case of a more
general language. Monadic communication is polyadic communication with all tuples
of arity one. Dataspace-based communication is channel-based communication with
all k-ary tuples communicating with channel name k. All name-matching communica-
tion is intensional communication without any compounds, and no-matching capability
communication is both without any compounds and with only names or only binding
names in patterns. Asymmetric communication is exchange with only input patterns in
actions, and only output patterns in co-actions; and exchange languages are unification
languages with restrictions upon the unification (this does not induce ≤, see Sect. 6).

The operational semantics of the languages is given here via reductions as in
[12,23]. An alternative style is via a labelled transition system (LTS) such as [16].
Here the reduction based style is chosen for simplicity. The LTS style can be used for
intensional and symmetric languages [1,10], and indeed captures many of the languages
here [13].

Substitutions, denoted σ, ρ in non-pattern-matching and name-matching languages
are mappings (with finite domain) from names to names. For intensional languages
substitutions are mappings from names to terms. The application of a substitution σ to
a pattern p is defined as follows:

σx =

{

σ(x) x ∈ domain(σ)
x x � domain(σ)

σ�x� = �(σx)� σ(p • q) = (σp) • (σq) .

Where substitution is as usual on names, and on the understanding that the name-match

syntax can be applied to any term by defining: �(s • t)� def
= �s� • �t�. Given a substitution

σ and a process P, denote with σP the usual capture-avoiding application of σ to P. As
usual capture can be avoided by exploiting α-equivalence [2].

Interaction between processes is handled by unification of patterns with other pat-
terns. The core unification can be used for all languages as defined by the unify rule
{p | |q} of a single pattern p and a single pattern q to create two substitutions σ and ρ
whose domains are the binding names of p and q, respectively. This is defined by:

144 T. Given-Wilson and A. Legay

{a ||a} = {a ||�a�} = {�a� ||a} = {�a� ||�a�} def= ({}, {})
{λx ||t} def= ({t/x}, {}) if t is a term

{s ||λx} def= ({}, {s/x}) if s is a term

{p1 • p2 ||q1 • q2} def= (σ1 ∪ σ2 , ρ1 ∪ ρ2) if {pi ||qi} = (σi, ρi) for i ∈ {1, 2}
{p ||q} undefined otherwise.

Names and name-matches unify if they are for the same name. A binding name unifies
with a term to produce a binding of the name to that term. Two compounds unify if
their components unify; the resulting substitutions are the unions of those produced by
unifying the components. Otherwise the unification is undefined (impossible). Note that
the substitutions being combined have disjoint domain due to linearity of patterns, and
this holds for the following two rules also.

The asymmetric and exchange languages exploit the poly-match rule Match(p̃; q̃)
that determines the matches of two sequences of patterns p̃ and q̃ to produce a pair of
substitutions, as defined below:

X

Match(;) = (∅, ∅)
{p1 ||q1} = (σ1, ρ1) Match(p̃; q̃) = (σ2, ρ2)

Match(p1, p̃; q1, q̃) = (σ1 ∪ σ2, ρ1 ∪ ρ2)
p1 is a term
q1 is an intensional
pattern

{p1 ||q1} = (σ1, ρ1) Match(p̃; q̃) = (σ2, ρ2)

Match(p1, p̃; q1, q̃) = (σ1 ∪ σ2, ρ1 ∪ ρ2)
p1 is an intensional
pattern
q1 is a term.

The empty sequence matches with the empty sequence to produce empty substitutions.
Otherwise when there are sequences p1, p̃ and q1, q̃ where p1 is a term and q1 is an
intensional pattern (or vice versa) then they are unified {p1 | | q1} and the remaining
sequences use the poly-match rule. If both are defined and yield substitutions, the union
of substitutions is yielded. Otherwise the poly-match is undefined, such as when; when
a single unification fails, a term is aligned with a term, an intensional pattern with an
intensional pattern, or when the sequences are of unequal arity.

The unification languages use the poly-unify rule Unify(p̃; q̃) that is the same as the
poly-match rule (without the side conditions) as shown below:

Unify(;) = (∅, ∅) {p1 ||q1} = (σ1, ρ1) Unify(p̃; q̃) = (σ2, ρ2)

Unify(p1, p̃; q1, q̃) = (σ1 ∪ σ2, ρ1 ∪ ρ2)
.

Interaction is now defined by the following two axioms. The first

s〈 p̃〉.P | s(̃q).Q �−→ (σP) | (ρQ) Match(p̃; q̃) = (σ, ρ)

for asymmetric and exchange languages; and the second

s(p̃).P | s(̃q).Q �−→ (σP) | (ρQ) Unify(p̃; q̃) = (σ, ρ)

for the unification languages. In both the s’s are omitted for dataspace-based languages.
Both axioms state that when the the symmetric patterns p̃ and q̃ poly-match or poly-
unify, respectively, (and in the channel-based setting the input and output are along
the same channel) to yield the substitutions σ and ρ, they reduce to σ applied to P in
parallel with ρ applied to Q.

On the Expressiveness of Symmetric Communication 145

The reduction relation �−→ also includes the following:

P �−→ P′

P | Q �−→ P′ | Q
P �−→ P′

(νa)P �−→ (νa)P′
P ≡ Q Q �−→ Q′ Q′ ≡ P′

P �−→ P′

s = t P | Q �−→ S

P | if s = t then Q else R �−→ S

s � t P | R �−→ S

P | if s = t then Q else R �−→ S

with �=⇒ denoting the reflexive, transitive closure of �−→.
Lastly, for each language let � denote a reduction-sensitive reference behavioural

equivalence for that language, e.g. a barbed equivalence. That is, a behavioural equiva-
lence � such that whenever P � P′ and P′ �−→ imply P �−→ as in Definition 5.3 of [18]
(observe that his rules out weak bisimulations for example). For the asymmetric lan-
guages these are already known, either by their equivalent language in the literature or
from [12,13,16]. For the non-asymmetric languages the results in [13] can be applied.

3 Encodings

This section recalls the definition of valid encodings for formally relating process cal-
culi (details in [18]). The choice of valid encodings here is to align with prior works
[12,16,18] and where possible reuse prior results. These valid encodings are those
used, sometimes with mild adaptations, in [10,14,17,18,25] and have also inspired
similar works [21,22,31]. However, there are alternative approaches to encoding crite-
ria or comparing expressive power [3,5,7,27,30,31]. Further discussion of the choices
of encodings, and contrasting with other approaches can be found in [14,17,18,29,31].

An encoding of a language L1 into another language L2 is a pair ([[·]], ϕ[[]]) where
[[·]] translates every L1-process into an L2-process and ϕ[[]] maps every name (of the
source language) into a tuple of k names (of the target language), for k > 0. In doing
this, the translation may fix some names to play a precise rôle or may translate a single
name into a tuple of names, this can be obtained by exploiting ϕ[[]].

Now consider only encodings that satisfy the following properties. Let a k −
ary context (·1; . . . ; ·k) be a process with k holes. Denote with �−→ω an infinite sequence
of reductions and let P ⇓ mean there exists P′ such that P �=⇒ P′ and P′ ≡ P′′ | √
for some P′′. Moreover, let � denote the reference behavioural equivalence. Finally, to
simplify reading, let S range over processes of the source language (viz., L1) and T
range over processes of the target language (viz., L2).

Definition 1 (Valid Encoding). An encoding ([[·]], ϕ[[]]) of L1 into L2 is valid if it
satisfies the following five properties:

1. Compositionality: for every k-ary operator op of L1 and for every subset of names
N, there exists a k-ary context CNop(·1; . . . ; ·k) of L2 such that, for all S 1, . . . , S k with
fn(S 1, . . . , S k) = N, it holds that [[op(S 1, . . . , S k)]] = CNop([[S 1]]; . . . ; [[S k]]).

2. Name invariance: for every S and substitution σ, it holds that [[σS]] = σ′[[S]] if
σ is injective and [[σS]] �2 σ′[[S]] otherwise where σ′ is such that ϕ[[]](σ(a)) =
σ′(ϕ[[]](a)) for every name a.

146 T. Given-Wilson and A. Legay

3. Operational correspondence:
– for all S �=⇒1 S ′, it holds that [[S]] �=⇒2�2 [[S ′]];
– for all [[S]] �=⇒2 T, there exists S ′ such that S �=⇒1S ′ and T �=⇒2�2[[S ′]].

4. Divergence reflection: for every S such that [[S]] �−→ω2 , it holds that S �−→ω1 .
5. Success sensitiveness: for every S , it holds that S ⇓1 if and only if [[S]] ⇓2.
Proposition 1. Let [[·]] be a valid encoding from L1 into L2; if there exist two L1

processes P of the form p1(p2)P′ and Q of the form either q1(q2)Q′ or q1〈q2〉Q′ such
that P | Q �−→, then [[P | Q]] �−→.

The following result exploits the matching degree of a language Md(·), defined as
the least upper bound on the number of names that can be matched to yield reduction.

Proposition 2 (Theorem 5.9 from [18]). If Md(L1) > Md(L2) then there is no valid
encoding of L1 into L2.

Proposition 3 (Theorem 5.8 from [18]). Assume there exists aL1-process S such that
S �−→/ 1 and S ⇓ and S | S ⇓; moreover assume that every L2-process T that does not
reduce is such that T | T �−→/ 2. Then there exists no valid encoding [[·]] from L1 to L2.

Fig. 2. Relations between all languages

The general way to prove the lack of
a valid encoding is done as follows. By
contradiction assuming there is a valid
encoding [[·]]. Find a pair of processes P
and Q that satisfy Proposition 1 such that
P | Q �−→ and [[P | Q]] �−→. From Q
obtain some Q′ such that P | Q′ �−→/ and
[[P | Q′]] �−→. Conclude by showing this
in contradiction with some properties of
the encoding or one of the propositions
above.

The following result is a consequence
of the choices of languages and encoding
criteria, which corresponds to formalising
Remark 1.

Proposition 4. If a language L1 is a sub-
language of L2 then there exists a valid
encoding [[·]] from L1 into L2.

Finally, the existence of encodings
[[·]]1 from L1 into L2 and [[·]]2 from L2

into L3 does not ensure that [[[[·]]1]]2 is
a valid encoding from L1 into L3 [17].
However, this does hold when the encod-
ings use ≡ rather than � in the target lan-

guage, as is the case for all encodings presented in this work. This allows later assump-
tion of composition of encodings here, although this is not true for all valid encodings
in general.

On the Expressiveness of Symmetric Communication 147

4 Overview of Results

A diagram illustrating the results can be seen in Fig. 2. Arrows show increased expres-
sive power and =’s show equivalence; black are from prior work, green from Sect. 5, and
blue from Sect. 6. The lack of an arrow indicates no possible encoding in either direc-
tion (e.g. betweenLP,−,I,E andLP,−,NM,U). Transitive relations are omitted (e.g.LP,−,NM,A
to LP,−,NO,U).

5 Asymmetry and Exchange

Exchange is a generalisation of asymmetric communication, i.e. Lα,β,γ,A is trivially
encoded by, Lα,β,γ,E by Proposition 4. The rest of this section details other relations
between asymmetric and exchange languages.

5.1 Exchange in Monadic Non-Intensional Languages

This section considers the simpler languages and demonstrates the proof techniques to
show that exchange cannot be easily encoded into asymmetry.

For the monadic non-intensional languages changing from asymmetric to exchange
communication alone is almost always an increase in expressive power. The follow-
ing result is presented to demonstrate the proof technique for the most complex. Sim-
pler variations can be used to show that there exists no encoding of: LM,D,NO,E into
LM,D,NO,A, or LM,D,NM,E into LM,D,NM,A.

Theorem 1. There exists no valid encoding of LM,C,NM,E into LM,C,NM,A.

The exception to the general LM,β,γ,E is more expressive than LM,β,γ,A when γ � I is
LM,C,NO,E into LM,C,NO,A. This is detailed in Sect. 5.2.

Within the monadic non-intensional exchange languages the usual diamond of rela-
tions exists where adding channel-based communication or name-matching are both
increases in expressive power. The separation results between LM,D,NM,E and LM,C,NO,E

is the most interesting result, as the rest can be proved via matching degree.

Theorem 2. The languages LM,D,NM,E and LM,C,NO,E are unrelated.

5.2 Encoding Exchange into Asymmetry

This section considers where exchange languages can be encoded by asymmetric lan-
guages. Note that this does not ensure atomicity that motivates some languages [10].

An exchange language L1 can be encoded into an asymmetric language L2 if the
matching degree ofL1 is bounded, and:L1 andL2 are both channel-based no-matching
languages; or L2 has a greater matching degree and is polyadic or channel-based.

148 T. Given-Wilson and A. Legay

In the first case, the key idea is to represent the channel name by a pair of names to
indicate whether the input is on the action or co-action. Consider the following transla-
tion from LM,C,NO,E into LM,C,NO,A:

[[(νn)P]]
def
= (νn1)(νn2)[[P]]

[[n(λx).P]]
def
= n1(λrn).rn(λx1).x(λx2).[[P]]

[[n〈λx〉.P]]
def
= n2(λrn).rn(λx1).x(λx2).[[P]]

[[n(a).P]]
def
= (νrn)n2〈rn〉.rn〈a1〉.rn〈a2〉.[[P]]

[[n〈a〉.P]]
def
= (νrn)n1〈rn〉.rn〈a1〉.rn〈a2〉.[[P]]

[[if s = t then P else Q]]
def
= if s1 = t1 then [[P]] else [[Q]] .

Here the names n1 and n2 represent two parts of the name n, and rn is a reserved name,
these are all introduced by the renaming policy ϕ[[]] [11,18].

Theorem 3. The encoding from LM,C,NO,E into LM,C,NO,A is valid.

The above encoding illustrates how channel-based communication is sufficient
when no name-matching or intensionality is included in the source language.

In the second case, the key idea is that a single name is sufficient to represent the
shape of the encoded action or co-action, and so can ensure correct encoded interac-
tions. Observe that in every case the reverse encoding is proved impossible easily via
the matching degree and Proposition 2. The clearest illustration of this when the source
language is monadic is the following encoding from LM,D,NO,E into LM,C,NO,A. Con-
sider the translation [[·]] that is homeomorphic on all forms except for the action and
co-action, and exploits two reserved names ia and ic that are translated as follows:

[[(p).P]]
def
=

{

ic〈a〉.[[P]] p = a
ia(λx).[[P]] p = λx

[[〈p〉.P]]
def
=

{

ia〈a〉.[[P]] p = a
ic(λx).[[P]] p = λx .

The channel name indicates the origin of the input, ia for action, and ic for co-action.

Theorem 4. The encoding from LM,D,NO,E into LM,C,NO,A is valid.

The existence of an encoding fromLM,D,NM,E intoLM,C,NM,A is achieved in the same
manner by extending the initial translation to consider name matches �a� to also be

inputs, e.g. i.e. [[(�a�).P]]
def
= ia(�a�).[[P]].

The existence of valid encodings from LM,C,NM,E into LP,−,NM,A can be shown with
a similar technique, instead of the reserved names being used as a channel they are
simply added as another part of the polyadic input or output (with name-matching on

the input). For example, [[n(a).P]]
def
= ic〈n, a〉 and [[n(λx).P]]

def
= ia(�n�, λx).

A similar but more complex technique can be used to encode polyadic no-matching
exchange languages into asymmetric languages. This is illustrated by the following
encoding from LP,D,NO,E into LP,C,NO,A. The encoding exploits a binary representation
of the structure of an action or co-action. To this end define the binary representation
function Bin(̃·) that converts a sequence of names and binding names into a bit-string

On the Expressiveness of Symmetric Communication 149

and also the complement (or bitwise not) Not(·) of bit-strings (where ‘;’ is concatena-
tion):

Bin(a) = 0 Bin(λx) = 1 Bin(n, ñ) = Bin(n); Bin(̃n)
Not(0) = 1 Not(1) = 0 Not(X,˜X) = Not(X); Not(˜X) .

Given a sequence of binding names and names p̃, the sequences of the binding names
Bn(p̃), and names Nm(p̃) are defined by:

Bn(λx, p̃) = λx,Bn(p̃) Bn(a, p̃) = Bn(p̃)
Nm(λx, p̃) = Nm(p̃) Nm(a, p̃) = a,Nm(p̃) .

Now consider the translation [[·]] that is homeomorphic on all forms except the
action and co-action (and exploits a reserved name rn) that are translated as follows:

[[(p̃).P]]
def
= a(λrn,Bn(p̃)).rn〈Nm(p̃)〉.[[P]] a = Bin(p̃)

[[〈 p̃〉.P]]
def
= (νrn)a〈rn,Nm(p̃)〉.rn(Bn(p̃)).[[P]] a = Not(Bin(p̃)) .

The idea is that the translated action and co-action match on the channel name that is
the bit-string representation of their order of binding names and names. If they match
the input performs all the action’s bindings as well as an additional name (bound to) rn.
The rôles are then reversed to complete the interaction.

Theorem 5. The encoding from LP,D,NO,E into LP,C,NO,A is valid.

The encoding from LP,C,NO,E into LP,C,NO,A exploits elements of the technique
above. Define the function Val(·) that gives the numeric value of a binary string,
e.g. Val(101) = 5 and Val(1010) = 10. Now the encoding from LP,C,NO,E intoLP,C,NO,A

can be constructed as follows exploiting a reserved name rn as usual:

[[n(p̃).P]]
def
= n(λrn,Bn(p̃), λz, . . . , λzi).rn〈Nm(p̃)〉.[[P]]

where i = Val(1; Bin(p̃)) − |Bn(p̃)|
[[n〈 p̃〉.P]]

def
= (νrn)(νz1) . . . (νzi)n〈rn,Nm(p̃), z1, . . . , zi〉.rn(Bn(p̃)).[[P]]

where i = Val(1; Not(Bin(p̃))) − |Nm(p̃)|
and translating all other processes homomorphically. Also z̃ do not intersect one
another, or any of the names in n and p̃ and f n(P).

The key idea is to map the binary representation of the structure of the action or
co-action to the arity of the encoded action or co-action. To prevent conflicts between
encodings, for example n(a, λx) and n(λx), the binary representation is pre-pended with
1. Thus, the arity of the action or co-action ensures correct interaction if the structure is
correct, and the channel name is matched as usual.

Theorem 6. The encoding from LP,C,NO,E into LP,C,NO,A is valid.

Building on Theorem 5 and the equivalence between the languages LP,−,NM,A [16]
conclude that LP,−,NM,A are able to encode all the: monadic non-intensional exchange
languages; and the polyadic no-matching exchange languages.

150 T. Given-Wilson and A. Legay

5.3 Other Relations with Bounded Matching Degree

This section considers other relations between languages equally or less expressive than
LP,−,NM,A, i.e. all the languages that can be encoded in LP,−,NM,A.

Within exchange languages, clearly LM,β,NO,E is a sub-language of LP,β,NO,E for any
β and so can be validly encoded by Proposition 4. The following proves the separation
results required to indicate an increase in expressiveness.

Theorem 7. There exists no valid encoding of LP,D,NO,E into LM,D,NO,E.

Observe that this result can be used to show there exists no valid encoding of
LP,C,NO,E into LM,C,NO,E by having all communication along a single channel name and
preventing modification of this name by the encoding.

Regarding asymmetric languages, LP,D,NO,E can validly encode LP,D,NO,A by Propo-
sition 4. The following proves an increase in expressiveness.

Theorem 8. There exists no valid encoding of LP,D,NO,E into LP,D,NO,A.

5.4 Equivalent Languages with Unbounded Matching Degree

Once the matching degree is unbounded several languages become equivalent in expres-
siveness, this section formalises these results.

The intensional asymmetric languages all have equivalent expressiveness (by The-
orem 6.5 of [12]) and to the monadic exchange languages. Consider the languages
LM,D,I,E andLM,C,I,E , there is a trivial valid encoding ofLM,D,I,E intoLM,C,I,E by Propo-
sition 4. The following shows equivalence via the reverse encoding from LM,C,I,E into
LM,D,I,E . Take the encoding [[·]] that is the homeomorphic on all processes except the
action and co-action that are encoded as follows (exploiting reserved names as usual):

[[p(q).P]]
def
= 〈ic • p • q〉.[[P]]

[[p〈q〉.P]]
def
= 〈ia • p • q〉.[[P]]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

q is a term

[[p(q).P]]
def
= (ia • �p� • q).[[P]]

[[p〈q〉.P]]
def
= (ic • �p� • q).[[P]]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

q is an intensional pattern.

The translation compounds the channel pattern p with the term or intensional pattern q,
converting to maintain being either a term or intensional pattern.

Theorem 9. The encoding from LM,C,I,E into LM,D,I,E is valid.

Now to complete the equivalences. Since all the languages L−,−,I,A are equally
expressive and since the languages LM,−,I,E are equally expressive by Theorem 9 it suf-
fices to consider examples from either group. The encodings from L−,−,I,A into LM,−,I,E
follow byLM,D,I,A being a sub-language ofLM,D,I,E . In the other direction, there exists a
valid encoding from LM,D,I,E into LM,C,I,A, by a straightforward adaption of Theorem 4.

Considering polyadic non-intensional languages, LP,D,NM,E can be encoded into
LP,C,NM,E by Proposition 4. For the converse, the standard approach [12,16] yields a

valid encoding; one that is homeomorphic on all forms except the action [[a(p̃).P]]
def
=

On the Expressiveness of Symmetric Communication 151

(�a�, p̃).[[P]] and co-action [[a〈 p̃〉.P]]
def
= 〈a, p̃〉.[[P]]. Indeed this approach can be used

for the polyadic intensional languages, showing the existence of a valid encoding from
LP,C,I,E into LP,D,I,E . Equivalence is completed by showing a valid encoding of LP,D,I,E

into LP,C,I,E by Proposition 4.

5.5 Concluding Relations

This section concludes the relations between asymmetric and exchange languages by
formalising those between languages with unbounded matching degree. In general this
is showing separation results between different language groups.

Polyadic intensional exchange languages are more expressive than any other
exchange or asymmetric languages. By the encodings in Sect. 5.4 in all languages con-
sidered here being dataspace-based or channel-based is immaterial to expressive power.
The languages LP,−,NM,E are sub-languages of LP,−,I,E and so their expressiveness is
included naturally, the reverse is from the following result.

Theorem 10. There exists no valid encoding of LP,−,I,E into LP,−,NM,E.

Comparing within other intensional exchange languages, LP,−,I,E can encode
LM,−,I,E by Proposition 4. The reverse separation result uses the technique of Theo-
rem 11.

That the languages LM,−,I,E are unrelated to LP,−,NM,E follows from the separation
results that show no valid encodings from LM,−,I,E into LP,−,NM,E , and LP,−,NM,E into
LM,−,I,E (proved using the techniques of Theorems 10 and 7, respectively). Note the
groups of languages can be treated equivalently due to the encodings of Sect. 5.4.

Lastly, the languages LP,−,NM,A can be encoded LP,−,NM,E via Proposition 4. The
reverse is prevented by the following result.

Theorem 11. There exists no valid encoding from LP,−,NM,E into LP,−,NM,A.

6 Unification

This section considers the expressiveness of unification languages, and their relations
to asymmetric and exchange languages.

6.1 Unification Cannot Be Simulated

The following result shows that no unification language can be encoded into an asym-
metric or exchange language. Key is a self recognising process, defined to be S = (a).

√
for the dataspace-based languages and S = a(a).

√
for the channel-based languages,

that has the behaviour S | S �−→⇓ but S �−→/ and S �⇓. This can be exploited since no
non-unification process can reduce in parallel with itself unless it reduces alone. The
self recognising process can be used to yield the following result via Proposition 3.

Theorem 12. There exists no valid encoding of a unification language L−,−,−,U into
any non-unification language L−,−,−,δ δ � U.

The above result can be used to prove a separation result from any unification lan-
guage to a non-unification language, these results are omitted from the rest of the paper.

152 T. Given-Wilson and A. Legay

6.2 On Monadic Non-Intensional Unification Languages

All the languages LM,−,γ,E where γ � I are unrelated to any non-unification language.
Similar to the languages LM,−,γ,A, these 4 form a diamond where expressiveness is
increased by adding channel-based communication or pattern-matching.

The shift to unification leads to LM,D,NO,U being unrelated to any other language
LM,D,NO,−. The following result illustrates how to achieve such separation results and
can be applied to other monadic non-intensional languages also.

Theorem 13. There exists no valid encoding from LM,D,NO,δ where δ � U into
LM,D,NO,U.

The relations between the monadic non-intensional unification languages are as
usual, although the usual proof techniques do not always hold. In particular, no-
matching unification languages still have non-zero matching degree, so separation
results that rely on matching degree alone no longer hold. LM,D,NO,U can be validly
encoded by LM,D,NM,U via Proposition 4. The following proves the separation result.

Theorem 14. There exists no valid encoding of LM,D,NM,U into LM,D,NO,U.

The above technique can be applied to prove that there exist no encodings from
LM,C,NM,U into LM,C,NO,U , or from LM,D,NM,U into LM,C,NO,U The rest of the separation
results to prove that the relations are the same as in the asymmetric setting exploit the
matching degree of the languages involved.

6.3 Equally Expressive Unification Languages

Once the matching degree is unbounded there is no difference in expressiveness
between dataspace-based and channel-based communication for unification languages.
Further, all the intensional unification languages have equal expressive power.

For the polyadic languages it is straightforward to represent channel-based commu-
nication by shifting the channel to the first position of a dataspace-based encoding. For
both encodings from LP,C,NO,U into LP,D,NO,U and LP,C,NM,U into LP,D,NM,U are achieved

by [[a(p̃).P]]
def
= (a, p̃).[[P]]. The converse results are by Proposition 4.

This may at first appear unexpected since in the asymmetric and exchange languages
LP,C,NO,δ (δ � U) have matching degree 1 whileLP,D,NO,δ (δ � U) have matching degree
0. However, this does not hold for unification languages as due to the poly-unify rule
their matching degree directly relates to their arity.

All the intensional unification languages are equally expressive. Clearly the lan-
guages LM,−,I,U and L−,D,I,U can be trivially validly encoded into the languages LP,−,I,U
and L−,C,I,U , respectively, by sub-language inclusion. An encoding from LP,−,I,U into
LM,−,I,U can be easily achieved in the same manner as Theorem 5.4 of [12] by encoding
the polyadic structure into a monadic intensional pattern. The key idea is that a sequence
of patterns p̃ = p1, . . . , pi is encoded as a single pattern (rn • p1) • . . . • pi where rn is a
reserved name. For showing an encoding from L−,C,I,U into L−,D,I,U the same technique
as used in Theorem 9 can be used.

On the Expressiveness of Symmetric Communication 153

6.4 Encodings into Polyadic Non-Intensional Languages

This section considers encodings into polyadic non-intensional unification languages.
Despite being nominally no-matching it is still possible to encode polyadic name-
matching into the languagesLP,−,NO,U . Beyond this the usual increases in expressiveness
hold for shifting from monadic to polyadic, and from no-matching to name-matching.
The rest of this section details these relations.

Unification communication exploits pattern unification that allows equivalence of
patterns. The key difference is that a single name can unify with itself unlike in the
poly-match rule where Match(a, a) is undefined. This breaks the directionality assumed
in asymmetric and exchange primitives, and so invalidates many prior results.

The directionality of asymmetric or exchange languages can be maintained by an
encoding when the target language is either polyadic or intensional. Define the unpro-
tect function g that replaces all instances of �a� with a in a pattern. Consider the encod-
ing [[·]] from LP,D,NM,E to LP,C,NO,U that exploits the functions Bin and Not of Sect. 5.2
and is homeomorphic on all forms except as defined below:

[[(p̃).P]]
def
= a(λrn,˜g(p)).[[P]] a = Bin(p̃)

[[〈 p̃〉.P]]
def
= (νrn)a(rn,˜g(p)).[[P]] a = Not(Bin(p̃))

The binary encoding is used to ensure that inputs and outputs are properly aligned since
otherwise two outputs may unify. The additional reserved name is to distinguish actions
from co-actions in the translation. The unprotect function g converts name-matches into
names since the former aren’t defined in a no-matching language.

Theorem 15. The encoding from LP,D,NM,E into LP,C,NO,U is valid.

Observe that since LP,D,NM,E generalises the languages L−,−,γ,δ where γ ≤ NM and
δ ≤ E this proof applies to all such languages.

Regarding other unification languages, clearly LP,−,NO,U can be validly encoded by
LP,−,NM,U , with shifts between dataspace-based and channel-based communication han-
dled by the encodings of Sect. 6.3 and Proposition 4. The separation result required to
indicate an increase in expressiveness from LP,−,NO,U to LP,−,NM,U can be proved using
the same technique as Theorem 14. The relations between polyadic and monadic lan-
guages are as expected. LM,C,NO,U can be encoded by LP,C,NO,U via Proposition 4, and
thus also LP,D,NO,U by encoding from Sect. 6.3. The separation result that LM,C,NO,U

cannot encodeLP,−,NO,U is by Proposition 2. Similar results hold for the name-matching
languages also. LM,C,NM,U can be encoded by LP,C,NM,U by Proposition 4 (and thus also
LP,D,NM,U by encoding from Sect. 6.3). The reverse separation that there exists no valid
encoding of LP,−,NM,U into LM,C,NM,U is proven via Proposition 2.

6.5 Intensional Unification Languages

Since all the intensional unification languages are equivalent by exploiting encodings
from Sect. 6.3, it remains to show their other relations.

The intensional unification languages can also encode directionality in a similar
manner to Sect. 6.4 (Theorem 15). Consider the encoding [[·]] from LP,D,I,E to LM,C,I,U

154 T. Given-Wilson and A. Legay

that exploits the numerical encoding function Bin and Not of Sects. 5.2 and 6.4 and is
the homeomorphic on all forms except the action and co-action:

[[(p1, . . . , pi).P]]
def
= a(λrn • (p1 • . . . • pi)).[[P]] a = Bin(p̃)

[[〈p1, . . . , pi〉.P]]
def
= a(rn • (p1 • . . . • pi)).[[P]] a = Not(Bin(p̃))

where rn is a reserved name as usual. The translations of actions and co-actions are as
before except that compounding is used in place of polyadic sequencing.

Theorem 16. The encoding from LP,D,I,E into LM,C,I,U is valid.

L−,−,I,U are more expressive than LP,−,I,E since there exists an encoding from
LP,D,I,E into LM,C,I,U by Theorem 16, conclude via encodings of Sects. 5.4 and 6.3.

Finally, within unification languages intensionality remains more expressive than
non-intensionality. By encodings in Sect. 6.3 all languages considered here being
channel-based or dataspace-based is immaterial. The languages LP,−,NM,U can be
encoded by LP,−,I,U by Proposition 4, the final separation of LP,−,I,U into LP,−,NM,U can
be proved using the techniques of Theorem 10 and completes the results.

7 Conclusions and Discussion

Symmetric communication primitives provide new and interesting perspectives on how
languages and communication can occur. Considering exchange provides interesting
insight into how much trading systems and atomic exchange actions can be captured
within asymmetric languages by encoding. The ability to encode polyadic exchange
without name matching into asymmetric languages indicates that it is the addition of
(unbounded, or multiple) name-matching with exchange that really extends expressive-
ness. While exchange generally increases expressiveness over asymmetric languages,
it is pattern-matching that provides the strongest expressiveness alone. The unification
languages cannot be encoded into even exchange languages, the self recognising tech-
nique was used for CPC before [14] but is here generalised. The flexibility of unifica-
tion allows for names to be matched even in a language that nominally does not have
name-matching. This yields some interesting results where non-matching languages can
encode name-matching languages by exploiting unification. However, name-matching
still provides increased expressiveness within unification languages, and intensionality
is the sole factor in determining the most expressive language.

Choices of Primitives. The choices of primitives here is to align with prior work and
results [12,16,18]. However, there are other choices that would impact some results.

The patterns are chosen here to match those of CPC and it turns out that the (sym-
metric) patterns here are sufficient to represent most other approaches, such as Spi
Calculus [14] and Psi Calculi terms [12]. More generally the core approach of com-
pounding proves sufficient to represent many complex data structures and even (in
practice) type information. This has been discussed and formalised in different settings
[10,19,20] and in many works related to pattern calculus, S F-logic, and CPC.

On the Expressiveness of Symmetric Communication 155

For the process forms the most obvious alternative would be to consider a choice
operator: α1.P + α2.Q for some choice of αi. Again the decision not to include this is
to match with prior results [12,16,18]. The addition of such a choice operator could
invalidate some findings, in particular Theorem 12. This provides illustration of which
results would need to be reexamined with such a change, although it does not (a priori)
indicate that the overall relative expressiveness would change. For example, previous
simple results for the inability to encode CPC (LM,D,I,F) into π-calculus (LM,C,NO,A) have
used this approach [14], however alternative proofs also exist such as Proposition 2 and
Theorems 11, & 14 and in prior works [12,16]. This lends weight to the rigour here that
provides alternative approaches, and identifies which results rely on which primitives.

In this context there are many other possible choices of primitives for both the
patterns and the processes. However, those here are sufficient to understand the core
dynamics between the interaction features of languages. Also by using a common app-
roach that is transitive for the encodings here, often more distant relations can be proved
without relying on particular choices of primitives or proof techniques.

Related Work. This section provides a brief account of related works most close to the
decisions and results here, since to cover all related works would take an entire paper.

There are already existing specific results for some symmetric process calculi that
agree with the results here. CPC (LM,D,I,U) can homomorphically encode: π-calculus
(LM,C,NO,A), Linda (LP,D,NM,A), and Spi Calculus (perhaps LM,C,I,A) while none of them
can encode CPC [12,14]. Similarly fusion calculus can encode π-calculi, although not
the other way around [28]. Impossibility of encoding results for CPC and fusion cal-
culus into many calculi can be derived from the results here. Fusion calculus and Psi
calculi are unrelated to CPC in that neither can encode CPC, and CPC cannot encode
either of them [10,14]. However, these results rely upon the global effect of fusions in
fusion calculus, and the inclusing of logic in Psi Calculi.

There are also related works on concurrent constraint languages (CCL) [6,7]. The
encoding criteria of de Boer and Palamidessi [7] have similarities to those here, but also
some significant differences: they assume that parallel composition must be encoded
homomorphically, include the choice operator, and exploit a different notion of com-
putational correspondence. The homomorphic parallel composition holds for all encod-
ings presented in this paper, but not for the separation results (making them stronger,
although also making the proofs a little harder here). However, the inclusion of the
choice operator and having different notions of computation correspondence in de Boer
and Palamidessi’s results yield a different setting to here, and so neither results directly
subsume the other. Further, CCLs have a different communication paradigm, with inter-
action between a single process and a common store of constraints, which is quite differ-
ent to the focus of this paper. However, such non-binary approaches to communications
have been considered [8,15]. In addition, the expressiveness of CCLs depends to some
degree on the logic, which is again not considered as part of communication paradigms
here (although since CCLs and Psi Calculi exploit logics, this may be an interesting
path of future research). In [6] there is also unification of terms, however their approach
is different in that unifying s and t by σ is achieved when σs = σt. It is possible to
restructure the unification rule here to use a single substitution (although this is overly
complex and requires reasoning over processes not just patterns), but the unification
would still differ since there is no distinction for name-matches �a� in [6].

156 T. Given-Wilson and A. Legay

References

1. Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile
processes with nominal data and logic. Log. Methods Comput. Sci. 7(1) (2011)

2. Bengtson, J., Parrow, J.: Formalising the pi-calculus using nominal logic. Log. Methods
Comput. Sci. 5(2) (2009)

3. Boudol, G.: Notes on algebraic calculi of processes. In: Apt, K.R. (ed.) Logics and Models
of Concurrent Systems, pp. 261–303. Springer, New York (1985)

4. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of Linda coordination primitives.
Inf. Comput. 156(1–2), 90–121 (2000)

5. Carbone, M., Maffeis, S.: On the expressive power of polyadic synchronisation in π-calculus.
Nordic J. Comput. 10(2), 70–98 (2003)

6. de Boer, F.S., Palamidessi, C.: Concurrent logic programming: asynchronism and language
comparison. In: Proceedings of the 1990 North American Conference on Logic Program-
ming, pp. 175–194. MIT Press, Cambridge (1990)

7. de Boer, F.S., Palamidessi, C.: Embedding as a tool for language comparison. Inf. Comput.
108(1), 128–157 (1994)

8. Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: Proceedings of the
23rd ACM Symposium on Principles of Programming Languages, pp. 372–385. ACM Press
(1996)

9. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1),
80–112 (1985)

10. Given-Wilson, T.: Concurrent Pattern Unification. Ph.D. thesis, University of Technology,
Sydney, Australia (2012)

11. Given-Wilson, T.: An intensional concurrent faithful encoding of Turing machines. In: Pro-
ceedings of the ICE 2014, Berlin, Germany, 6 June 2014, pp. 21–37 (2014)

12. Given-Wilson, T.: On the expressiveness of intensional communication. In: Proceedings of
EXPRESS/SOS, Rome, Italie, September 2014

13. Given-Wilson, T., Gorla, D.: Pattern matching and bisimulation. In: Nicola, R., Julien, C.
(eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 60–74. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38493-6 5

14. Given-Wilson, T., Gorla, D., Jay, B.: A concurrent pattern calculus. Log. Methods Comput.
Sci. 10(3) (2014)

15. Given-Wilson, T., Legay, A.: On the expressiveness of joining. In: ICE 2015, Grenoble,
France, June 2015

16. Gorla, D.: Comparing communication primitives via their relative expressive power. Inf.
Comput. 206(8), 931–952 (2008)

17. Gorla, D.: A taxonomy of process calculi for distribution and mobility. Distrib. Comput.
23(4), 273–299 (2010)

18. Gorla, D.: Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput. 208(9), 1031–1053 (2010)

19. Jay, B.: Pattern Calculus: Computing with Functions and Data Structures. Springer,
Heidelberg (2009)

20. Jay, B., Given-Wilson, T.: A combinatory account of internal structure. J. Symbol. Logic
76(3), 807–826 (2011)

21. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness of polyadic and
synchronous communication in higher-order process calculi. In: Abramsky, S., Gavoille, C.,
Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199,
pp. 442–453. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1 37

http://dx.doi.org/10.1007/978-3-642-38493-6_5
http://dx.doi.org/10.1007/978-3-642-14162-1_37

On the Expressiveness of Symmetric Communication 157

22. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compensation
handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11957-6 20

23. Milner, R.: The polyadic π-calculus: a tutorial. In: Logic and Algebra of Specification, vol.
94. Series F. NATO ASI, 203–246. Springer, Heidelberg (1993)

24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes I & II. Inf. Comput. 100(1),
1–77 (1992)

25. Nielsen, L., Yoshida, N., Honda, K.: Multiparty symmetric sum types. In: Proceedings of
EXPRESS, pp. 121–135 (2010)

26. Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous pi-
calculi. Math. Struct. Comp. Sci. 13(5), 685–719 (2003)

27. Parrow, J.: Expressiveness of process algebras. Electron. Not. Theoret. Comput. Sci. 209,
173–186 (2008)

28. Parrow, J., Victor, B.: The fusion calculus: expressiveness and symmetry in mobile processes.
In: Proceedings of 13th Annual IEEE Symposium on Logic in Computer Science, pp. 176–
185, June 1998

29. Peters, K.: Translational expressiveness: comparing process calculi using encodings. Ph.D.
thesis, Technische Universität Berlin, Fakultät IV, Germany (2012)

30. Shapiro, E.: Separating concurrent languages with categories of language embeddings. In:
Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Computing, STOC
1991, pp. 198–208. ACM, New York (1991)

31. van Glabbeek, R.J.: Musings on encodings and expressiveness. In: Proceedings of
EXPRESS/SOS. EPTCS, vol. 89, pp. 81–98 (2012)

http://dx.doi.org/10.1007/978-3-642-11957-6_20

Towards MC/DC Coverage of Properties
Specification Patterns

Ana C.V. de Melo1(B), Corina S. Păsăreanu2, and Simone Hanazumi1

1 Department of Computer Science, University of São Paulo, São Paulo, Brazil
{acvm,hanazumi}@ime.usp.br

2 Carnegie Mellon, NASA Ames Research Center - M/S 269-2,
Moffett Field, CA 94035, USA

corina.s.pasareanu@nasa.gov

Abstract. Model based testing is used to validate the actual system
against its requirements described as formal specification, while for-
mal verification proves that a requirement is not violated in the over-
all system. Verifying properties, in certain cases, becomes very expen-
sive (or unpractical), mainly when the application of test techniques is
enough for the users purposes. The Modified Condition/Decision Cover-
age (MC/DC), used in the avionics software industry, is recognised as
a good technique to find out the possible mistakes on programs logics
because it covers how each condition can affect the programs’ decisions
outcomes. It has also been adapted to provide the coverage of specifica-
tions in the requirements-based approach.

This paper proposes a technique to decompose properties (specifica-
tions), defined as regular expressions, into subexpressions representing
test cases to cover the MD/DC for specifications (Unique First Word
Recognition). Then, instead of proving an entire property, we can use a
model checker to observe and select program executions that cover all the
test cases given as the subexpressions. To support this approach, we give
a syntactic characterisation of the properties decomposition, inductively
defined over the syntax of regular expressions, and show how to use the
technique to decompose Specification Patterns (SPS) and monitor their
satisfiability using the Java PathFinder (JPF).

1 Introduction

Many systems today depend on the software industry, either because they are
based on or embed in a kind of software. The variety of artefacts that depend
on software to provide their services goes from an ordinary watch to complex
medical devices, like pacemakers [12]. Assuring that a software behaves as “pre-
scribed” is not a choice today, and this can only be granted by the application
of techniques that guarantee the quality of the design and the final product,
namely testing and formal verification.

Depending on the criticality of the software to the overall system, testing
or formal verification are applied to guarantee its quality. The more rigorous
are the techniques to assert the software quality, the more difficult to actually
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 158–175, 2016.
DOI: 10.1007/978-3-319-46750-4 10

Towards MC/DC Coverage of Properties Specification Patterns 159

apply them to the entire software and, in general, applying formal verification to
software is more costly than testing. However, in many cases, testing a software
is enough for the user purposes, including critical systems in the aviation indus-
try. The Modified Condition/Decision Coverage (MC/DC) [1] test technique has
been defined as a standard in the avionics software development [7]. It is an
accurate software coverage criterion that can reveal many software bugs and has
been applied at programming level.

Looking at the advantages of applying the MC/DC to programs, it has been
adapted to specifications with the aim of covering the software requirements
(Sect. 1.1), using a requirements-based testing approach. This paper focuses on
providing a technique to cover formal, machine-checkable systems requirements
undertaking the notion of MC/DC, and using a model checker to collect the
test cases that satisfy the specification coverage criteria. Making this technique
machine-checkable to collect the test cases requires a model-checker. We use JPF
(Java Pathfinder) to this end because it can be used in practice to verify Java
programs. For this purpose, the property specification must be converted into a
minimal deterministic automaton (DFA), so that JPF will be able to read the
automaton and traverse it while collecting the corresponding test cases. The con-
version of a regular expression (representing a property) into a minimal DFA can
be done by several algorithms in a semi-automated manner (using JFLAP tool,
for instance), while converting LTL formula into DFA is not straightforward.
Therefore, we chose to represent properties using regular languages despite it
imposes the restriction of only describing program finite executions.

To provide a formal machine-checkable technique to cover MC/DC
requirements-based testing, this paper presents three contributions: (i) define
a coverage criterion on properties (specifications), defined as regular expres-
sions, that decomposes a property into subexpressions to cover the MC/DC
for specifications (Unique First Word Recognition); (ii) give a syntactic charac-
terisation of the properties decomposition inductively defined over the syntax
of regular expressions; and (iii) show how to use the technique to decompose
properties described using Specification Patterns (SPS) and monitor their satis-
fiability using the Java PathFinder (JPF) model checker.

1.1 Related Work

The use of model checkers to generate test cases has been studied over the last
two decades [3], including test cases generated from specifications. At program-
ming level, model checkers are used to generate test cases by negating single
properties (trap properties) and collecting the counter-examples to provide a
test suite [4]. This idea is similarly used with program coverage criteria: the
coverage criteria are described as a set of properties, the trap properties coun-
terparts are created and submitted to a model checker that, in turn, generates
a test suite. In this case, the test suite is created from the counter-examples of
trap properties and the focus is to cover the behaviour of the System Under Test
(SUT) undertaking a coverage criterion (the one defined as trap properties).

160 A.C.V. de Melo et al.

Apart from programs coverage criteria, model-based testing requires the
notion of requirements-based coverage for specifications, described either in a
logic or transition-based model. The focus is on the coverage of systems require-
ments, described as properties, instead of covering the SUT behaviour. Some
experiments have been conducted to show the advantages on systems quality
when metrics on requirements coverage [6,11,15] are considered together with
the programs coverage metrics.

Since the model addressed and the focus on requirements differ from the ones
for programs, some property-based coverage metrics were created. Looking at
systems requirements described in Linear Temporal Logic (LTL), Tan et al. [14]
defined metrics based on (non-) vacuity properties to cover LTL sub-formulae.
He further defined state-based coverage metrics for specifications represented as
Büchi automata [13], introducing the notion of vacuous states (similar to vacuity
properties). Still using LTL as specification language, Whalen et al. [15] defined
some coverage metrics based on the MC/DC criteria for programs. They are the
Unique-First-Cause (UFC) coverage metrics, concerned with measuring whether
a test suite is able to show that all atomic conditions (events) within the property
affect the property outcome. Different from the MC/DC that is defined for propo-
sitional formulae, this new metric considers sequences of states to accommodate
the LTL semantics and test cases are generated from sub-formulae calculated
by LTL syntactic structure. Pecheur et al. [9] redefined a method for the syn-
tactic characterisation of MC/DC test cases for LTL, and proved the soundness
and completeness of their method under certain restrictions on the requirements
formulation.

The present work is inspired by the previous works on the syntactic charac-
terisation of LTL to generate test cases that cover the improved MC/DC criteria
[9,15]. However, it differs from the previous works in several aspects. First, we
define a syntactic characterisation method for regular expressions, based on the
notion of unique first word recognition, instead of LTL. Second, we provide a
more practical approach by focusing on defining and implementing the criterion
for Dwyer’s well-known Specification Patterns. These patterns are then used in
the Java PathFinder (JPF) model checker to be instantiated by users. Then,
instead of calculating the new sub-formulae for an arbitrary set of requirements,
users can select and instantiate patterns to represent the system’s requirements
and submit them to the JPF to collect the test cases.

2 Background

2.1 Regular Expressions

A regular expression describes a set of strings (i.e. a regular language) and can
be used to generate a finite-state automaton that represents the language or
relation it describes.

Definition 1 (Regular Expressions). A regular expression over a finite
alphabet Σ is inductively described by

Towards MC/DC Coverage of Properties Specification Patterns 161

Basis Description

∅ Denotes the empty event ({})
ε Empty string ({ε})
e Event e in alphabet Σ ({e})

Let E, E1 and E2 be regular expressions. The following operators can be
applied to form new regular expressions that describe a set of strings containing:

Operator Description

(E1|E2) Choice of strings described
by E1 and E2

(E1; E2) Concatenation of strings
described by E1 and E2

(E)* ε and the smallest superset
described by E closed under
string concatenation (;)

Additional Description

[−e] Any event in alphabet Σ,
except e

[−e1, ..., en] Any event in alphabet Σ,
except e1, ..., en

. Any event in alphabet Σ
(E)? ε and strings described

by E

Note that additional operators given in Definition 1 are syntactic sugar. They
can be defined over basic elements and operators. Besides that, certain proper-
ties on regular expressions are defined to conveniently rewrite expressions on
the decomposition of test cases approach (they are presented in Appendix A).
The precedence and associativity for the regular expressions are presented in
Definition 2.

Definition 2 (Precedence and Associativity). Let E, E1 and E2 be regular
expressions. The precedence and associativity of operators are defined as:

Operator Precedence Associativity

(E)∗ 1 right to left
(E1; E2) 2 left to right
(E1|E2) 3 left to right

Then, expression (E1 | E2; (E3)∗) has the same meaning of (E1 | (E2; (E3)∗))
due to the precedence of operators, and (E1;E2;E3) is the same as ((E1;E2);E3)
due to the associativity of operator; (left to right).

2.2 Specification Pattern System (SPS)

Specification patterns [2] are formalism independent specification abstractions
defined for finite-state verification. It helps practitioners in mapping descriptions
of system behaviour into their formalism of choice, improving the transition
of these formal methods to practice. To define a property using the SPS, one
must define its scope and then, the corresponding pattern. Next, we give a short
description of SPS. For a complete description of the system, please refer to [2,8].

Scopes. A scope is the extent of the program execution over which the pattern
must hold, and it is determined by specifying a starting and an ending event
for the pattern. The SPS has five types of scopes: (a) global: it covers the entire

162 A.C.V. de Melo et al.

program computation; (b) before R: it starts at the beginning of the computation
and ends with an occurrence of a state or event R; (c) after L: it starts from the
occurrence of a state or event L until and ends with the program computation;
(d) between L and R: it includes the intervals that start with the occurrence of
state or event L and end with the occurrence of state or event R; and, (e) after
L - until R: it includes the intervals that start from the occurrence of a state or
event L and end with either the occurrence of a state or event R, or with the
end of computation.

Patterns. A pattern is a specification abstraction that can be mapped to various
formal representations, such as LTL [10] or regular expressions. The patterns are
organised according to their semantics. Here, we give a brief description of the
SPS patterns that are used in our work: (a) absence: a state or event P does not
occur within a scope; (b) universality: a state or event P occurs throughout a
scope; (c) existence: a state or event P must occur at least once within a scope;
(d) precedence: a state or event P must always be preceded by a state or event
T within a scope; and, (e) response: a state or event P must always be followed
by a state or event T within a scope.

Example. Consider the example of a coffee machine, with the following program
execution traces:

Trace 0: putCoin → getCoffee

Trace 1: putCoin → getCoffee → getMilk

Trace 2: putCoin → getCoffee → getSugar

Trace 3: putCoin → getMilk → getSugar

Suppose that we want to verify the property: there is no occurrence of
getMilk before getCoffee. The regular expression that describes the absence
of P in the before R scope is “[−R]∗|[−P,R]∗;R; .∗” [8]. It states that either
the event R does not occur (and then there is no scope definition) or the fol-
lowing events occur in sequence: any event except P and R occurs 0 or more
times, R occurs, and then any event of the alphabet occurs 0 or more times.
Therefore, the regular expression specifies that no occurrence of event P can
be observed before R. Returning to the property we want to specify, which
says that no occurrence of getMilk should be observed before getCoffee, we
can consider P = getMilk and R = getCoffee and then apply it to the
SPS regular expression for the absence pattern in the before R scope. Thus,
using SPS regular expressions, we have that the property can be specified as:
“[−getCoffee]∗|[−getMilk, getCoffee]∗; getCoffee; .∗”

3 Unique First Positive Recognition

The MC/DC has been developed over programs conditions/decisions, and its
coverage is concerned with showing how each condition can independently affect
the decision’s outcomes (for all decisions in a program). A test suite that satisfies

Towards MC/DC Coverage of Properties Specification Patterns 163

the MC/DC requirements coverage makes all logical statements to be exercised
in a program. To adapt this criterion to cover systems requirements defined
as regular expressions, we must first develop the notion of how each event e
contributes to the recognition of a language, in the same way that each condition
can independently contribute to a decision in the MC/DC.

Conditions are treated here as events (e) observed in expressions (E - deci-
sion). In this way, we want to observe the occurrence of a given event e in an
expression E or its absence, denoted as [−e]. Given a regular expression E for
language L and a path π, an event e is the Unique First Recognition of an L’s
word, if in the first stage along π where an L word is recognised, it is recog-
nised because of e, or its absence. For regular expressions, only a single event
is observed at a time. This means that we do not deal with an “and” of events
observation at any stage of computation. Then, the contribution of an event to
provide a verdict of words recognised by a regular expression1 must be defined.
To this end, we first define the set of events that occur in regular expressions as
last symbols in a word.

Definition 3 (Last Events in Expressions). Let E be a regular expression
that describes a language L over an alphabet Σ. Last(E) ⊆ Σ describes all events
that occur in expression E as the last elements in words of language L.

E Last(E)

ε {}
e {e}
[−e] {e}
. Σ

E Last(E)

(E1 | E2) Last(E1) ∪ Last(E2)
(E1; E2) Last(E2) ∪ (Last(E1), if E2 = (E3)

∗)
(E)∗

Last(E)
(E)? Last(E)

Note that a special case is given for expressions built upon the sequence
operator (;). If the last expression in the sequence is a star expression, it might
be repeated zero or more times. Then, the previous expression must also be
considered as a last one in the overall expression to account for the set of last
events occurring in the recognised words. For instance, if (E = E1; (E3)∗), E1

must also be considered as last expression because E3 might occur zero times
and the last events in E1 are last events also. The absence of an event is denoted
as [−e]. Despite e can not appear as the last symbol in a word recognised by this
expression, it is a syntactic element used to recognise/refuse a word defined by
this expression. Then, {e} is the set of symbols to be syntactically considered in
expression [−e].

For example, if Σ = {P,Q,R} and Ex1 = ([−P]∗;P) | (Q;R), then
Last(Ex1) = Last(P) ∪ Last(R) = {P,R}. Q does not appear as a symbol in the
expression that can recognise or refuse a word. On the other hand, for expres-
sion Ex2 = ([−P]∗;P) | (Q;R∗), Last(Ex2) = Last(P) ∪ (Last(Q) ∪ Last(R)) =
{P,Q,R} because R∗ is a star expression.

1 Here, we use the relaxed term “recognised by a regular expression” meaning “recog-
nised by a an automaton that recognises the language defined by a regular expres-
sion”.

164 A.C.V. de Melo et al.

Based on Definition 3, the contribution of events to recognise a language’s
word is defined:

Definition 4 (Event Contribution - complete). Given a regular expression
E over alphabet Σ that defines a language L, an event e ∈ Σ contributes to the
complete recognition of an L’s word if e ∈ Last(E).

Now, the unique first recognition of an L’s word definition looks at the inde-
pendent contribution of each event in the alphabet to the words recognition
outcomes (either positive or negative). For this definition, the notion of words
prefixes and matching strings to regular expressions need to be defined.

Definition 5 (Matching Strings). Let E, E1 and E2 be regular expressions
defined over alphabet Σ, e ∈ Σ and u, u1, u2, ...un ∈ Σ∗.

E Match(u, E) if

ε u = ε
e u = e

E Match(u, E) if

(E1 | E2) Match(u, E1) ∨ Match(u, E2)
(E1; E2) u = u1.u2 ∧ Match(u1, E1) ∧ Match(u2, E2)
(E)∗ u = ε ∨ Match(u, E) ∨

(u = u1.u2....un ∧ Match(ui, E) ∧ 1 ≤ i ≤ n)

Definition 6 (Prefixes). Let E be a regular expression defined over alphabet
Σ, e ∈ Σ, u, v, w ∈ Σ∗ and Match(u,E).

Pref(u,E) = {v | u = v.w}
Prefe(u,E) = {v.e | u = v.e.w}

Given a string (events path) u that matches a regular expression E, Pref(u,E)
and Prefe(u,E) calculate the set of u prefixes and the set of u prefixes that finish
with an e symbol (event), respectively.

Definition 7 (Unique First Positive Recognition). Given a regular
expression E over alphabet Σ that defines a language L, an event e ∈ Σ con-
tributes to the Unique First Positive Recognition of an L’s word (UFPR(E, e)) if

– by the time e is observed, it can complete a word recognition of L and none of
its prefixes finished by e is a word in L:

∃u.e ∈ Σ∗�Match(u.e, E)∧
�t � t ∈ Prefe(u,E)

Note that the notion of events contribution to the words recognition outcomes
is related to the “instant” in which the verdict of recognition/nonrecognition can
be delivered. Undertaking this notion, the event contribution to deliver a positive
outcome is based on the complete contribution (Definition 4).

Towards MC/DC Coverage of Properties Specification Patterns 165

4 Regular Expressions Decomposed into Test Cases

To calculate the test cases necessary to cover UFPR (Definition 7) over a reg-
ular expression E, we provide a syntactic characterisation of events contribution
on words recognition. The method decomposes a regular expression into subex-
pressions representing test cases for the set of events in the language alphabet:
for each event, we syntactically calculate a set of test cases (given as subexpres-
sions) to cover UFPR. It means that the requirements specifications are covered
as these test cases are exercised in programs.

From a practical point-of-view, we are more interested in the test cases that
can reveal the recognition of words (sequences of events) in a language. Here, we
will consider the sets of subexpressions that positively contribute to recognise
the allowed sequence of events, covering test cases based on the notion of UFPR.

Definition 8 (Positive Contribution). Given an expression E over alphabet
Σ, for each event e ∈ Σ, E+ is the set of expressions defined over e that first
affect E positively (it makes E to be recognised).

First, the contribution of the basic elements are defined. In this definition,
we focus on the contribution of event e to expressions. It is given for the positive
and negative contributions to show the overall meaning of events contribution
and the cases in which they are symmetric. To generate the observable test cases,
however, we will focus on the positive contribution.

Definition 9 (Basis Contribution). Let a regular expression E be defined
over alphabet Σ, and e, f ∈ Σ. The contribution of event e to the basic expres-
sions is defined as follows:

(ε)+e = ∅ (1)

(ε)−
e = e (2)

(.)+e = e (3)

(.)−
e = ∅ (4)

(f)+e =
{

e if e = f
∅ if e �= f

(5)

(f)−
e =

{
[−e] if e = f
e if e �= f

(6)

([−f])+e =
{

[−e] if e = f
e if e �= f

(7)

([−f])−
e =

{
e if e = f
∅ if e �= f

(8)

The positive contribution of e to recognise the empty word (ε) is trivial; e
can not deliver a positive outcome to this expression and then the ∅ is given as

166 A.C.V. de Melo et al.

result. Conversely, e can provide a negative outcome to the empty word if it is
recognised. To provide a negative contribution of the empty word, any event in
alphabet Σ must be observed. Since we are dealing with unrecognised words in
the negative contributions, any event observed is enough to provide this verdict,
including e. The positive and negative contributions of e to the “any event in the
alphabet expression” (denoted by expression .) are symmetric to the observation
of ε. e gives a positive outcome for expression . if it is observed, while the negative
outcome can not be delivered. Note that whenever the ∅ is given as a result, it
means that e can not affect the recognition outcome.

For expressions made of an event f or its absence ([−f]), the positive and
negative contributions of e depend on e coinciding with f . For expression, f ,
if event e equals to f , its positive contribution to the word recognition is e,
while the negative observation of event e corresponds to observing any event in
alphabet Σ other than e ([−e]). If event e differs from f , e can not affect the
positive outcome but it can determine the negative outcome if it is observed. In
the absence expression ([−f]), if e coincides with f , its absence gives a positive
contribution while observing the expression e gives the negative outcome. If e
and f differ, the provided expressions are e for the positive contribution and ∅
for the negative one.

The positive contribution takes into account events that can recognise an
entire word, based on the concept of event complete contribution (Definition 4).
Now, to define the test cases for the positive contribution, we use Definition 3
to syntactically characterise elements in an expression that actually complete
the recognised words in the language.

Definition 10 (Operators Positive Contribution). Let E, E1 and E2 be
regular expressions defined over alphabet Σ. Then for each e ∈ Σ, the sets of
test cases defined for the expression are:

(E)+e = ∅ if e �∈ Last(E) (9)
(E1 | E2)

+
e = (E1)+e ∪ (E2)+e (10)

(E1;E2)
+
e =

{
(E1)+e ; (E2)+e if ε ∈ E+

2

E1; (E2)+e otherwise (11)

(E∗)+e = {ε} ∪ ((E)+e)∗ (12)

If e does not occur to complete a word in E, no test case can be created to
provide the independent positive contribution of e (it cannot be used to recognise
an entire word). For the alternative operator, a test case can be produced from
E1 or E2 as far as e occurs in them to complete a recognised word. Note that no
guard on the occurrence of the event in these expressions has been defined: if e
does not occur as the last element in one of these expressions, Eq. (9) is applied
to produce the empty set.

Towards MC/DC Coverage of Properties Specification Patterns 167

The sequence operator will look for test cases that can complete a word using
event e (or its absence). If E2 is a star or ? expression2, it might be used or not
to complete a word (given by the guard if ε ∈ E+

2). In these cases, E1 can
potentially generate the test cases, otherwise it is only used as a prefix to the
test cases generated by E2. These cases are depicted in Eq. (11). The test cases
created for the star operator considers the prefix expression E.

5 Calculating SPS Subexpressions

To calculate the SPS subexpressions for each regular expression that represents
the combination of SPS pattern (absence, universality, existence, precedence,
response) and scope (global, before, after, between, after-until) under consider-
ation, we have to analyse the positive contribution of each event in the regular
expression. For instance, if we consider the pattern response in the scope between
L and R, we have to calculate the positive contribution regarding each event in
the regular expression: L and R, from the scope, P and T from the pattern.

To illustrate the decomposition of a regular expression that represents a
combination of a SPS scope and pattern, we use the example of the absence
pattern in the before R scope [8]:

([−R]∗ | [−P, R]∗; R; .∗)

We analyse the expression regarding each event (P and R), following the rules
for the calculation of the positive contribution presented previously. Considering
that:

– X1 = [−R]∗

– X2 = [−P,R]∗;R; .∗

The expression we want to analyse has the form (E1|E2), thus, to calculate
the subexpressions we follow the positive contribution rule (E1|E2)+ = E+

1 ∪E+
2 .

Therefore, for each event in the formula, we have to analyse X1 and X2, and
combine the contribution of each expression accordingly.

Event P

– (X1)
+ analysis:

([−R]∗)+ (E∗)+ = ε ∪ (E+)∗

◦ ε
◦ ([−R]+)∗ ([−f])+e = e, if e �= f

(P)∗

2 Operator ? does not appear in the definition because it can be defined using the |
operator.

168 A.C.V. de Melo et al.

– (X2)
+ analysis:

([−P, R]∗; (R; .∗))+ (E1; E2)
+ = E1; E

+
2 , if ε /∈ E+

2

[−P, R]∗; (R; .∗)+ (E1; E2)
+ = E+

1 ; E+
2 , if ε ∈ E+

2

[−P, R]∗; (R)+; (.∗)+ (f)+e = ∅, if e �= f
∅

– Positive contribution:

1. ε
2. (P)∗

Event R

– (X1)
+ analysis:

([−R]∗)+ (E∗)+ = ε ∪ (E+)∗

◦ ε
◦ ([−R]+)∗ ([−f])+e = [−e], if e = f

[−R]∗

– (X2)
+ analysis:

([−P, R]∗; (R; .∗))+ (E1; E2)
+ = E1; E

+
2 , if ε /∈ E+

2

[−P, R]∗; (R; .∗)+ (E1; E2)
+ = E+

1 ; E+
2 , if ε ∈ E+

2

[−P, R]∗; (R)+; (.∗)+ (f)+e = e, if e = f
[−P, R]∗; R; (.∗)+ (E∗)+ = ε ∪ (E+)∗

◦ [−P, R]∗; R; ε
◦ [−P, R]∗; R; (.+)∗ (.)+e = e

[−P, R]∗; R; (R)∗

– Positive contribution:

1. ε
2. [−R]∗

3. [−P, R]∗; R
4. [−P, R]∗; R; (R)∗

Note that the positive contribution regarding event P in X1 is the empty word
ε and P ∗, since X1 covers all events except R. There is no positive contribution
regarding event P in X2. On the other hand, for event R, its positive contribution
in X1 is trivial, ε and [−R]∗. The positive contribution of event R in X2 is
represented by [−P,R]∗;R; (R)∗ (4) and [−P,R]∗;R (3), which is a subexpression
of the previous expression. Since we are interested in the positive contribution,
we focus on the cases where the subexpressions are satisfied. Calling the set of
satisfied traces Sat(< expression id >), we have for event R, Sat(3) ⊆ Sat(4).
Therefore, in our work, when we reach this situation we only consider, in practice,
the expression with the biggest satisfied traces set (in this case, we consider only
regular expression 4 and ignore the expression 3).

6 SPS Subexpressions in JPF

To represent the subexpressions in JPF, we converted each one into a minimal
deterministic automaton using the approach we describe in a previous work [5].

Towards MC/DC Coverage of Properties Specification Patterns 169

First, using the JFlap tool3, we build the minimal deterministic finite automaton
(DFA) with the accepting states. For instance, consider the automaton for P ∗,
which is the subexpression number 2 regarding the positive contribution of event
P in the regular expression of the absence pattern in the before R scope. The
minimal DFA for this subexpression is depicted in Fig. 1(a). The circle with a
thick border represents the accepting state, and the initial state of the automaton
is marked with a dashed arrow.

(a) Generated minimal
DFA

(b) Test case DFA

Fig. 1. Absence pattern in before R scope: positive contribution of event P: (P)∗

Since the subexpressions represent test cases, we need to know when we reach
a rejecting state. Hence, we use the complement of the built automaton and
complete the inputs to define the rejecting states. In this example, we completed
the inputs for the automaton by adding the state 1 and the edge P , which was
the missing input in the generated minimal DFA. Figure 1(b) presents the DFA
for the test case of the example. The circle with a dashed border represents the
rejecting states.

An important remark is about the empty word ε. Since it does not accept
any real event (Java method), we do not build an automaton for it. Therefore,
for the absence pattern in the before R scope, we consider, in practice, only the
following subexpressions (Sect. 5):

– Event P: P ∗ (subexpression 2)
– Event R: [−R]∗ (subexpression 2), [−P,R]∗;R; (R)∗ (subexpression 4)

6.1 Verification with JPF

Recall the coffee machine example (Sect. 2.2), and the property: there is no
occurrence of getMilk before getCoffee (i.e., the absence of P = getMilk in
the scope before R = getCoffee). As we can observe in the program traces, the
property is not violated. This result is confirmed by JPF. Figure 2 presents the
screenshot of the JPF verification results. On the right-hand side, we can see the
property automaton, and the automaton edges that were covered by program
execution traces (the program traces that covered an edge are identified by the
label Tr[< traceId1, traceId2, ...traceIdn >]). On the left-hand side we have a
partial view of the verification report, where we can see the property verdict
that the property was satisfied.
3 http://www.jflap.org.

http://www.jflap.org

170 A.C.V. de Melo et al.

Fig. 2. JPF Verdict: the property is satisfied

The verification of the subexpressions (or test cases) occurs in the following
manner: for each program trace execution, we traverse the corresponding set of
subexpressions automata (in this example, we have three automata: one automa-
ton regarding event P positive contribution (P ∗), and two automata regarding
event R positive contribution ([−R]∗, [−P,R]∗;R; (R)∗)). When a subexpres-
sion automaton reach an accepting state, we store this verdict and remove the
automaton from the initial set. Thus, we continue the verification process by
traversing the remaining automata until the end of the process.

For instance, considering the test case 0 regarding event P : (P)∗. In this
example, this test case refers to the occurrence of getMilk though the whole
program execution. This test case fails in all program traces, because other
events occur besides getMilk in all program traces, so we do not reach a success
verdict (Fig. 3). In case of failure of a test case, the developer should analyze the
program traces and whether this result was expected or not. If this result was not
expected, the program should be fixed and the test case must be executed again.
In this example, the failure was expected, so there is no need to fix anything in
the program.

When considering test case 1 regarding event R: [−R]∗, which in our example
means that no occurrence of getCoffee should be observed, we reach a success
verdict only in the last program execution trace (Trace 3). Figure 4 presents the
verification result for test case 1, and the automaton edges coverage of a 100 %.

Towards MC/DC Coverage of Properties Specification Patterns 171

Fig. 3. Test case 0 regarding event P: (P)∗

Fig. 4. Test case 1 regarding event R: [−R]∗

Finally, the test case 2 regarding event R, [−P,R]∗;R; (R)∗. In our example,
it means that getMilk does not occur until the occurrence of getCoffee; and,
after one occurrence of getCoffee, we can observe 0 or more occurrences of
getCoffee. This test case reaches a success verdict at the first program execution
trace (Trace 0). Figure 5 presents the results for test case 2, and the automaton
edges coverage of 28.57 %. Since the first program trace satisfies this test case,

172 A.C.V. de Melo et al.

the tool does not continue the verification of this test case automaton for the
other traces (Traces 1, 2 and 3). Hence, the automaton edges coverage is low.
If it was required, additional test cases could be generated to reach a higher
coverage.

Fig. 5. Test case 2 regarding event R: [−P,R]∗;R; (R)∗

As we could observe from the tool screenshots, each test case verification
report presents, besides the automaton, the edges that were traversed during
verification, until a success verdict is reached. This coverage information can be
used to further analyze the covered and uncovered paths during the verification
process, and help developers in the understanding of program behaviour and in
the generation of additional test cases that comprise the uncovered paths.

7 Concluding Remarks

In this paper, we described a method to calculate test cases to cover a property-
based metrics for systems requirements based on the MC/DC, namely the Unique
First Positive Recognition (UFPR). The system requirements are properties
defined as regular expressions and the method is a syntactic characterisation
of the properties decomposition, inductively defined over the syntax of regular
expressions. Then, given a regular expression representing a system requirement,
the subexpressions are calculated representing the test cases to cover the UFPR.
If a test suite satisfies all these test cases, the system requirements are covered
undertaking the UFPR.

A proof of concept for this method was developed using the Specification
Patterns System (SPS). All those patterns were decomposed into their test cases

Towards MC/DC Coverage of Properties Specification Patterns 173

(subexpressions) and to show the practical use of them, they were implemented in
the Java PathFinder (JPF). For each pattern, the set of test cases are monitored
by the (JPF) to collect the program test cases and create a test suite that covers
the system requirements. From a practical point-of-view, users can choose and
instantiate patterns to define the system requirements, submit them to the JPF
and collect the test suite to cover the requirements. For this particular case (all
properties in the SPS), the test cases are previously calculated and ready to be
instantiated, no extra effort is needed to produce the test suite.

The contributions of this paper are threefold: the definition of the Unique
First Positive Recognition for regular expressions; a method to syntacticly
decompose systems requirements into test cases to cover the UFPR; and a tool
to collect programs test suite that satisfy the UFPR of the Specification Patterns
System.

Despite all contributions presented here, we want to improve this research
in many aspects. The work presented here is limited to calculate the positive
outcomes while the negative contribution still needs to be defined. The UFPR
defines the positive contributions, and the method to calculate the test cases is
restricted to the positive cases. The negative calculation is in progress. The pos-
itive decomposition calculation for the SPS properties was manually performed.
We want to provide an automatic procedure to do this, together with a technique
to reduce the number of test cases preserving the semantics. Considering that
the SPS are the commonly used properties, having only them implemented in
a tool does not impose a serious restriction in practice. However, if the calcu-
lation is automated, any property can be considered in practice. The SPS test
cases are given as subexpressions and the automata counterparts are calculated
independent from any given model checker. It means that this front-end can be
used with model checkers other than JPF, and we plan to extend its usage to
other model checkers.

Acknowledgments. This project has been funded by the State of São Paulo Research
Foundation (FAPESP) - Processes: 2011/01928-1, 2012/23767-2, 2013/22317-6. We
also would like to thank the NASA Ames Research Center and the Carnegie Mellon
University - Silicon Valley, for providing a rich environment for the development of
research activities.

A Regular Expressions: Axioms and Definitions

Definition 11. Let E and E1, . . . , En be regular expressions defined over alpha-
bet Σ = {e1, ..., en} and 1 ≤ i ≤ j ≤ n. Some properties and definitions are
given:

174 A.C.V. de Melo et al.

Identity and Annihilator:
∅;E ≡ ∅
E; ∅ ≡ ∅
E; ε ≡ E
ε;E ≡ E

E | ∅ ≡ E

Associativity:
E1; (E2;E3) ≡ (E1;E2);E3

E1 | (E2 | E3) ≡ (E1 | E2) | E3

Distributivity:
E1; (E2 | E3) ≡ (E1;E2) | (E1;E3)
(E1 | E2);E3 ≡ (E1;E3) | (E2;E3)

Commutativity:
E1 | E2 ≡ E2 | E1

Idempotent:
E | E ≡ E

Closures:
(E∗)∗ ≡ E∗

∅∗ ≡ ε
ε∗ ≡ ε

Definitions:
. � e1 | . . . | en

[−e] � fi | . . . | fj , ; {fi, . . . fj} = (Σ − {e})
[−ei, ..., ej] � fn | . . . | fm, ;

{fn, . . . fm} = (Σ − {ei, ..., ej})
(E)? � ε | E

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing, vol. 54. Cambridge Uni-
versity Press, Cambridge (2008)

2. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM, New York (1999)

3. Fraser, G., Wotawa, F., Ammann, P.E.: Testing with model checkers: a survey.
Softw. Test. Verif. Reliab. 19(3), 215–261 (2009)

4. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from require-
ments specifications. SIGSOFT Softw. Eng. Not. 24(6), 146–162 (1999)

5. Hanazumi, S., de Melo, A.C.V., Păsăreanu, C.S.: From testing purposes to formal
JPF properties. In: Java PathFinder Workshop. ACM (2014)

6. Hesari, S., Behjati, R., Yue, T.: Towards a systematic requirement-based test gen-
eration framework: industrial challenges and needs. In: Proceedings of the 2013 21st
IEEE International Requirements Engineering Conference, RE 2013, pp. 261–266
(2013)

Towards MC/DC Coverage of Properties Specification Patterns 175

7. Holloway, C.: Towards understanding the DO-178C/ED-12C assurance case. In: 7th
IET International Conference on System Safety, Incorporating the Cyber Security
Conference 2012, p. 14. Institution of Engineering and Technology (2012)

8. S. Patterns, June 2015. http://patterns.projects.cis.ksu.edu/
9. Pecheur, C., Raimondi, F., Brat, G.: A formal analysis of requirements-based test-

ing. In: Proceedings of the Eighteenth International Symposium on Software Test-
ing and Analysis, ISSTA 2009, pp. 47–56 (2009)

10. Pnueli, A.: The temporal logic of programs. In: SFCS 1977: Proceedings of the
18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE
Computer Society, Washington, DC (1977)

11. Rajan, A., Whalen, M., Staats, M., Heimdahl, M.P.E.: Requirements coverage as
an adequacy measure for conformance testing. In: Liu, S., Maibaum, T., Araki,
K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 86–104. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-88194-0 8

12. Sametinger, J., Rozenblit, J., Lysecky, R., Ott, P.: Security challenges for medical
devices. Commun. ACM 58(4), 74–82 (2015)

13. Tan, L.: State coverage metrics for specification-based testing with Büchi
automata. In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 171–
186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21768-5 13

14. Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal logic.
In: Proceedings of the 2004 IEEE International Conference on Information Reuse
and Integration, IRI 2004 (2004)

15. Whalen, M.W., Rajan, A., Heimdahl, M.P., Miller, S.P.: Coverage metrics for
requirements-based testing. In: International Symposium on Software Testing and
Analysis, p. 25 (2006)

http://patterns.projects.cis.ksu.edu/
http://dx.doi.org/10.1007/978-3-540-88194-0_8
http://dx.doi.org/10.1007/978-3-642-21768-5_13

Calculi

Unification for λ-calculi Without
Propagation Rules

Flávio L.C. de Moura(B)

Departamento de Ciência da Computação, Universidade de Braśılia, Braśılia, Brazil
flaviomoura@unb.br

Abstract. We present a unification procedure for calculi with explicit
substitutions (ES) without propagation rules. The novelty of this work
is that the unification procedure was developed for the calculi with ES
that belong to the paradigm known as “act at a distance”, i.e. explicit
substitutions are not propagated to the level of variables, as usual. The
unification procedure is proved correct and complete, and enjoy a sim-
ple form of substitution, called grafting, instead of the standard capture
avoiding variable substitution.

1 Introduction

Unification is an important operation extensively used in Computer Science
whose goal is to find a substitution, when it exists, to identify terms in a certain
theory. In particular, it is a central operation in automating higher-order rea-
soning. The correct framework for higher-order unification is the simply typed
λ-calculus where this operation is known to be undecidable [21,23]. In addition,
different unifiers of a given problem can be completely independent from each
other, i.e. there is no unicity of solutions.

ES calculi internalize the substitution operation by extending the gram-
mar of the λ-calculus and have been extensively studied during the last
decades [1,19,22,26,26–28,30]. It has been mainly used as an intermediate for-
malism between the theory of the λ-calculus and its implementation. In this
context many different approaches were proposed because it was surprisingly
difficult to develop a formalism preserving important properties related to the
simulation of the λ-calculus.

In this work we present a unification procedure for a family of extensions of
the simply typed λ-calculus with explicit substitutions (ES) that act at a dis-
tance. This new approach to ES, which has motivations in the study of Proof-
Nets [5,20], satisfy all expected properties for an ES calculus, such as preserva-
tion of strong normalization (PSN), confluence on open terms and simulation of
one step β-reduction. This approach differs from the usual ES calculi because
the explicit substitution is not percolated over terms, and the starting rule of
the calculi can traverse ES. In this sense substitutions “act at a distance” or “do
not have propagation rules”. Several variants of calculi with ES at a distance

F.L.C. de Moura—Author partially supported by FAPDF.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 179–195, 2016.
DOI: 10.1007/978-3-319-46750-4 11

180 F.L.C. de Moura

have been proposed for different purposes, such as implicit computational com-
plexity [8], the theory of abstract standardization [2,4], abstract machines [3],
study of equational extensions of the λ-calculus [6], etc.

During the unification procedure, each term is transformed into its η-long
normal form, which is a well known notion for λ-terms and some (meta)-confluent
ES calculi. Nevertheless, the characterization of the η-long normal form for a
calculus without propagation rules is not straightforward because explicit sub-
stitutions can appear everywhere in the term. In this sense, this work improves
[12] as follows:

1. We define the notion of binding contexts that allows a precise characteriza-
tion of the structure of the normal form and of the η-long normal form of a
metaterm in calculi without propagation rules.

2. Renaming of bound variables is not taken for free. In fact, the cost of α-
conversion needs to be explicitly considered in any implementation of a uni-
fication procedure for a calculus that works modulo α-conversion.

An extended version of this work is available at http://flaviomoura.mat.br.

2 Explicit Substitutions Without Propagation Rules

ES calculi without propagation rules include a family of calculi that allow a
substitution to be performed even if it is not at the level of variables. The
grammar for all calculi (with metaterms) in this family is defined as follows:

t, u ::= x | XΔ | t u | λx.t | t[x/u] (1)

where x is an ordinary variable, XΔ is a metavariable with support set Δ (a set
of ordinary variables), t u is an application, λx.t is an abstraction and t[x/u] is
a term with an explicit substitution. Metavariables must come with a minimum
amount of information in order to guarantee that some basic operations (like
replacement of metavariables by metaterms) are sound in a typing context [27].
For the sake of clarity, we write X instead of X{}. As we will see, this app-
roach also simplifies the presentation of the unification rules, and permits to
keep a clear separation between the substitutions generated by the unification
procedure and the ones generated by the calculus itself during reduction. The
separation between ordinary variables and metavariables allows an important
simplification in the unification procedure because the substitution generated
by the unification procedure is separated from the substitution generated by
the calculus itself. Although the calculi considered here are not first-order in
the sense that substitutions of variables need to take into account renamings
of bound variables in order to avoid capture, the substitution generated by the
unification procedure is first-order (grafting) [18] because metavariables are para-
meterized by a set of variables that is fundamental for the good behaviour of
the procedure. As said before, the construction t[x/u] denotes a term with an
explicit substitution, and both λx.t and t[x/u] bind x in t, i.e. t is the scope

http://flaviomoura.mat.br

Unification for λ-calculi Without Propagation Rules 181

of x in both λx.t and t[x/u], and in this case x is called a bound variable. For
instance, both occurrences of x in the term (x Y{x})[x/u] are bounded by the
explicit substitution. If a variable is not under the scope of an abstraction or an
explicit substitution then it is called free. Therefore, we work with three sorts of
variables: free variables, bound variables and metavariables. In addition, the set
of free variables is divided into two kinds: the ones occurring in the support set
of metavariables, and the real variables, which are defined as follows:

Definition 1. The set of free variables occurring in the support sets of metavari-
ables in a metaterm t, denoted by fm(t), and the set of free (real) variables occur-
ring in the metaterm t, denoted by fr(t), are inductively defined as follows:

• fm(XΔ) = Δ • fr(XΔ) = {}
• fm(x) = {} • fr(x) = {x}
• fm(u v) = fm(u) ∪ fm(v) • fr(u v) = fr(u) ∪ fr(v)
• fm(λx.u) = fm(u)\{x} • fr(λx.u) = fr(u)\{x}
• fm(u[y/v]) = (fm(u)\{y}) ∪ fm(v) • fr(u[y/v]) = (fr(u)\{y}) ∪ fr(v)

The set of free variables of a term t is defined as fv(t) = fm(t) ∪ fr(t).

The number of occurrences of the (free) variable x in the term t is denoted
by |t|x, as defined above. So, for instance, |(X{x,y} x)[y/λz.X{x,z}]|x = 3.

The operational semantics of the calculi is given in terms of one-hole contexts,
and two special classes of contexts called substitution contexts [2] and binding
contexts:

Contexts C ::= 〈·〉 | C t | t C | λx.C | C[x/t] | t[x/C]
Biding Contexts B ::= 〈·〉 | B[x/t] | λx.B
Substitution Contexts L ::= 〈·〉 | L[x/t]

We write C〈t〉 for the term obtained by replacing the hole 〈·〉 of C by t,
thus e.g. (〈·〉y)〈x〉 = (x y) and (λx.〈·〉)〈x〉 = λx.x. We write C[[u]] when the free
variables of u are not captured by the context C, thus for example, C[[x]] denotes
the term (x y) if C = 〈·〉y, and λy.x, if C = λx.〈·〉.

Action at a distance is characterized by the fact that ES are not percolated
over terms, and variables can be substituted by terms even if the corresponding
explicit substitution is not at the level of the variable itself. As usual for ES
calculi, there is one rule to start the simulation of a β-reduction and a set of
rules to complete the simulation of the β-step. The rule presented below is the
starting rule for calculi acting at a distance, and its name comes from distance
Beta:

L〈λx.t〉 u �→dB L〈t[x/u]〉 (2)

where L is a substitution context. Calculi with explicit substitutions that have
(2) as starting rule are called calculi without propagation rules. It is interesting to
note how the dB-rule generalizes β-reduction since dB-redexes include application
whose left-hand side are not abstractions.

182 F.L.C. de Moura

Binding contexts will be used to characterize normal forms. In fact, the first
difficult in building a unification procedure for these calculi was to find an ade-
quate notation for terms in normal form without forcing substitutions to be
propagated over them. In [12], an ongoing work accepted for short presenta-
tion, the early stages of this work was presented assuming that ES do not occur
outside the external abstractions of a normal form, which is possible since the
operational semantics of the calculi is not changed. In Subsect. 2.2, we present a
precise and elegant characterization of normal forms for calculi without propa-
gation rules.

In the next subsection we shortly present some calculi without propagation
rules. They differ in the way substitution is controlled as follows: the first cal-
culus, called the linear substitution calculus (λlsub) [31], performs substitutions
one at a time. The second calculus, called the substitution calculus (λsub) [6],
performs the whole substitution in one step, i.e. it splits the (non-terminating)
β-reduction of the λ-calculus into two (terminating) rules. Finally, the third cal-
culus, known as the structural λ-calculus (λstr) [5], duplicates ES by introducing
new names for them until the variable of the substitution has just one occurrence
in the term, which is then executed.

2.1 The Calculi with ES at a Distance

As explained before, all the calculi start the simulation of a β-reduction by
rule (2), which introduces an explicit substitution. The execution and control of
the explicit substitution can be done in different ways, which give rise to different
calculi. The following tables in addition to rule (2) form the rules of the λlsub-,
λsub- and λstr-calculi:

lsub
C[[x]][x/u] �→ls C[[u]][x/u]
t[x/u] �→w t, if |t|x = 0

sub
t[x/u] �→sub t{x/u}, if x /∈ fm(t) or

x ∈ fr(t)
str

t[x/u] �→c t〈x|y〉[x/u][y/u] if |t|x > 1
t[x/u] �→d t{x/u} if |t|x = 1 and x /∈ fm(t)
t[x/u] �→w t if |t|x = 0

In what follows, we write λdB-calculus to refer to any of these calculi. As
usual, → denotes the contextual closure of �→, � the reflexive-transitive closure
of → and =λdB

the equivalence relation generated by →. In rule ls, C[[x]][x/u]
denotes a term that contains at least one occurrence of the variable x and an
explicit substitution that waits to substitute x by u. After a possible renaming to
avoid capture of variables, the rule ls substitutes the variable x by u and leaves
the explicit substitution [x/u] at the very same place because it can still be used
by other occurrences of x in the term. After the substitution of all occurrences
of x in the term, the rule w can be applied to get rid of the explicit substitution.
In the λsub-calculus, the sub-rule transforms in one step the explicit substitution
into the implicit metasubstitution, as long as x does not occur in the support set

Unification for λ-calculi Without Propagation Rules 183

of a metavariable, or it occurs as a real variable, in t. In the λstr-calculus, t〈x|y〉
denotes the non-deterministic replacement of i (1 ≤ i ≤ |t|x − 1) occurrences of
x in t by a fresh variable y. A formal definition of the function 〈 | 〉 is given in
what follows. Initially, we define an auxiliary relation that non-deterministically
replaces exactly k occurrences of the variable x in t by the fresh variable y,
denoted by tk〈x|y〉.

Definition 2. The non-deterministic replacement of k ≥ 0 occurrences of the
variable x by the fresh variable y in the metaterm t, denoted by tk〈x|y〉, is induc-
tively defined as follows:

• tk〈x|y〉 = t, if x /∈ fv(t) or k = 0, otherwise
• xk

〈x|y〉 = y • XΔ
k
〈x|y〉 = X(Δ\{x})∪{y} • λz.uk

〈x|y〉 = λz.uk
〈x|y〉

• (u v)k
〈x|y〉 = ui

〈x|y〉 vj
〈x|y〉, where i + j = k

• u[z/v]k〈x|y〉 = ui
〈x|y〉[z/vj

〈x|y〉], where i + j = k.

According to this definition, the structural λ-calculus can be adapted as
follows:

str
t[x/u] �→c tk〈x|y〉[x/u][y/u] if |t|x > 1 and 0 < k < |t|x
t[x/u] �→d t{x/u} if |t|x = 1 and x /∈ fm(t)
t[x/u] �→w t if |t|x = 0

The metasubstitution, i.e. the substitution operation of the λ-calculus can be
extended to the grammar of calculi with explicit substitutions as follows:

Definition 3. Let t, u be metaterms. We inductively define the metasubstitution
of x by u in t, written t{x/u}, as follows [27]:

• x{x/u} = u • y{x/u} = y

• XΔ{x/u} =

{
XΔ[x/u], if x ∈ Δ
XΔ, if x /∈ Δ

• (t1 t2){x/u} = t1{x/u} t2{x/u}
• (λy.t1){x/u} = λy.t1{x/u}, if y /∈ fv(u)

• t1[y/t2]{x/u} = t1{x/u}[y/t2{x/u}] if y /∈ fv(u)

In the cases (λy.t1){x/u} and t1[y/t2]{x/u} above, a renaming of bound variables
before the propagation of the substitution can be necessary to avoid capture of
variables.

Nevertheless, for the particular case of the substitution calculus presented
above, this notion of metasubstitution leads to a non-confluent calculus. In fact,
assuming that x /∈ fv(v) and y /∈ fv(u), one has the following non-joinable
divergence:

184 F.L.C. de Moura

(x y X{x,y})[x/u][y/v]

sub������������������
sub

��
(u y X{x,y}[x/u])[y/v]

sub

��

(x v X{x,y}[y/v])[x/u]

sub

��
(u v X{x,y}[y/v][x/u]) (u v X{x,y}[x/u][y/v])

One way to close this diagram is to allow permutation of independent sub-
stitutions, which is usually formalized via an equation of the following form:

t[x/u][y/v] ≡ t[y/v][x/u], if x /∈ fv(v) and y /∈ fv(u) (3)

This approach is adopted in [33] in order to prove metaconfluence for the
structural λ-calculus. In order to recover metaconfluence for the substitution
calculus, we use a different approach based on a new notion of metasubstitution
that do not change the position of an explicit substitution in a term for the case
of metavariables. This new notion is given by the following definition, and more
details can be found in [11].

Definition 4 (Metasubstitution). Let t, u be metaterms. The metasubsti-
tution t{x/u} is defined as follows:

t{x/u} =
{

t{{x/u}}[x/u], if x ∈ fm(t)
t{{x/u}}, if x /∈ fm(t)

where t{{x/u}} is inductively defined as follows:

t{{x/u}} = t if x /∈ fr(t), otherwise
• x{{x/u}} = u
• (λy.v){{x/u}} = λy.v{{x/u}} if x �= y & y /∈ fv(u)
• (t1 t2){{x/u}} = t1{{x/u}} t2{{x/u}}
• t1[y/t2]{{x/u}} = t1{{x/u}}[y/t2{{x/u}}] if x �= y & y /∈ fv(u)

Using this new notion of metasubstitution, note that the previous divergence is
no longer generated because the explicit substitution does not percolate over the
term.

Despite the fact that calculi without propagation rules are not first order in
the sense that they use a notion of substitution that renames bound variables in
order to avoid capture, the substitution generated by the unification procedure
is still first order. This is possible due to two facts:

1. Metavariables and (ordinary) variables belong to different classes, so that the
substitution generated by the unification procedure are separated from the
ones generated by the reduction relation.

Unification for λ-calculi Without Propagation Rules 185

2. The support set of metavariables contains the variables that can occur free
in the term that will replace this metavariable, and in addition, metavari-
ables parameterized by a set of variables allow us to express the functional
dependency of the arguments w.r.t. the corresponding abstractions in a very
straightforward and simple way.

We define grafting as a first order substitution whose domain is the set of
metavariables:

Definition 5 (Grafting). Let t and u be metaterms, and Δ a set of variables
with fv(u) ⊆ Δ. We inductively define the grafting of u for XΔ in t, denoted by
t[[XΔ/u]], as follows:

• y[[XΔ/u]] = y • XΔ′ [[XΔ/u]] =

{
u if Δ ⊆ Δ′
XΔ′ otherwise.

• YΔ′ [[XΔ/u]] = YΔ′ , if X �= Y • (t1 t2)[[XΔ/u]] = (t1[[XΔ/u]]) (t2[[XΔ/u]])

• (λx.t1)[[XΔ/u]] = λx.(t1[[XΔ/u]])

• t1[x/t2][[XΔ/u]] = (t1[[XΔ/u]])[x/t2[[XΔ/u]]]

In this way, the metavariable X{x,y,z} can be replaced by metaterms contain-
ing x, y and z as free variables, but no more than that. So, for instance,

(λx.x X{x,y})[[X{x}/x]] = λx.x x.

We show next, grafting and reduction commute.

Lemma 1. Let t, u be metaterms and XΔ a metavariable with fv(u) ⊆ Δ. For
R ∈ {dB, sub, lsub, str}, t →R t′ implies t[[XΔ/u]] →R t′[[XΔ/u]]

Lemma 2. Let t, u, v be metaterms and XΔ a metavariable with fv(u) ⊆ Δ.
Then t{x/v}[[XΔ/u]] = t[[XΔ/u]]{x/v[[XΔ/u]]}.
Corollary 1. Grafting and reduction commute.

2.2 Typing Rules

The right environment for unification is the simple type theory, in which simple
types are defined by the following grammar:

σ ::= A | σ → σ

where A range over a denumerable set of base types. Type variables will range
over σ, τ, γ, . . . with subscripts when necessary, and the constructor → of a func-
tional type is right associative. Therefore, σ → τ → γ means σ → (τ → γ),
and every typable metaterm t has a type of the form σ1 → σ2 → · · · → σn →
A (n ≥ 0), where A is the target type of t, written tt(t). If t is a metaterm
of type σ, then we write ty(t) = σ. A type assignment is a pair of the form
x : σ, where x is a variable and σ is a type. The domain of a set of type
assignments Γ = {x1 : σ1, x2 : σ2, . . . , xn : σn}, denoted by Dom(Γ), is the

186 F.L.C. de Moura

set {x1, x2, . . . , xn}, whose variables are assumed to be pairwise distinct. We
define type contexts as finite sets of type assignments. We assume that variables
in a type context have at most one assignment, and the type contexts can be
extended by adding new assignments, as long as this condition is preserved. If Σ
is a type context then the restriction of Σ to the variables in the set S, denoted
by Σ|S , is defined as the set {x : σ | x ∈ S and (x : σ) ∈ Σ}.

The fact that the term t has type σ in the type context Σ is expressed by
the type judgment Σ t : σ. In addition, to each metavariable XΔ we associate
a unique type σX . We assume that for each type σ there is an infinite set of
metavariables XΔ such that σX = σ and the typing rules are given by the
following rules:

(x : σ) ∈ Σ

Σ x : σ
(Var)

Δ ⊆ Dom(Σ)
Σ XΔ : σX

(MVar)

Σ t : σ → τ Σ u : σ

Σ t u : τ
(App)

Σ ∪ {x : σ} t : τ

Σ λx.t : σ → τ
(Abs)

Σ ∪ {x : σ} t : τ Σ u : σ

Σ t[x/u] : τ
(Clos)

We present some properties of this typing system:

Lemma 3. Let Σ be a type context, t a metaterm and σ a type. If Σ′ ⊃ Σ is
another type context, then Σ t : σ =⇒ Σ′ t : σ.

Proof. By induction on Σ t : σ.

Lemma 4. Let t be a metaterm such that Σ t : σ for some type σ and type
context Σ. Then Σ|fv(t) t : σ.

Proof. By induction on Σ t : σ.

Lemma 5. Let t be a metaterm such that Σ t : σ for some type σ and type
context Σ. If t →dB t′ or t →w t′ then Σ t′ : σ.

Lemma 6. Let Σ and Σ′ be type contexts such that its union is still a type
context, and t, u be metaterms. If x is a fresh variable of type γ, x /∈ fm(t),
Σ ∪ {x : γ} t : σ and Σ′ u : γ then Σ ∪ Σ′ t{{x/u}} : σ

Proof. By induction on t.

Lemma 7. Let Σ and Σ′ be type contexts such that its union is still a type
context, and t, u be metaterms. If x ∈ fm(t), Σ ∪ {x : γ} t : σ and Σ′ u : γ
then Σ ∪ {x : γ} ∪ Σ′ t{{x/u}} : σ

Proof. By induction on t.

Unification for λ-calculi Without Propagation Rules 187

Proposition 1. Let Σ and Σ′ be type contexts such that its union is still a type
context. If t and u are metaterms such that Σ ∪ {x : γ} t : σ and Σ′ u : γ
then Σ ∪ Σ′ t{x/u} : σ.

Corollary 2. Let Σ and Σ′ be type contexts such that its union is still a type
context. If C is a context, x a variable of type γ in the type context Σ, u is a
metaterm such that Σ′ u : γ and Σ∪{x : γ} C[[x]] : σ then Σ∪Σ′ C[[u]] : σ.

Theorem 1 (Subject reduction for the λlsub-calculus). Let t be a
metaterm such that Σ t : σ for some type σ and type context Σ. If t →λlsub

t′

then Σ t′ : σ.

Theorem 2 (Subject reduction for the λsub-calculus). Let t be a metaterm
such that Σ t : σ for some type σ and type context Σ. If t →λsub

t′ then
Σ t′ : σ.

Lemma 8. Let t be a metaterm. If Σ ∪ {x : γ} t : σ then Σ ∪ {x : γ} ∪ {y :
γ} tk〈x|y〉 : σ, for all 0 ≤ k ≤ |t|x and fresh variable y.

Corollary 3. If |t|x > 1 and Σ ∪ {x : σ1} t : σ then Σ ∪ {x : σ1} ∪ {y : σ1}
t〈x|y〉 : σ, where y is a fresh variable.

Theorem 3 (Subject reduction for the λstr-calculus). Let t be a metaterm
such that Σ t : σ for some type σ and type context Σ. If t →λstr

t′ then
Σ t′ : σ.

Our unification algorithm works with terms in η-long normal form (lnf) that
is defined in what follows.

By definition, a term is in normal form if it has no reduct. The following
lemma gives the general structure of a term in normal form.

Lemma 9 (Characterization of normal forms). These terms can be char-
acterized by the following structure:

B〈Ln〈· · · L1〈L0〈a〉 t1〉 · · · tn〉〉

where

– a is either a variable or a metavariable;
– L0 = 〈·〉 if a is not a metavariable;
– the terms t1, t2, . . . , tn are in normal form;
– every substitution of the form [x/u] occurring in B or Li (0 ≤ i ≤ n) is such

that x occurs in the support set of a metavariable that is in the scope of this
substitution, and u is in normal form.

Since the calculi considered here are metaconfluent, normal forms are unique,
and we write (t)↓ to denote the normal form of the term t.

188 F.L.C. de Moura

Definition 6 (η-long normal form). Let t = B〈Ln〈· · · L1〈L0〈a〉 t1〉 · · · tn〉〉
be a term in normal form of type σ1 → · · · → σm → A with A atomic and
n,m ≥ 0. The η-long normal form (lnf) of t, written (t)�, is given by

λx1 . . . xm.B′〈L′
n〈· · · L′

1〈L′
0〈a〉 (t1)�〉 · · · (tn)�〉〉 (x1)� . . . (xm)�

where

– L′
i (0 ≤ i ≤ n) is obtained from Li by taking each substitution of the form

[x/u] in Li and replacing it by [x/(u)�].
– B′ is obtained from B by preserving each abstractor of the form λx, and replac-

ing each substitution of the form [x/u] in B by [x/(u)�].

Lemma 10. The Definition 6 is well-defined.

Definition 7 (Heading). Let t = B〈Ln〈· · · L1〈L0〈a〉 t1〉 · · · tn〉〉 be a term in
η-long normal form. The heading of t is defined as (B〈Ln〈· · · L1〈L0〈a〉〉 . . .〉〉)↓.

In this way, if λx.(λy.a X{z})[z/u] is a term in η-long normal form then
it can be written as B2〈B1〈B0〈a X{z}〉〉〉 with B2 = λx.〈·〉, B1 = 〈·〉[z/u] and
B0 = λy.〈·〉. By definition, its heading is equal to (λx.(λy.a)[z/u])↓= λx.λy.a.

Definition 8. A metaterm in lnf is flexible if its head is a metavariable. Oth-
erwise, it is rigid.

3 Unification

In this section we present the unification procedure. It receives as argument a
unification problem that is defined in what follows.

Definition 9. A unification problem P is a finite set of pairs, also called dis-
agreement pairs, of the form t =? u, where t and u are terms in lnf of the same
type. A disagreement pair t =? u is called trivial if t =α u, i.e. if t and u differ
only by the name of bound variables. A grafting σ is a solution of the disagree-
ment pair t =? u, if tσ =λdB

uσ. A grafting σ is a solution of the unification
problem P if it is a solution of each disagreement pair of P . A metavariable is
unsolved w.r.t. the unification problem P if it appears in either a flexible-rigid or
a rigid-rigid pair in P , otherwise, i.e. if it either appears only in flexible-flexible
pairs or does not appear at all in P , it is said to be solved w.r.t. the unification
problem P . A unification problem is pre-solved if it does not contain unsolved
metavariables, i.e. if it contains only flexible-flexible pairs. A unification problem
without solution will be denoted by ⊥. The set of unifiers of a unification problem
P is denoted by UλdB

(P).

The unification rules are presented in Table 1. For a given unification prob-
lem P , one starts with the pair P ; ε, where ε is the empty grafting. The rules
are applied non-deterministically to the current unification problem until no
more rules apply, and then one reaches either ⊥ (no solution is generated) or a

Unification for λ-calculi Without Propagation Rules 189

Table 1. Unification Rules

{t =? t′} ∪ Q; θ
Trivial
=⇒ Q; θ, if t =α t′

{t =? t′} ∪ Q; θ
Fail
=⇒ ⊥, if t =? t′ is a rigid-rigid equation

with headings that are not α-equivalent

{t =? t′} ∪ Q; θ
Dec
=⇒ (

n
⋃

i=1

{B〈Ln〈. . . Li〈ti〉 . . .〉〉 =? B′〈L′
n〈. . . L′

i〈t′
i〉 . . .〉〉}) ∪ Q; θ

if t =? t′ is a rigid-rigid equation, t = B〈Ln〈. . . L2〈L1〈a t1〉 t2〉 . . . tn〉〉,
t′ = B′〈L′

n〈. . . L′
2〈L′

1〈b t′
1〉 t′

2〉 . . . t′
n〉〉 and (B〈a〉)↓=α (B′〈b〉)↓

P ; θ
Exp
=⇒ (Pθ′)	; θθ′ if there is a flexible-rigid equation in P

with the head of the flexible term equal to XΔ with
ty(XΔ) = σ1 → · · · → σn → A and n > 0, and where
θ′ = [[XΔ/λx1 . . . xn.YΔ∪{x1,...,xn}]] and Y is a fresh metavariable

P ; θ
Imit
=⇒ (Pθ′)	; θθ′ if there is a flexible-rigid equation with the head of

the flexible term equal to XΔ (atomic metavariable of type A), and
the head of the rigid term equal to a free variable, say a,
of type σ1 → · · · → σn → A (n ≥ 0),
where θ′ = [[XΔ/a Y1Δ . . . YnΔ]] and Y1, . . . , Yn are fresh metavariables

P ; θ
Select
=⇒ (Pθ′)	; θθ′ if there is a flexible-rigid equation with the flexible

term equal to B〈XΔ〉, for a binding context B and ty(XΔ) = A (atomic),
and an ES [y/u] in B with ty(y) = σ1 → · · · → σn → A (n ≥ 0)
and fv(u) ⊆ Δ such that either u is flexible, or the heading of B〈u〉 is
α-equivalent to the heading of the rigid term of this equation,
where θ′ = [[XΔ/y Y1Δ . . . YnΔ]] and Y1, . . . , Yn are fresh metavariables

pre-solved form P ′;σ. During the process to reach a pre-solved form, the proce-
dure transforms the original problem by incrementally building partial graftings
that will compose a solution to the original problem. In addition, each rule that
can be applied the current unification problem gives rise to a new branch that
potentially will generate a solution to the original problem.

The rules Imit and Select are generalizations of the imitation and projection
rules of Huet’s procedure for the simply typed λ-calculus [24]. A failure in the
unification process will be characterized by unification problems containing rigid-
rigid pairs with headings that are not α-equivalent.

The case of flexible-flexible pairs are usually not treated explicitly because
they are always solvable and their solutions are not unique. In addition, flexible-
flexible pairs are not relevant for most refutation methods [24], and hence our
procedure consists in searching for pre-solved forms of the original problem.

Lemma 11. The application of the unification rules to well-typed pairs gives
rise only to well-typed pairs.

Proof. By rule analysis.

190 F.L.C. de Moura

3.1 Unification Procedure

In this section we detail the general behavior of the unification procedure, and
we write =⇒ ≡ Trivial=⇒ ∪ Fail=⇒ ∪ Dec=⇒ ∪ Exp

=⇒ ∪ Imit=⇒ ∪ Select=⇒ . Given a unification
problem P , one builds a tree, called unification tree of P (cf. [13]), as follows:

1. The root of the tree is labeled with P ;ε
2. For each node, one non-deterministically selects a pair in P and applies a rule

by adding a child node labeled with the new unification problem P ′. In this
case, we write P ;σ r=⇒ Pθ;σθ.

3. The procedure stops when no more rule applies. A success branch is obtained
if the procedure stops at a pre-solved form. Otherwise, the procedure gener-
ates a fail branch.

Example 1. Let P be the unification problem containing the sole pair:1

{X{u,v}A→A
uA =? vA→A uA}

The unification tree is as follows where non-determinism corresponds to “or”
branches:

{X{u,v} u =? v u}; ε
Exp [[X{u,v}/λz.X1{u,v,z}]]

��
{X1{u,v,z}[z/u] =? v u}; [[X{u,v}/λz.X1{u,v,z}]]

Imit [[X1{u,v,z}/v X2{u,v,z}]]

��
{(v X2{u,v,z})[z/u] =? v u}; [[X{u,v}/λz.v X2{u,v,z}]]

Dec

��
{X2{u,v,z}[z/u] =? u}; [[X{u,v}/λz.v X2{u,v,z}]]

Imit

[[X2{u,v,z}/u]]�� ����������������������

����������������������

Select [[X2{u,v,z}/z]]

��
{u =? u}; [[X{u,v}/λz.v u]]

Trivial

��

{u =? u}; [[X{u,v}/λz.v z]]

Trivial

��
{}; [[X{u,v}/λz.v u]] {}; [[X{u,v}/λz.v z]]

Example 2. Consider the unification problem

{X{u,v}A→A
(vA→A uA) =? vA→A(X{u,v}A→A

uA)}

1 We write the type information only in the initial terms of the examples for readability.

Unification for λ-calculi Without Propagation Rules 191

{X{u,v}(v u) =? v(X{u,v} u)}; ε

Exp [[X{u,v}/λw.X1Δ]]

��
{X1Δ[w/(v u)] =? v (X1Δ[w/u])}; [[X{u,v}/λw.X1Δ]]

Imit

[[X1Δ/v X2Δ]]

�� �����������������������

�����������������������

Select[[X1Δ/w]]

��
(∗) {v u =? v u}; [[X{u,v}/λw.w]]

Trivial

��
{}; [[X{u,v}/λw.w]]

where Δ = {u, v, w} and (∗) is given by

{(v X2Δ)[w/(v u)] =? v((v X2Δ)[w/u])}; [[X{u,v}/λw.v X2Δ]]

which reduces to {X2Δ[w/(v u)] =? v(X2Δ[w/u])}; [[X{u,v}/λw.v X2Δ]] after
an application of Dec. From this point, one can again apply both Imit
and Select, and find out that this problem has infinitely many solutions:
[[X{u,v}/λw.xn w]] (n ≥ 0), where x0 w = w, and xn+1 w = x(xn w).

Example 3. Let

P{λyA.XA→(A→A)→A yA (λwA.wA) =? λzA.zA}
be a unification problem.

{λy.X y (λw.w) =? λz.z}; ε

Exp [[X/λz1z2.X1Δ]]

��
{λy.X1Δ[z2/λw.w][z1/y] =? λz.z}; [[X/λz1z2.X1Δ]]

Select

[[X1Δ/z2 X2Δ]]

�� ����������������������

����������������������

Select[[X1Δ/z1]]

��
(∗) {λy.y =? λz.z}; [[X/λz1z2.z1]]

Trivial

��
{}; [[X/λz1z2.z1]]

where (∗) is as follows:

{λy.X2Δ[z2/λw.w][z1/y] =? λz.z}; [[X/λz1z2.z2 X2Δ]]

Select

[[X2Δ/z2 X3Δ]]

�� ������������������������

������������������������

Select[[X2Δ/z1]]

��
... {λy.y =? λz.z}; [[X/λz1z2.z1]]

Trivial

��
{}; [[X/λz1z2.z2 z1]]

192 F.L.C. de Moura

where Δ = {z1, z2}. This problem has infinite solutions. In fact, all Church
numerals of the form λxy.yk x (k ≥ 0) are solutions.

Correctness and Completeness of the Unification Procedure. In this
subsection, we state the correctness and completeness theorems of the presented
unification procedure.

Lemma 12. Let P be a unification problem. If P ; θ R=⇒ P ′; θ′ then UλdB
(P ′) =

UλdB
(P), where R ∈ {Trivial, Fail, Dec}.

Lemma 13. Let P be a solvable unification problem. If P ; θ R=⇒ P ′; θ′ then
UλdB

(P ′) ⊆ UλdB
(P), where R ∈ {Exp, Imit, Select}.

Theorem 4. Let P be a solvable unification problem. If P ; θ =⇒∗ P ′; θ′ then
UλdB

(P ′) ⊆ UλdB
(P).

Proof. By induction on the length of the derivation P ; θ =⇒∗ P ′; θ′.

Theorem 5 (Correctness of the unification procedure). Let P be a non-
trivial unification problem, and θ a grafting. If P ; θ =⇒∗ P ′; θ′ with P ′ in pre-
solved form, then θ′ ∈ UλdB

(P).

Theorem 6 (Completeness of the unification procedure). Let P be a
unification problem with solution σ. Then there exists a derivation of P ; ε to a
pre-solved form P ′; θ such that σ = θγ, for some grafting γ.

4 Conclusion and Future Work

Higher-order unification and matching are important operations extensively used
in Mathematics and Computer Science that have already been studied in the
context of ES [9,10,13,18] but the substitution operation in all the calculi con-
sidered so far acts by proximity. This means that the substitution is propagated
over the terms, while in calculi that act at a distance, they are not. In spite
of having the desired good properties, such as confluence, full composition and
PSN, these calculi are useful to study the λ-calculus rather than to implement
it [2,7]. In particular, the proof of confluence for the calculi with metaterms is
simple and elegant.

In this work we presented a unification procedure for a family calculi of ES
without propagation rules. Our procedure is not just an adaptation of Huet’s [24]
or Snyder’s [34] one because it does not develop as many fail branches (which
can be computationally expensive) as Huet’s does, but it is still correct and
complete. In addition, a specialized notion of η-long normal form was defined,
and is central for the unification procedure. Unification in calculi that act at a
distance is also interesting because grafting and reduction permute, which per-
mits the presentation of a procedure that is simpler than the known unification

Unification for λ-calculi Without Propagation Rules 193

procedures for the λ-calculus [15,24,34] because grafting is used instead of sub-
stitution, and also simpler than the traditional unification approach to ES [18]
because no transformation, like precooking, is required.

As future work, we will study higher-order matching in these for-
malisms [14,17]. This would form an interesting framework to study problems
like the decidability of higher-order matching which is still an open question
after more than 30 years of investigation [16,17,25,29,32,35].

Acknowledgements. I want to thank the anonymous referees for comments and
suggestions on this work.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. J. Funct.
Program. 1(4), 375–416 (1991)

2. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In:
Tiwari [36], pp. 6–21

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Jeuring,
J., Chakravarty, M.M.T. (eds.) Proceedings of the 19th ACM SIGPLAN Interna-
tional Conference on Functional Programming, Gothenburg, Sweden, 1–3 Septem-
ber 2014, pp. 363–376. ACM (2014)

4. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: Jagannathan, S., Sewell, P. (eds.) POPL, pp. 659–670. ACM (2014)

5. Accattoli, B., Kesner, D.: The structural λ-calculus. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15205-4 30

6. Accattoli, B., Kesner, D.: The permutative λ-calculus. In: Bjørner, N., Voronkov,
A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 23–36. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-28717-6 5

7. Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo permuta-
tions for the structural lambda-calculus. Logical Methods Comput. Sci. 8(1), 1–44
(2012)

8. Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head
reduction. In: Tiwari [36], pp. 22–37

9. Ayala-Rincón, M., Kamareddine, F.: Unification via the λs e-style of explicit sub-
stitution. Logical J. IGPL 9(4), 489–523 (2001)

10. Ayala-Rincón, M., Kamareddine, F.: On applying the λs e-style of unification for
simply-typed higher order unification in the pure lambda calculus. Matemática
Contemporânea 24, 1–22 (2003)

11. de Moura, F.L.C., Kesner, D., Ayala-Rincón, M.: Metaconfluence of calculi with
explicit substitutions at a distance. In: Raman, V., Suresh, S.P. (eds.) 34th Inter-
national Conference on Foundation of Software Technology and Theoretical Com-
puter Science (FSTTCS 2014). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 29, pp. 391–402. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl (2014)

12. de Moura, F.L.C.: Higher-order unification via explicit substitutions at a distance.
In: LSFA 2014 (2014). Accepted for short presentation

http://dx.doi.org/10.1007/978-3-642-15205-4_30
http://dx.doi.org/10.1007/978-3-642-15205-4_30
http://dx.doi.org/10.1007/978-3-642-28717-6_5

194 F.L.C. de Moura

13. de Moura, F.L.C., Ayala-Rincón, M., Kamareddine, F.: Higher-order unification:
a structural relation between Huet’s method and the one based on explicit substi-
tutions. J. Appl. Logic 6(1), 72–108 (2008)

14. de Moura, F.L.C., Kamareddine, F., Ayala-Rincón, M.: Second-order match-
ing via explicit substitutions. In: Baader, F., Voronkov, A. (eds.) LPAR 2005.
LNCS (LNAI), vol. 3452, pp. 433–448. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-32275-7 29

15. Dougherty, D.J.: Higher-order unification via combinators. TCS 114(2), 273–298
(1993)

16. Dowek, G.: Third order matching is decidable. APAL 69, 135–155 (1994)
17. Dowek, G.: Higher-order unification and matching. In: Robinson, A., Voronkov, A.

(eds.) Handbook of Automated Reasoning, vol. 2, pp. 1009–1062. MIT press and
Elsevier (2001). Chap. 16

18. Dowek, G., Hardin, T., Kirchner, C.: Higher order unification via explicit substi-
tutions. Inf. Comput. 157(1–2), 183–235 (2000)

19. Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit substitutions
which preserves strong normalization. JFP 6(5), 699–722 (1996)

20. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
21. Goldfarb, W.: The undecidability of the second-order unification problem. Theoret.

Comput. Sci. 13(2), 225–230 (1981)
22. Guillaume, B.: The λs e-calculus does not preserve strong normalization. J. Func.

Program. 10(4), 321–325 (2000)
23. Huet, G.: The undecidability of unification in third order logic. Inf. Control 22(3),

257–267 (1973)
24. Huet, G.: A unification algorithm for typed lambda-calculus. TCS 1(1), 27–57

(1975)
25. Huet, G.: Résolution d’équations dans les langages d’ordre 1,2,..,ω. Ph.D. thesis,

University Paris-7 (1976)
26. Kamareddine, F., Ŕıos, A.: Extending a λ-calculus with explicit substitution which

preserves strong normalisation into a confluent calculus on open terms. J. Func.
Program. 7, 395–420 (1997)

27. Kesner, D.: A theory of explicit substitutions with safe and full composition. Log-
ical Methods Comput. Sci. 5(31), 1–29 (2009)

28. Lins, R.D.: A new formula for the execution of categorical combinators. In: Siek-
mann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 89–98. Springer, Heidelberg
(1986). doi:10.1007/3-540-16780-3 82

29. Loader, R.: Higher order β matching is undecidable. Logic J. Interest Group Pure
Appl. Logics 11(1), 51–68 (2003)

30. Mellies, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–
334. Springer, Heidelberg (1995). doi:10.1007/BFb0014062

31. Milner, R.: Local bigraphs and confluence: two conjectures: (extended abstract).
ENTCS 175(3), 65–73 (2007)

32. Padovani, V.: Decidability of fourth-order matching. Math. Struct. Comput. Sci.
10(3), 361–372 (2000)

33. Renaud, F.: Metaconfluence of λj: dealing with non-deterministic replacements
(2011). http://www.pps.univ-paris-diderot.fr/∼renaud/lambdaj mconf.pdf

34. Snyder, W., Gallier, J.H.: Higher-order unification revisited: complete sets of trans-
formations. J. Symb. Comput. 8(1/2), 101–140 (1989)

http://dx.doi.org/10.1007/978-3-540-32275-7_29
http://dx.doi.org/10.1007/978-3-540-32275-7_29
http://dx.doi.org/10.1007/3-540-16780-3_82
http://dx.doi.org/10.1007/BFb0014062
http://www.pps.univ-paris-diderot.fr/~renaud/lambdaj_mconf.pdf

Unification for λ-calculi Without Propagation Rules 195

35. Stirling, C.: A game-theoretic approach to deciding higher-order matching. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol.
4052, pp. 348–359. Springer, Heidelberg (2006). doi:10.1007/11787006 30

36. Tiwari, A. (ed.) 23rd International Conference on Rewriting Techniques and Appli-
cations (RTA 2012). LIPIcs, Nagoya, Japan, 28 May 2012 – 2 June 2012, vol. 15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

http://dx.doi.org/10.1007/11787006_30

Soundly Proving B Method Formulæ Using
Typed Sequent Calculus

Pierre Halmagrand(B)

Cnam/Inria/Ens Cachan, Paris, France
pierre.halmagrand@inria.fr

Abstract. The B Method is a formal method mainly used in the railway
industry to specify and develop safety-critical software. To guarantee the
consistency of a B project, one decisive challenge is to show correct a large
amount of proof obligations, which are mathematical formulæ expressed
in a classical set theory extended with a specific type system. To improve
automated theorem proving in the B Method, we propose to use a first-
order sequent calculus extended with a polymorphic type system, which
is in particular the output proof-format of the tableau-based automated
theorem prover Zenon. After stating some modifications of the B syntax
and defining a sound elimination of comprehension sets, we propose a
translation of B formulæ into a polymorphic first-order logic format.
Then, we introduce the typed sequent calculus used by Zenon, and show
that Zenon proofs can be translated to proofs of the initial B formulæ in
the B proof system.

1 Introduction

Automated transport systems have spread in many cities during last decades,
becoming a leading sector for the development of highly trusted software using
formal methods. The B Method [1] is a formal method mainly used in the railway
industry to specify and develop safety-critical software. It allows the develop-
ment of correct-by-construction programs, thanks to a refinement process from
an abstract specification to a deterministic implementation of the program.
The soundness of the refinement steps depends on the validity of logical for-
mulæ called proof obligations, expressed in a specific typed set theory. Common
industrial projects using the B Method generate thousands of proof obligations,
thereby relying on automated tools to discharge as many as possible proof obliga-
tions. A specific tool, called Atelier B [18], designed to implement the B Method
and provided with a theorem prover, helps users verify the validity of proof
obligations, automatically or interactively.

Improving the automated verification of proof obligations is a crucial task.
The BWare research project [10] proposed to use external automated provers,
like first-order Automated Theorem Provers (ATPs) and Satisfiability Modulo

This work is supported by the BWare project (ANR-12-INSE-0010) funded by the
INS programme of the French National Research Agency (ANR).

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 196–213, 2016.
DOI: 10.1007/978-3-319-46750-4 12

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 197

Theory (SMT) solvers, by building a common platform to run these tools. This
platform, based on the software verification tool Why3 [3], requires proof oblig-
ations to be encoded in its native language called WhyML. Mentré et al. [16]
proposed a translator program called bpo2why to address this issue. This tool
focuses on the translation of B proof obligations output by Atelier B into the
WhyML language. Besides, the B set theory is defined directly in WhyML. Then,
Why3 uses specific drivers to translate proof obligations and the theory from
WhyML to the specific format of each automated tool.

The first-order ATP Zenon [6,9], based on the tableau method and recently
extended to deal with polymorphic types, has been used to prove B proof oblig-
ations in the BWare project and obtained good experimental results, compared
to the regular version of Zenon and other automated deduction tools as well [7].
One important feature of Zenon is to be a certifying prover [8], in the sense that
it generates proof certificates, i.e. proof objects that can be verified by external
proof checkers. It relies on an encoding of the output proof-format of Zenon,
a typed sequent calculus called LLproof, into the proof checker Dedukti [5], a
tool designed to be a universal backend to certify and share proofs coming from
automated or interactive provers. These proof certificates allow us to be very
confident about the soundness of the proofs produced by Zenon.

An issue about using Zenon to verify B proof obligations arises in the
upstream translation chain, from B to Zenon input format. There is currently no
formal guarantee that this chain is sound, and it would be a tremendous work
to formalize the several steps represented by bpo2why and Why3. Instead, we
decide to confirm the soundness of using Zenon to prove B proof obligations by
formalizing a more general and direct translation from the B logic into a poly-
morphic first-order logic (PFOL for short), close to the Zenon input format. This
translation is to be proven sound, in the sense that if Zenon finds a proof then
it can be turned into a proof of the initial B formula. A solution is to show a
logical equivalence between Zenon and B proof system.

The B set theory is provided with a specific type system, expressed using
set constructs, resulting in a lack of separation in a B formula between typing
and set reasoning. To help us embed B typing constraints into PFOL, we define
a procedure to annotate B variables with their types, using the type-checking
algorithm of the B Method. The interpretation of these types will then be given
by the translation function into PFOL. Axioms and hypotheses are generalized
by translating B types to (universally quantified) type variables in PFOL. In
contrast, types coming from the formula to be proved are interpreted as type
constants in PFOL. In addition, we define the reverse translation from PFOL
to B, letting us to reword the initial B formula. Thanks to this reverse translation
and the derivations of Zenon inference rules expressed using the B proof system,
we can translate Zenon proofs into B proofs, guaranteeing the soundness of our
translation.

The concerns about the confidence given to ATP in the case of B proof
have been resolved using the alternative approach of a certified prover and rely-
ing on a deep embedding of the B logic into the interactive prover Coq, by

198 P. Halmagrand

Jaeger et al. [14]. It has also been studied in the context of Event-B by Schmalz
in [17]. The problem of type inference in the B Method was studied in other
contexts, see for instance [4] for an embedding into PVS, and [13] for Coq.

This paper is organized as follows: in Sect. 2, we introduce the B Method
syntax, proof system and type system, then we introduce the type annotation
procedure; in Sect. 3, we present the polymorphic first-order logic and the typed
sequent calculus used by Zenon; in Sect. 4, we give the translation used to encode
B formulæ into PFOL; finally, in Sect. 5, we present the translation of proofs
expressed in the sequent calculus of Zenon into B proofs.

2 The B Set Theory

In this section, we present the core logic and theory of the B Method. We first
introduce the syntax, the proof system, the set theory and the typing rules of the
B Method. Then, we introduce a procedure to annotate variables with their cor-
responding types. Finally, we present an elimination procedure of comprehension
sets.

2.1 Syntax, Proof System and Set Theory

The presentation below follows faithfully the first two chapters of the B-Book [1]
dealing with mathematical reasoning and set theory.

Syntax. The syntax of the B Method is made of four syntactic categories, for
formulæ, expressions, variables and sets. A formula, or predicate, P is built from
the logical connectives conjunction, implication and negation and the universal
quantification. A formula may also be the result of a substitution in a formula,
the equality between two expressions and the membership to a set. An expression
E may be a variable, the result of a substitution in an expression, an ordered
pair, an arbitrary element in a set or a set. A variable x is either an identifier or
a list of variables. Finally, a set s is built using the elementary set constructs,
i.e. the cartesian product, the powerset and the comprehension set, or may be
the set BIG, a given infinite set.

P ::= P1 ∧ P2 | P1 ⇒ P2 | ¬P | ∀x · P | [x := E]P | E1 = E2 | E ∈ s
E ::= x | [x := E1]E2 | E1, E2 | choice(s) | s
x ::= identifier | x1, x2

s ::= s1 × s2 | P(s) | {x | P} | BIG

Proof System. In Fig. 1, we present the proof system of the B Method. This is
an adaptation of classical natural deduction for the B syntax. It should be noted
that the B-Book proposes some rules to define the notion of non-freeness of a
variable x in a formula P , denoted by x\P . Since these rules are standard, we
omit them here.

In the following, if x is a variable and Γ a set of formulæ, x\Γ means that
x\H for each H of Γ ; if Γ ′ is another set of formulæ, Γ � Γ ′ means that Γ is
included in Γ ′; and if P is a formula, P –� Γ means that P occurs in Γ .

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 199

BR1
P �B P

Γ �B P Γ � Γ ′
BR2

Γ ′ �B P

P –� Γ
BR3

Γ �B P

Γ �B P Γ, P �B Q
BR4

Γ �B Q

Γ �B P Γ �B P ⇒ Q
MP

Γ �B Q

Γ �B P Γ �B Q
R1

Γ �B P ∧ Q

Γ �B P ∧ Q
R2

Γ �B P

Γ �B P ∧ Q
R2′

Γ �B Q

Γ, P �B Q
R3

Γ �B P ⇒ Q

Γ �B P ⇒ Q
R4

Γ, P �B Q

Γ, ¬Q �B P Γ, ¬Q �B ¬P
R5

Γ �B Q

Γ, Q �B P Γ, Q �B ¬P
R6

Γ �B ¬Q

x\Γ Γ �B P
R7

Γ �B ∀x · P

Γ �B ∀x · P
R8

Γ �B [x := E]P
R10

Γ �B E = E

Γ �B E = F Γ �B [x := E]P
R9

Γ �B [x := F]P

Fig. 1. The Proof System of the B Method

Set Theory. As presented in the B-Book, the B Method set theory is a simpli-
fication of classical set theory. Some common axioms, like the foundation axiom,
are not needed in this context (see Sect. 2.2), leading to a theory made only
of six axioms. Actually, axioms presented below are axiom schemata that have
to be instantiated with some proper expressions. The first column represents
non-freeness proviso.

E,F ∈ s × t ⇔ (E ∈ s ∧ F ∈ t) SET1

x\(s, t) s ∈ P(t) ⇔ ∀x · (x ∈ s ⇒ x ∈ t) SET2

x\s E ∈ {x | x ∈ s ∧ P} ⇔ (E ∈ s ∧ [x := E]P) SET3

x\(s, t) ∀x · (x ∈ s ⇔ x ∈ t) ⇒ s = t SET4

x\s ∃x · (x ∈ s) ⇒ choice(s) ∈ s SET5

infinite(BIG) SET6

Remark 1. The B-Book defines rewrite rules for secondary common constructs:

P ∨ Q → ¬P ⇒ Q P ⇔ Q → (P ⇒ Q) ∧ (Q ⇒ P) ∃x · P → ¬∀x · ¬P
s ⊆ t → s ∈ P(t) s ⊂ t → s ⊆ t ∧ s �= t

2.2 Type System

The B Method set theory differs from other ones, like the Zermelo-Fraenkel set
theory. The main difference consists in the addition of typing constraints to
expressions, and the application of a type-checking procedure before proving.
This avoids ill-formed formulæ such as ∃x · (x ∈ x), whose negation is provable
in ZF, due to the foundation axiom, unlike for the B Method.

200 P. Halmagrand

Δ �tc ch(P) Δ �tc ch(Q)
T1

Δ �tc ch(P ∧ Q)

Δ �tc ch(P) Δ �tc ch(Q)
T2

Δ �tc ch(P ⇒ Q)

Δ �tc ch(P)
T3

Δ �tc ch(¬P)

x\s x\Δ Δ, x ∈ s �tc ch(P)
T4

Δ �tc ch(∀x · (x ∈ s ⇒ P))

Δ �tc ch(∀x · (x ∈ s ⇒ ∀y · (y ∈ t ⇒ P)))
T5

Δ �tc ch(∀(x, y) · (x, y ∈ s × t ⇒ P))

Δ �tc ch(∀x · (P ⇒ (Q ∧ R)))
T6

Δ �tc ch(∀x · ((P ∧ Q) ⇒ R))

Δ �tc ty(E) ≡ ty(F)
T7

Δ �tc ch(E = F)

Δ �tc ty(E) ≡ su(s)
T8

Δ �tc ch(E ∈ s)

Δ �tc su(s) ≡ su(t)
T8′

Δ �tc ch(s ⊆ t)

x ∈ s –� Δ Δ �tc su(s) ≡ U
T9

Δ �tc ty(x) ≡ U

Δ �tc ty(E) × ty(F) ≡ U
T10

Δ �tc ty(E, F) ≡ U

Δ �tc su(s) ≡ U
T11

Δ �tc ty(choice(s)) ≡ U

Δ �tc P(su(s)) ≡ U
T12

Δ �tc ty(s) ≡ U

x ∈ s –� Δ Δ �tc su(s) ≡ P(U)
T13

Δ �tc su(x) ≡ U

Δ �tc su(s) × su(t) ≡ U
T14

Δ �tc su(s × t) ≡ U

Δ �tc P(su(s)) ≡ U
T15

Δ �tc su(P(s)) ≡ U

Δ �tc ch(∀x · (x ∈ s ⇒ P)) Δ �tc su(s) ≡ U
T16

Δ �tc su({x | x ∈ s ∧ P}) ≡ U

gi(I) –� Δ Δ �tc I ≡ U
T17

Δ �tc su(I) ≡ U

Δ �tc su(s) ≡ P(U)
T18

Δ �tc su(choice(s)) ≡ U

Δ �tc T ≡ U
T19

Δ �tc P(T) ≡ P(U)

Δ �tc T ≡ U Δ �tc V ≡ W
T20

Δ �tc T × V ≡ U × W

gi(I) –� Δ
T21

Δ �tc I ≡ I

Fig. 2. The type system of the B method

The typing discipline proposed relies on the monotonicity of set inclusion.
For instance, if we have an expression E and two sets s and t such that E ∈ s
and s ⊆ t, then E ∈ t. Going further with another set u such that t ⊆ u, we have
then E ∈ u. The idea, as explained in the B-Book, is that, given a formula to be
type checked, there exists an upper limit for such set containment. This upper
limit is called the super-set of s and the type of E. Then, if u is the super-set
of s, we obtain the typing information E ∈ u and s ∈ P(u).

Type checking is performed by applying, in a backward way and following
the numerical order, the inference rules presented in Fig. 2. Rules dealing with
the right-hand side of a typing equivalence ≡ are named with the same number

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 201

primed, for T9 to T18. If this decision procedure terminates and does not fail, then
the formula is said to be well-typed. This procedure uses two syntactic categories
Type and Type Pred:

Type ::= type(E) | super(s) | Type × Type | P(Type) | identifier
Type Pred ::= check(P) | Type ≡ Type

In the following, we use ty, su and ch as abbreviations for the keywords type,
super and check respectively. As a consequence, the type of an expression E may
be either an identifier (see the notion of given set below), the powerset of a type
or the cartesian product of two types; and for the particular case of sets, the
type of a set is necessarily the powerset of a type.

A type-checking sequent like Δ �tc ch(P) means that, within the environ-
ment Δ, the formula P is well-typed. The environment Δ is made of atomic
formulæ of the form x ∈ s, where x is non-free in s. All free variables in P
have to be associated with some atomic formula in Δ. The only exception is for
variables in P representing some abstract given sets, introduced at a meta-level
discourse like: “Given a set s ...”. Such a given set s, which will be used to type
other sets, is introduced in the environment Δ by the keyword given(s) (gi(s) for
short), telling us that s is free in the formula to be type-checked, and has the
specific property su(s) = s.

Example 1. Given two sets s and t, the formula:

∀(a, b) · (a, b ∈ P(s × t) × P(s × t) ⇒ {x | x ∈ a ∧ x ∈ b} ⊆ s × t)

will be used as a running example in this paper. We want to verify that this
formula is well-typed, i.e. verify that the following sequent is satisfied:

gi(s), gi(t) �tc

ch(∀(a, b) · (a, b ∈ P(s × t) × P(s × t) ⇒ {x | x ∈ a ∧ x ∈ b} ⊆ s × t))

By applying the rules of Fig. 2, we obtain the following typing derivation (due
to the large size of the tree, we present only the names of rules, starting from
the left with T5):

T5 -T4 -T4 -T8′-T14′-T16 -

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

T4 -T8 -T9 -T13 -T15 -T19 -T13′-T15′-T19 -T14 -T14′-T20 -

⎧

⎨

⎩

T17 -T17′-T21

T17 -T17′-T21

T13 -T15 -T19 -T14 -T20 -

⎧

⎨

⎩

T17 -T17′-T21

T17 -T17′-T21

2.3 Type Annotation

In the B syntax presented in Sect. 2.1, there are two constructs which intro-
duce new bound variables: universal quantification ∀x · P and comprehension
set {x | P}. It should be noted that the typing rules T4 and T16 dealing with
these two syntactical constructs use the specific forms ∀x · x ∈ s ⇒ P and

202 P. Halmagrand

{x | x ∈ s ∧ P}. Membership x ∈ s is used to type the bound variable x. Unfor-
tunately, typing information is hidden at a set theoretic level. There is no clear
distinction between sets and types in the B Method.

For the translation function presented in Sect. 4.2, we want to distinguish the
notion of types from the one of sets. We introduce a new syntactic category T
for types:

T ::= identifier | T1 × T2 | P(T)

And we introduce the notation xT meaning that the variable x has type T .
We now present a procedure to annotate variables with their type. Once the

type-checking of a formula is done, the typing tree has environments Δ at each
node, and in particular at leaves, following the syntax:

Δ ::= ∅ | Δ, gi(s) | Δ,x ∈ s

In addition, Δ is augmented only by rule T4: if a formula x ∈ s is added, then s
has to be already associated in Δ (in particular because of rules T9 and T13), as
a given set or in a formula like s ∈ t for some already associated set t.

The annotation procedure transforms all the leaf environments Δ, i.e. the
environments of the leaves, into annotated environments Δ�, where all variables
and given sets are annotated with their type, then uses these annotated environ-
ments to rebuild the typing tree of the (annotated) initial formula in a forward
way. It should be noted that in a formula x ∈ s, the set s may be a composition
of the two type constructors × and P. We denote this kind of composition by a
function symbol f with an arity n. Here is the syntax for Δ�:

Δ� ::= ∅ | Δ�, gi(sP(s)) | Δ�, xf(T1,...,Tn) ∈ f(sP(T1)
1 , . . . , s

P(Tn)
n)

We can now introduce the annotation procedure:

1. For all the leaf environments Δ:
1.1. For all gi(s), we annotate s by its type P(s), and then substitute all

occurrences of s in Δ by sP(s);
1.2. Following the introduction order in Δ, for all x ∈ f(sP(T1)

1 , . . . , s
P(Tn)
n), we

annotate x with its type f(T1, . . . , Tn), and we substitute all occurrences
of x in Δ by xf(T1,...,Tn);

2. Rebuild the (annotated) initial formula by applying the type-checking tree in
a forward way, i.e. from the leaves to the root.

In the following, we denote by P � the formula P where all variables are
annotated. We extend this notation to sets of formulæ Γ , and expressions E.

Proposition 1. The annotation is sound.
We have, for a variable x, an expression E and a formula P :

1. If xT is associated in Δ�, Δ� �tc ty(xT) ≡ T ;
2. If Δ �tc ty(E) ≡ U , then Δ� �tc ty(E�) ≡ U ;
3. If Δ �tc ch(P), then Δ� �tc ch(P �).

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 203

The B proof system of Fig. 1 is neutral with respect to variable annotation, so
it is always possible to apply the same proof derivation to an annotated formula.
The provability of well-typed formulæ is then preserved: Γ �B P if and only if
Γ � �B P �.

Finally, we take the universal closure of all free variables corresponding to
given sets. To lighten the presentation in examples, we annotate only the first
occurrence of a variable.

Example 2. Going back to the running example, we obtained the following envi-
ronment Δ for the leave of the upper branch:

gi(s), gi(t), a ∈ P(s × t), b ∈ P(s × t), x ∈ a

It leads to the annotated environment Δ�:

gi(sP(s)), gi(tP(t)), aP(s×t) ∈ P(s × t), bP(s×t) ∈ P(s × t), xs×t ∈ a

Finally, we obtain the annotated formula:

∀sP(s) · (∀tP(t) · (∀(aP(s×t), bP(s×t))·
(a, b ∈ P(s × t) × P(s × t) ⇒ {xs×t | x ∈ a ∧ x ∈ b} ⊆ s × t)))

2.4 The Annotated Set Theory

Axioms SET5 and SET6 are introduced in the B Method set theory for theoret-
ical reasons, like building natural numbers, and are never used in practice, in
particular in proof obligations. So, we remove them from this work.

We now define the annotated version of the axioms presented in Sect. 2.1. In
addition, we take the universal closure for all free variables.

∀sP(s) · (∀tP(t) · (∀xs · (∀yt · (x, y ∈ s × t ⇔ (x ∈ s ∧ y ∈ t))))) SET1

∀sP(s) · (∀tP(s) · (s ∈ P(t) ⇔ ∀xs · (x ∈ s ⇒ x ∈ t))) SET2

∀sP(s) · (∀ys · (y ∈ {xs | x ∈ s ∧ P} ⇔ (y ∈ s ∧ [x := y]P))) SET3

∀sP(s) · (∀tP(s) · (∀xs · (x ∈ s ⇔ x ∈ t) ⇒ s = t)) SET4

2.5 Skolemization of Comprehension Sets

We propose an elimination procedure of comprehension sets inside formulæ,
based on the definition of new function symbols. The idea to skolemize compre-
hension sets is not new, see for instance [12]. In an expression, when meeting a set
u of the shape: u = {xT | P (x, sT1

1 , . . . , sTn
n)} we apply the following procedure:

1. Define a fresh function symbol fP(T) of arity n and annotated by P(T);
2. Add to the B set theory, the axiom:

∀sT1
1 · (. . . · (∀sTn

n · (∀xT · (x ∈ fP(T)(s1, . . . , sn) ⇔ P (x, s1, . . . , sn)))))

3. Replace all the occurrences of u by fP(T)(s1, . . . , sn).

204 P. Halmagrand

Remark 2. This skolemization procedure is sound (the new axiom is an instance
of axiom SET3), but not complete (it is no more possible to define a set by
comprehension during proof search).

Example 3. Applying skolemization to the running example leads to add the
following axiom to the theory:

∀aP(s×t) · (∀bP(s×t) · (∀xs×t · (x ∈ fP(s×t)(a, b) ⇔ x ∈ a ∧ x ∈ b)))

And we obtain the skolemized formula:

∀sP(s) · (∀tP(t)·
(∀(aP(s×t), bP(s×t)) · (a, b ∈ P(s × t) × P(s × t) ⇒ fP(s×t)(a, b) ⊆ s × t)))

2.6 Updated Syntax and Proof System

To conclude this section, we present the new version of the B syntax, with
annotated variables, function symbols and without comprehension sets, choice
function and BIG. In addition, we suppose that expressions are normalized in the
sense that substitutions are reduced, as it is for proof obligations, so we remove
substitutions from the syntax. We also merge the two categories for expressions
and sets in a single category called E. Finally, we introduce ⊥ := P ∧ ¬P and
� := ¬⊥, where P is a fixed formula.

T ::= identifier | T1 × T2 | P(T)
P ::= ⊥ | � | P1 ∧ P2 | P1 ⇒ P2 | ¬P | ∀x · P | E1 = E2 | E1 ∈ E2

E ::= x | E1, E2 | E1 × E2 | P(E) | fP(T)(E1, . . . , En)
x ::= identifier | xT | xT1

1 , xT2
2

Finally, we enrich the B proof system of Fig. 1 with the two basic rules BR5

and BR6 dealing with ⊥ and �:

BR5
Γ, ⊥ �B Q :=

BR3
Γ, P ∧ ¬P, ¬Q �B P ∧ ¬P

R2
Γ, P ∧ ¬P, ¬Q �B P

BR3
Γ, P ∧ ¬P, ¬Q �B P ∧ ¬P

R2′
Γ, P ∧ ¬P, ¬Q �B ¬P

R5
Γ, P ∧ ¬P �B Q

BR6
Γ �B � :=

BR5
Γ, ⊥ �B Q

BR5
Γ, ⊥ �B ¬Q

R6
Γ �B ¬⊥

3 LLproof: Typed Sequent Calculus of Zenon

3.1 Polymorphic First-Order Logic

We present in this section the polymorphic first-order logic, PFOL for short,
used by the sequent calculus proof system LLproof. This presentation is highly
inspired by [2].

A polymorphic signature is a triple Σ = (K ,F ,P), where K , F and P are
countable sets of respectively type constructors k with their arity m, denoted
k ::m, function symbols f and predicate symbols P with their type signature σ.

σ ::= f : Πα1 . . . αm.τ1 → . . . → τn → τ | P : Πα1 . . . αm.τ1 → . . . → τn → o

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 205

where α1 . . . αm are the m first arguments of f or P and correspond to the type
parameters; τ1, . . . , τn are the following n arguments of f or P and correspond
to the types of the term parameters; τ is the return type of f and o is the return
pseudo-type of predicates P (but it is not a type of the language).

The syntax of PFOL is made of types, terms, formulæ and polymorphic for-
mulæ. A type τ is either a type variable α or the application of a type constructor
k. A term e is either a variable x or the application of a function symbol f to
types and terms. A formula ϕ is inductively built from ⊥, �, conjunction, impli-
cation, negation, universal quantification over (term) variable, equality between
terms and application of a predicate symbol. A polymorphic formula ϕα is a uni-
versal quantification over type variable. The typing rules of PFOL are standard

Closure and Quantifier-free Rules

⊥
Γ, ⊥ �LL ⊥ ¬

Γ, ¬
 �LL ⊥ Sym
Γ, t =τ u, u �=τ t �LL ⊥

Ax
Γ, P, ¬P �LL ⊥ �=

Γ, t �=τ t �LL ⊥
Γ, P �LL ⊥ Γ, ¬P �LL ⊥

Cut
Γ �LL ⊥

Γ, ¬¬P, P �LL ⊥ ¬¬
Γ, ¬¬P �LL ⊥

Γ, P ∧ Q, P, Q �LL ⊥ ∧
Γ, P ∧ Q �LL ⊥

Γ, ¬(P ⇒ Q), P, ¬Q �LL ⊥ ¬ ⇒
Γ, ¬(P ⇒ Q) �LL ⊥

Γ, P ⇒ Q, ¬P �LL ⊥ Γ, P ⇒ Q, Q �LL ⊥ ⇒
Γ, P ⇒ Q �LL ⊥

Γ, ¬(P ∧ Q), ¬P �LL ⊥ Γ, ¬(P ∧ Q), ¬Q �LL ⊥ ¬∧
Γ, ¬(P ∧ Q) �LL ⊥

Quantifier Rules Over Variables

Γ, ¬∀x : τ. P (x), ¬P (c) �LL ⊥ ¬∀
Γ, ¬∀x : τ. P (x) �LL ⊥

where c : τ is a
fresh constant

Γ, ∀x : τ. P (x), P (t) �LL ⊥ ∀
Γ, ∀x : τ. P (x) �LL ⊥

where t : τ is
any closed term

Quantifier Rules Over Type Variables

Γ, ∀α. P (α), P (τ) �LL ⊥ ∀type
Γ, ∀α. P (α) �LL ⊥

where τ is
any closed type

Special Rule

Γ, P (t), t �=τ u �LL ⊥ Γ, P (t), P (u) �LL ⊥
Subst

Γ, P (t) �LL ⊥

Fig. 3. The typed sequent calculus LLproof

206 P. Halmagrand

and can be found in [2]. In the following, we may omit the m first type arguments
for function and predicate symbols when they are clear from the context.

τ ::= α | k(τ1, . . . , τm)
e ::= x | f(τ1, . . . , τm; e1, . . . , en)
ϕ ::= ⊥ | � | ϕ1 ∧ ϕ2 | ϕ1 ⇒ ϕ2 | ¬ϕ | ∀x : τ.ϕ | e1 =τ e2

| P (τ1, . . . , τm; e1, . . . , en)
ϕα ::= ∀α.ϕα | ∀α.ϕ

3.2 The Typed Sequent Calculus Proof System LLproof

In Fig. 3, we present the typed sequent calculus LLproof used by the automated
theorem prover Zenon to output proofs. This sequent calculus is close to a tableau
method proof system; we are looking for a contradiction, given the negation of
the goal as an hypothesis. All formulæ are on the left hand side of the sequent,
and the negation of the goal has to be unsatisfiable. In addition, the contraction
rule is always applied, leading to a growing context Γ .

This presentation differs with the one in [8], which also introduces the proof
system LLproof and its embedding into the proof-checker Dedukti. We remove the
rules for equivalence and existential quantification, because these constructs are
defined using other ones in the B Method (see Sect. 2.1). Moreover, we replace
all rules from the category Special Rules by the new one Subst, since the Subst
rule is easier to translate and can be used to define other Special rules [8].

The rules ∀ and ¬∀ dealing with quantification over variables both get a side
condition about the type of the chosen instance.

Rule ∀type is applied to instantiate the type variables in axioms with the
closed types coming from the translation of the proof obligation to be proved.

4 Translation of B Formulæ into PFOL

4.1 Type Signatures of Primitive Constructs

We start by defining a general skeleton for the type signatures of the B basic con-
structs. We introduce two type constructors Set and Pair corresponding respec-
tively to the B type constructors P and ×. Then, we can define the function
symbols (-, -) for ordered pair, P(-) for powerset and -×- for product set. Finally,
we define two predicate symbols for membership and equality. For easier reading,
we use an infix notation with type arguments subscripted. For instance, - ∈α -
corresponds to ∈ (α, -, -).

Tske :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Set(-) :: 1, Pair(-, -) :: 2
(-, -)α1,α2 : Πα1α2. α1 → α2 → Pair(α1, α2)
Pα(-) : Πα. Set(α) → Set(Set(α))
- ×α1,α2 - : Πα1α2. Set(α1) → Set(α2) → Set(Pair(α1, α2))
- ∈α - : Πα. α → Set(α) → o
- =α - : Πα. α → α → o

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 207

4.2 Translating Formulæ from B to PFOL

We present in Fig. 4 the translation function of B formulæ into PFOL formulæ.
This translation, denoted 〈P 〉 for some B formula P , is made of the three trans-
lations 〈T 〉t for types, 〈P 〉f for formulæ and 〈E〉e for expressions, and a function
θ(E) that returns the PFOL type of a B expression E.

One important point in this embedding is the interpretation given to B type
identifiers coming from the type annotation procedure (see Sect. 2.3). We inter-
pret B type identifiers coming from axioms and hypotheses as type variables (and
take the universal closure with respect to them), and B type identifiers of the for-
mula to prove (also called goal) as new constants, i.e. nullary type constructors.
This allows us to get polymorphic axioms in PFOL and a monomorphic/many-
sorted goal. To achieve this, we add to all B formulæ to translate a flag ax for
axioms and hypotheses and gl for the goal.

Before presenting the three translation functions, we have to define a function
called Sig(f(. . .)), where f is a B function symbol coming from the skolemization
of comprehension sets (see Sect. 2.5), that returns the type signature of f . Let
FV (e) be the set of free variables of an expression e.

Sig(fP(T)(E1, . . . , En)) = Π
α∈FV n

1 (θ(Ei))
α. θ(E1) → . . . → θ(En) → θ(P(T))

During the translation procedure, we carry a target PFOL theory T com-
posed by the skeleton Tske defined in Sect. 4.1, previously translated formulæ,
new type constructors and new type signatures. Also, for each formula to be
translated, we carry a PFOL local context Δ of bound variables and their type,
and a set Ω of pairs of B type identifiers and their corresponding PFOL types,
i.e. type variables for axioms and type constants for goals.

Example 4. Continuing with the running example, we first translate axioms SET1,
SET2 and SET4, then the axiom coming from the skolemization, and finally the
goal. To lighten the presentation, we omit the subscripted type arguments of
function and predicate symbols of Tske and we factorize the symbol ∀. The three
set theory axioms become:

∀α1, α2. ∀s : Set(α1), t : Set(α2), x : α1, y : α2. (x, y) ∈ s × t ⇔ (x ∈ s ∧ y ∈ t)
∀α. ∀s : Set(α), t : Set(α). s ∈ P(t) ⇔ ∀x : α. x ∈ s ⇒ x ∈ t
∀α. ∀s : Set(α), t : Set(α). (∀x : α. x ∈ s ⇔ x ∈ t) ⇒ s = t

The remainder of the theory, i.e. the signature of f , the axiom defining f and
the declaration of the two type constants coming from the translation of the
goal, is:

⎧
⎪⎪⎨

⎪⎪⎩

k1 :: 0, k2 :: 0
f : Πα1α2. Set(Pair(α1, α2)) → Set(Pair(α1, α2)) → Set(Pair(α1, α2))
∀α1, α2. ∀a : Set(Pair(α1, α2)), b : Set(Pair(α1, α2)), x : Pair(α1, α2).

x ∈ f(a, b) ⇔ (x ∈ a ∧ x ∈ b)

208 P. Halmagrand

θ(E) = match E with
| xT → Δ(x)
| E1, E2 → Pair(θ(E1), θ(E2))
| E1 × E2 → Set(Pair(θ(E1), θ(E2)))
| P(E) → Set(θ(E))

| fP(T)(. . .) → Set(〈T 〉t)

〈T 〉t = match T with

| id when flag = ax →
{

if id ∈ Ω then return Ω(id)
else Ω := Ω, (id, αid) return αid

| id when flag = gl →
{

if id ∈ Ω then return Ω(id)
else T := T , kid :: 0 ; Ω := Ω, (id, kid) return kid

| T1 × T2 → Pair(〈T1〉t , 〈T2〉t)
| P(T) → Set(〈T 〉t)

〈P 〉f = match P with
| ⊥ |
 → ⊥ |

| P1 ∧ P2 → 〈P1〉f ∧ 〈P2〉f
| P1 ⇒ P2 → 〈P1〉f ⇒ 〈P2〉f
| ¬P → ¬ 〈P 〉f
| ∀xT · P → ∀x : 〈T 〉t . 〈P 〉f and Δ := Δ, x : 〈T 〉t
| ∀(xT1

1 , xT2
2) · P →

{∀x1 : 〈T1〉t .∀x2 : 〈T2〉t . 〈P 〉f
and Δ := Δ, x1 : 〈T1〉t , x2 : 〈T2〉t

| E1 = E2 → 〈E1〉e =θ(E1) 〈E2〉e
| E1 ∈ E2 → 〈E1〉e ∈θ(E1) 〈E2〉e

〈E〉e = match E with
| xT → x
| E1, E2 → (〈E1〉e , 〈E2〉e)θ(E1),θ(E2)

| E1 × E2 → 〈E1〉e ×τ1,τ2 〈E2〉e where
{

θ(E1) = Set(τ1)
θ(E2) = Set(τ2)

| P(E) → Pτ (〈E〉e) where θ(E) = Set(τ)
| fP(T)(E1, . . . , En) →

if f : Πα1 . . . αm. τ1 → . . . → τn → τ T∈�
then T := T , f : Sig(fP(T)(E1, . . . , En))

return f(τ ′
1, . . . , τ

′
m; 〈E1〉e , . . . , 〈En〉e) where

⎧

⎨

⎩

θ(E1) = τ1(τ
′
1, . . . , τ

′
m)

· · ·
θ(En) = τn(τ

′
1, . . . , τ

′
m)

Fig. 4. Translation from B to PFOL

Finally, the translation of the goal (we unfold the ⊆ definition, see Sect. 2.1) is:

∀s : Set(k1), t : Set(k2), a : Set(Pair(k1, k2)), b : Set(Pair(k1, k2)).
(a, b) ∈ P(s × t) × P(s × t) ⇒ f(a, b) ∈ P(s × t)

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 209

5 Translating LLproof Proofs into B Proofs

In Fig. 5, we present the reverse translation, denoted 〈ϕ〉-1, to translate
monomorphic PFOL formulæ into B formulæ. This reverse translation is sim-
pler than the one presented in Sect. 4.2 because we do not need to translate
types, annotations for bound variables and function symbols not being neces-
sary anymore.

〈ϕ〉-1f = match ϕ with
| ⊥ |
 → ⊥ |

| ϕ1 ∧ ϕ2 → 〈ϕ1〉-1f ∧ 〈ϕ2〉-1f
| ϕ1 ⇒ ϕ2 → 〈ϕ1〉-1f ⇒ 〈ϕ2〉-1f
| ¬ϕ → ¬ 〈ϕ〉-1f
| ∀x : τ. ϕ → ∀x · 〈ϕ〉-1f
| e1 =τ e2 → 〈e1〉-1e = 〈e2〉-1e
| e1 ∈τ e2 → 〈e1〉-1e ∈ 〈e2〉-1e

〈e〉-1e = match E with
| x → x

| (e1, e2)τ1,τ2 → 〈e1〉-1e , 〈e2〉-1e
| e1 ×τ1,τ2 e2 → 〈e1〉-1e × 〈e2〉-1e
| Pτ (e) → P(〈e〉-1e)

| f(τ ′
1, . . . , τ

′
m; e1, . . . , en) → f(〈e1〉-1e , . . . , 〈en〉-1e)

Fig. 5. Translation from PFOL to B

Theorem 1. For a set of B formulæ Γ and a B goal P , if there exists a LLproof
proof of the sequent 〈Γ 〉 , 〈¬P 〉 �LL ⊥, then there exists a set Γ ′ of monomorphic
instances of 〈Γ 〉, and a B proof of the sequent 〈Γ ′〉-1 ,¬P �B ⊥.

Proof. We present a sketch of the proof.

1. We show that if P is a B goal, then we have 〈〈P 〉〉-1 ⇔ P .
2. Given a proof Π of the sequent 〈Γ 〉 , 〈¬P 〉 �LL ⊥, there exists a proof ΠKleene

of the sequent, starting with all applications of ∀type rules on polymorphic
formulæ, thanks to the permutation of inference rules in sequent calculus [15].

3. We take the subproof Πmono of ΠKleene, where we removed all the ∀type nodes
and the remaining polymorphic formulæ.

4. The set Γ ′ of monomorphic instances of 〈Γ 〉 is made of the root node formulæ
of Πmono, except 〈¬P 〉.

5. We extend the reverse translation to LLproof sequents,
〈P1, . . . , Pn �LL Q〉-1 → 〈P1〉-1 , . . . , 〈Pn〉-1 �B 〈Q〉-1, and to LLproof proof
nodes in Figs. 6 and 7.

6. 〈Πmono〉-1 is a B proof of the sequent 〈Γ ′〉-1 ,¬P �B ⊥.

210 P. Halmagrand

Axiom
BR3

〈P � P 〉-1
BR3

〈¬P � ¬P 〉-1
R5

〈P, ¬P � ⊥〉-1
�=

R10

〈� t =τ t〉-1
BR3

〈¬(t =τ t) � ¬(t =τ t)〉-1
R5

〈¬(t =τ t) � ⊥〉-1
Sym

BR3

〈t =τ u � t =τ u〉-1
R10

〈� t =τ t〉-1
BR3

〈¬(t =τ t) � ¬(t =τ t)〉-1
R5

〈¬(t =τ t) � ⊥〉-1
R9

〈t =τ u, ¬(u =τ t) � ⊥〉-1
¬¬

BR3

〈¬P � ¬P 〉-1
BR3

〈¬¬P � ¬¬P 〉-1
R5

〈¬¬P � P 〉-1 〈¬¬P, P � ⊥〉-1
BR4

〈¬¬P � ⊥〉-1
∧

BR3

〈P ∧ Q � P ∧ Q〉-1
R2

〈P ∧ Q � P 〉-1

BR3

〈P ∧ Q � P ∧ Q〉-1
R2′

〈P ∧ Q � Q〉-1 〈P ∧ Q, P, Q � ⊥〉-1
BR4

〈P ∧ Q, P � ⊥〉-1
BR4

〈P ∧ Q � ⊥〉-1
⇒

〈P ⇒ Q, ¬P � ⊥〉-1
BR6

〈� ¬⊥〉-1
R5

〈P ⇒ Q � P 〉-1
BR3

〈P ⇒ Q � P ⇒ Q〉-1
MP

〈P ⇒ Q � Q〉-1 〈P ⇒ Q, Q � ⊥〉-1
BR4

〈P ⇒ Q � ⊥〉-1

Fig. 6. Translations of LLproof Rules into B Proof System (part 1)

We give in Figs. 6 and 7 the translations for each LLproof proof node. Each
node can be translated to a B derivation where all PFOL sequents are translated
into B sequents, leading to a B proof tree. To lighten the presentation, we omit to
indicate the context Γ and some useless formulæ (removable by applying BR2) on
the left-hand side of sequents, and we use � for �LL. For instance, the translation
of the LLproof Axiom rule should be:

BR3

〈Γ, P, ¬P, ¬⊥ �LL P 〉-1
BR3

〈Γ, P, ¬P, ¬⊥ �LL ¬P 〉-1
R5

〈Γ, P, ¬P �LL ⊥〉-1

Example 5. The proof of the running example is too big to be presented here.
Instead, we present the proof translation for the following B formula, given s:

∀x · (x ∈ s ⇒ x ∈ s)

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 211

¬∧
〈¬(P ∧ Q), ¬P � ⊥〉-1

BR6

〈� ¬⊥〉-1
R5

〈¬(P ∧ Q) � P 〉-1
〈¬(P ∧ Q), ¬Q � ⊥〉-1

BR6

〈� ¬⊥〉-1
R5

〈¬(P ∧ Q) � Q〉-1
R1

〈¬(P ∧ Q) � P ∧ Q〉-1 Π
R5

〈¬(P ∧ Q) � ⊥〉-1
where Π :=

BR3

〈¬(P ∧ Q) � ¬(P ∧ Q)〉-1
¬ ⇒
〈¬(P ⇒ Q), P, ¬Q � ⊥〉-1

BR6

〈� ¬⊥〉-1
R5

〈¬(P ⇒ Q), P � Q〉-1
R3

〈¬(P ⇒ Q) � P ⇒ Q〉-1
BR3

〈¬(P ⇒ Q) � ¬(P ⇒ Q)〉-1
R5

〈¬(P ⇒ Q) � ⊥〉-1
¬∀
〈¬∀x : τ.P (x), ¬P (c) � ⊥〉-1

BR6

〈� ¬⊥〉-1
R5

〈¬∀x : τ.P (x) � P (c)〉-1
R7

〈¬∀x : τ.P (x) � ∀x : τ.P (x)〉-1
BR3

〈¬∀x : τ.P (x) � ¬∀x : τ.P (x)〉-1
R5

〈¬∀x : τ.P (x) � ⊥〉-1
∀

BR3

〈∀x : τ. P (x) � ∀x : τ. P (x)〉-1
R8

〈∀x : τ. P (x) � P (t)〉-1 〈∀x : τ. P (x), P (t) � ⊥〉-1
BR4

〈∀x : τ. P (x) � ⊥〉-1
Subst

〈P (t), ¬(t =τ u) � ⊥〉-1
BR6

〈� ¬⊥〉-1
R5

〈P (t) � t =τ u〉-1
BR3

〈P (t) � P (t)〉-1
R9

〈P (t) � P (u)〉-1 〈P (t), P (u) � ⊥〉-1
BR4

〈P (t) � ⊥〉-1

Fig. 7. Translation of LLproof Rules into B Proof System (part 2)

The latter leads to the PFOL formula, where k is a constant:

∀s : Set(k). ∀x : k. x ∈ s ⇒ x ∈ s

The LLproof proof is:
Ax

cx ∈k cs, cx �∈k cs �LL ⊥ ¬ ⇒¬(cx ∈k cs ⇒ cx ∈k cs) �LL ⊥ ¬∀¬∀x : k. x ∈k cs ⇒ x ∈k cs �LL ⊥ ¬∀¬∀s : Set(k). ∀x : k. x ∈k s ⇒ x ∈k s �LL ⊥

212 P. Halmagrand

We obtain the B proof (we removed the universal quantification over the given
set s, the first R5 node in the translation of ¬∀, some useless formulæ on the
left-hand side of sequents and used � for �B, c for cx and s for cs):

BR3
c ∈ s � c ∈ s

BR3
c �∈ s � c �∈ s

R5
c ∈ s, c �∈ s � ⊥ BR6� ¬⊥

R5
c ∈ s � c ∈ s

R3� c ∈ s ⇒ c ∈ s
BR3¬(c ∈ s ⇒ c ∈ s) � ¬(c ∈ s ⇒ c ∈ s)
R5¬(c ∈ s ⇒ c ∈ s) � ⊥ BR6� ¬⊥

R5� c ∈ s ⇒ c ∈ s
R7� ∀x · (x ∈ s ⇒ x ∈ s)

6 Conclusion

Automated theorem provers are in general made of thousands lines of code, using
elaborate decision procedures and specific heuristics. The confidence in such
tools may therefore be questioned. The correctness of Zenon proofs is already
guaranteed by the checking of proof certificates by an external proof checker.
But to prove B proof obligations, Zenon relies on two external tools, bpo2why
and Why3, to translate proof obligations into its input format, which raises the
question whether the proof found still corresponds to a proof of the original
statement.

In this paper, we have formalized a different and direct translation from the B
Method to a polymorphic first-order logic. The main purpose of this work is not
to replace bpo2why, but to validate the use of Zenon to prove B proof obligations.
One of the most challenging part of this translation deals with the encoding of
the B notion of types. Our solution to make the axioms polymorphic allows us
to benefit from the flexibility of polymorphism. Furthermore, we showed that
this translation is sound and gave a procedure to translate Zenon proofs in the
B proof system.

As future work, we want to prove the soundness and completeness of the
deduction modulo theory [11] extension of the proof system LLproof with regard
to those of LLproof, in particular in the case of the B Method.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomor-
phic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 493–507. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36742-7 34

3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd
of provers. In: International Workshop on Intermediate Verification Languages
(Boogie) (2011)

http://dx.doi.org/10.1007/978-3-642-36742-7_34
http://dx.doi.org/10.1007/978-3-642-36742-7_34

Soundly Proving B Method Formulæ Using Typed Sequent Calculus 213

4. Bodeveix, J.-P., Filali, M.: Type synthesis in B and the translation of B to PVS.
In: Bert, D., Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol.
2272, pp. 350–369. Springer, Heidelberg (2002). doi:10.1007/3-540-45648-1 18

5. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a uni-
versal proof language. In: Proof Exchange for Theorem Proving (PxTP) (2012)

6. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-75560-9 13

7. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated
deduction in the B set theory using typed proof search and deduction modulo.
In: LPAR 20 : 20th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning, Suva, Fiji (2015)

8. Cauderlier, R., Halmagrand, P.: Checking Zenon modulo proofs in Dedukti.
In: Fourth Workshop on Proof eXchange for Theorem Proving (PxTP), Berlin,
Germany (2015)

9. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon mod-
ulo: when achilles outruns the tortoise using deduction modulo. In: McMillan, K.,
Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 274–290.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5 20

10. Delahaye, D., Dubois, C., Marché, C., Mentré, D.: The Bware project: building a
proof platform for the automated verification of B proof obligations. In: Ameur,
Y.A., Schewe, K.-S. (eds.) Abstract State Machines, Alloy, B, VDM, and Z (ABZ).
LNCS, vol. 8477, pp. 290–293. Springer, Heidelberg (2014)

11. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving Modulo. J. Autom.
Reasoning (JAR) 31, 33–72 (2003)

12. Dowek, G., Miquel, A.: Cut elimination for zermelo set theory. Archive for Math-
ematical Logic. Springer, Heidelberg (2007, submitted)

13. Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Verifying B proof rules using
deep embedding and automated theorem proving. Softw. Eng. Formal Methods
7041, 253–268 (2011)

14. Jaeger, É., Dubois, C.: Why would you trust B? In: Dershowitz, N., Voronkov,
A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 288–302. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-75560-9 22

15. Kleene, S.C.: Permutability of inferences in Gentzens calculi LK and LJ. In:
Bulletin Of The American Mathematical Society, vol. 57, pp. 485–485. Amer Math-
ematical Soc, Providence (1951)

16. Mentré, D., Marché, C., Filliâtre, J.-C., Asuka, M.: Discharging proof obliga-
tions from Atelier B using multiple automated provers. In: Derrick, J., Fitzgerald,
J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ
2012. LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30885-7 17

17. Schmalz, M.: Formalizing the logic of event-B. Ph.D. thesis, Diss., Eidgenössische
Technische Hochschule ETH Zürich, Nr. 20516, 2012 (2012)

18. ClearSy: Atelier B 4.1 (2013). http://www.atelierb.eu/

http://dx.doi.org/10.1007/3-540-45648-1_18
http://dx.doi.org/10.1007/978-3-540-75560-9_13
http://dx.doi.org/10.1007/978-3-540-75560-9_13
http://dx.doi.org/10.1007/978-3-642-45221-5_20
http://dx.doi.org/10.1007/978-3-540-75560-9_22
http://dx.doi.org/10.1007/978-3-642-30885-7_17
http://dx.doi.org/10.1007/978-3-642-30885-7_17
http://www.atelierb.eu/

Deriving Inverse Operators for Modal Logic

Michell Guzmán1(B), Salim Perchy1, Camilo Rueda3, and Frank D. Valencia2,3

1 Inria-LIX, École Polytechnique de Paris, Palaiseau, France
michell.guzman@inria.fr

2 CNRS-LIX, École Polytechnique de Paris, Palaiseau, France
3 Pontificia Universidad Javeriana de Cali, Cali, Colombia

Abstract. Spatial constraint systems are algebraic structures from con-
current constraint programming to specify spatial and epistemic behav-
ior in multi-agent systems. We shall use spatial constraint systems to
give an abstract characterization of the notion of normality in modal
logic and to derive right inverse/reverse operators for modal languages.
In particular, we shall identify the weakest condition for the existence
of right inverses and show that the abstract notion of normality corre-
sponds to the preservation of finite suprema. We shall apply our results
to existing modal languages such as the weakest normal modal logic,
Hennessy-Milner logic, and linear-time temporal logic. We shall discuss
our results in the context of modal concepts such as bisimilarity and
inconsistency invariance.

Keywords: Modal logic · Inverse operators · Constraint systems ·
Modal algebra · Bisimulation

1 Introduction

Constraint systems (cs’s) provide the basic domains and operations for the
semantic foundations of several declarative models and process calculi from con-
current constraint programming (ccp) [3,8,9,11,15,18,23,25]. In these calculi,
processes can be thought of as both concurrent computational entities and logic
specifications (e.g., process composition can be seen as parallel execution and
conjunction). All ccp process calculi are parametric in a cs that specifies partial
information upon which programs (processes) may act.

A cs is often represented as a complete algebraic lattice (Con, �). The ele-
ments of Con, the constraints, represent partial information and we shall think
of them as being assertions. The intended meaning of c � d is that d specifies
at least as much information as c (i.e., d entails c). The join operation �, the

This work has been partially supported by the ANR project 12IS02001 PACE,
the Colciencias project 125171250031 CLASSIC, and Labex DigiCosme (project
ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the program
“Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 214–232, 2016.
DOI: 10.1007/978-3-319-46750-4 13

Deriving Inverse Operators for Modal Logic 215

bottom true and the top false of the lattice (Con, �) correspond to conjunc-
tion, the empty information and the join of all information, respectively. The
ccp operations and their logical counterparts typically have a corresponding ele-
mentary construct or operation on the elements of the constraint system. In par-
ticular, parallel composition and conjunction correspond to the join operation,
and existential quantification and local variables correspond to a cylindrification
operation on the set of constraints [25].

Similarly, the notion of computational space and the epistemic notion of belief
in the sccp process calculi [15] correspond to a family of functions [·]i :Con →
Con on the elements of the constraint system Con that preserve finite suprema.
These functions are called space functions. A cs equipped with space functions is
called a spatial constraint system (scs). From a computational point of view the
assertion (constraint) [c]i specifies that c resides within the space of agent i. From
an epistemic point of view, the assertion [c]i specifies that agent i considers c to
be true (i.e. that in the world of agent i the assertion c is true). Both intuitions
convey the idea of c being local to agent i.

The Extrusion Problem. Given a space function [·]i, the extrusion problem con-
sists in finding/constructing a right inverse of [·]i, called extrusion function, sat-
isfying some basic requirements (e.g., preservation of finite suprema). By right
inverse of [·]i we mean a function ↑i :Con → Con such that [↑ic]i = c. From a
computational point of view, the intended meaning of [↑ic]i = c is that within a
space context [·]i, ↑ic extrudes c from agent i’s space. From an epistemic point of
view, we can use [↑ic]i to express utterances by agent i, i.e., to specify that agent
i wishes to say c to the outside world. One can then think of extrusion/utterance
as the right inverse of space/belief.

Modal logics [21] extend classical logic to include operators expressing modal-
ities. Depending on the intended meaning of the modalities, a particular modal
logic can be used to reason about space, knowledge, belief or time, among oth-
ers. Some modal logics have been extended with inverse modalities to specify,
for example, past tense assertions in temporal logic [24], utterances in epistemic
logic [13], and backward moves in modal logic for concurrency [19], among others.
Although the notion of spatial constraint system is intended to give an algebraic
account of spatial and epistemic assertions, we shall show that it is sufficiently
robust to give an algebraic account of more general modal assertions.

Contributions. We shall study the extrusion problem for a meaningful family
of scs’s that can be used as semantic structures for modal logics. These scs’s
are called Kripke spatial constraint systems because its elements are Kripke
structures. We shall show that the extrusion functions of Kripke scs’s, i.e. the
right inverses of the space functions, correspond to right inverse modalities in
modal logic. We shall derive a complete characterization for the existence of right
inverses of space functions: The weakest restriction on the elements of Kripke
scs’s that guarantees the existence of right inverses. We shall also give an alge-
braic characterization of the modal logic notion of normality as maps that pre-
serve finite suprema. We then give a complete characterization and derivations of

216 M. Guzmán et al.

extrusion functions that are normal (and thus they correspond to normal inverse
modalities). Finally, we use the above-mentioned contributions to the problem
of whether a given modal language can be extended with right inverse oper-
ators. We discuss the implications of our results for specific modal languages
and modal concepts such the minimal modal logic Kn [10], Hennessy-Milner
logic [14], a modal logic of linear-time [20], and bisimulation.

2 Background: Spatial Constraint Systems

In this section we recall the notion of basic constraint system [3] and the more
recent notion of spatial constraint system [15]. We presuppose basic knowledge
of order theory and modal logic [1,2,10,21].

The concurrent constraint programming model of computation [25] is para-
metric in a constraint system (cs) specifying the structure and interdependencies
of the partial information that computational agents can ask of and post in a
shared store. This information is represented as assertions traditionally referred
to as constraints.

Constraint systems can be formalized as complete algebraic lattices [3]1. The
elements of the lattice, the constraints, represent (partial) information. A con-
straint c can be viewed as an assertion (or a proposition). The lattice order � is
meant to capture entailment of information: c � d, alternatively written d � c,
means that the assertion d represents as much information as c. Thus we may
think of c � d as saying that d entails c or that c can be derived from d. The
least upper bound (lub) operator � represents join of information; c � d, the
least element in the underlying lattice above c and d. Thus c � d can be seen
as an assertion stating that both c and d hold. The top element represents the
lub of all, possibly inconsistent, information, hence it is referred to as false. The
bottom element true represents the empty information.

Definition 1 (Constraint Systems [3]). A constraint system (cs) C is a
complete algebraic lattice (Con, �). The elements of Con are called constraints.
The symbols �, true and false will be used to denote the least upper bound (lub)
operation, the bottom, and the top element of C, respectively.

We shall use the following notions and notations from order theory.

Notation 1 (Lattices). Let C be a partially ordered set (poset) (Con, �).
We shall use

⊔
S to denote the least upper bound (lub) (or supremum or join)

of the elements in S, and
�

S is the greatest lower bound (glb) (infimum or
meet) of the elements in S. We say that C is a complete lattice iff each subset
of Con has a supremum and an infimum in Con. A non-empty set S ⊆ Con
is directed iff every finite subset of S has an upper bound in S. Also c ∈Con
is compact iff for any directed subset D of Con, c � ⊔

D implies c � d for

1 An alternative syntactic characterization of cs, akin to Scott information systems, is
given in [25].

Deriving Inverse Operators for Modal Logic 217

some d ∈ D. A complete lattice C is said to be algebraic iff for each c ∈ Con,
the set of compact elements below it forms a directed set and the lub of this
directed set is c. A self-map on Con is a function f :Con → Con. Let (Con,
�) be a complete lattice. The self-map f on Con preserves the supremum of
a set S ⊆ Con iff f(

⊔
S) =

⊔{f(c) | c ∈ S}. The preservation of the infi-
mum of a set is defined analogously. We say f preserves finite/infinite suprema
iff it preserves the supremum of arbitrary finite/infinite sets. Preservation of
finite/infinite infima is defined similarly.

Spatial Constraint Systems. The authors of [15] extended the notion of cs to
account for distributed and multi-agent scenarios where agents have their own
space for local information and for performing their computations.

Intuitively, each agent i has a space function [·]i from constraints to con-
straints. Recall that constraints can be viewed as assertions. We can then think
of [c]i as an assertion stating that c is a piece of information residing within a
space attributed to agent i. An alternative epistemic logic interpretation of [c]i
is an assertion stating that agent i believes c or that c holds within the space of
agent i (but it may not hold elsewhere). Both interpretations convey the idea that
c is local to agent i. Similarly, [[c]j]i is a hierarchical spatial specification stating
that c holds within the local space the agent i attributes to agent j. Nesting of
spaces can be of any depth. We can think of a constraint of the form [c]i � [d]j as
an assertion specifying that c and d hold within two parallel/neighboring spaces
that belong to agents i and j, respectively. From a computational/ concurrency
point of view, we think of � as parallel composition. As mentioned before, from
a logic point of view the join of information � corresponds to conjunction.

Definition 2 (Spatial Constraint System [15]). An n-agent spatial con-
straint system (n-scs) C is a cs (Con,�) equipped with n self-maps [·]1, . . . , [·]n
over its set of constraints Con such that: (S.1) [true]i = true, and (S.2) [c � d]i =
[c]i � [d]i for each c, d ∈ Con.

Axiom S.1 requires space functions to be strict maps (i.e. bottom preserving).
Intuitively, it states that having an empty local space amounts to nothing. Axiom
S.2 states that the information in a given space can be distributed. Notice that
requiring S.1 and S.2 is equivalent to requiring that each [·]i preserves finite
suprema. Also S.2 implies that each [·]i is monotonic: I.e., if c � d then [c]i � [d]i.

Extrusion and utterance. We can also equip each agent i with an extrusion
function ↑i : Con → Con. Intuitively, within a space context [·]i, the assertion ↑ic
specifies that c must be posted outside of (or extruded from) agent i’s space. This
is captured by requiring the extrusion axiom [↑ic]i = c. In other words, we view
extrusion/utterance as the right inverse of space/belief (and thus space/belief as
the left inverse of extrusion/utterance).

Definition 3 (Extrusion). Given an n-scs (Con,�, [·]1, . . . , [·]n), we say that
↑i is extrusion function for the space [·]i iff ↑i is a right inverse of [·]i, i.e., iff
[↑ic]i = c.

218 M. Guzmán et al.

From the above definitions it follows that [c � ↑id]i = [c]i � d. From a spatial
point of view, agent i extrudes d from its local space. From an epistemic view
this can be seen as an agent i that believes c and utters d to the outside world.
If d is inconsistent with c, i.e., c � d = false, we can see the utterance as an
intentional lie by agent i: The agent i utters an assertion inconsistent with their
own beliefs.

The Extrusion/Right Inverse Problem. A legitimate question is: Given
space [·]i can we derive an extrusion function ↑i for it? From set theory we
know that there is an extrusion function (i.e., a right inverse) ↑i for [·]i iff [·]i
is surjective. Recall that the pre-image of y ∈ Y under f : X → Y is the set
f−1(y) = {x ∈ X | y = f(x)}. Thus the extrusion ↑i can be defined as a
function, called choice function, that maps each element c to some element from
the pre-image of c under [·]i.

The existence of the above-mentioned choice function assumes the Axiom
of Choice. The next proposition from [13] gives some constructive extrusion
functions. It also identifies a distinctive property of space functions for which a
right inverse exists.

Proposition 1. Let [·]i be a space function of scs. Then

1. If [false]i 	= false then [·]i does not have any right inverse.
2. If [·]i is surjective and preserves arbitrary suprema then ↑i : c
→ ⊔

[c]−1
i is a

right inverse of [·]i and preserve arbitrary infima.
3. If [·]i is surjective and preserves arbitrary infima then ↑i : c
→ �

[c]−1
i is a

right inverse of [·]i and preserve arbitrary suprema.

We have presented spatial constraint systems as algebraic structures for spatial
and epistemic behaviour as that was their intended meaning. Nevertheless, we
shall see that they can also provide an algebraic structure to reason about Kripke
models with applications to modal logics.

In Sect. 4 we shall study the existence, constructions and properties of right
inverses for a meaningful family of scs’s; the Kripke scs’s. The importance of
such a study is the connections we shall establish between right inverses and
reverse modalities which are present in temporal, epistemic and other modal
logics. Property (1) in Proposition 1 can be used as a test for the non-existence
of a right-inverse. The space functions of Kripke scs’s preserve arbitrary suprema,
thus Property (2) will be useful. They do not preserve in general arbitrary (or
even finite) infima so we will not apply Property (3).

It is worth to point out that the derived extrusion ↑i in Property (3), preserves
arbitrary suprema, this implies ↑i is normal in a sense we shall make precise next.
Normal self-maps give an abstract characterization of normal modal operators, a
fundamental concept in modal logic. We will be therefore interested in deriving
normal inverses.

Deriving Inverse Operators for Modal Logic 219

3 Constraint Frames and Normal Self Maps

Spatial constraint systems are algebraic structures for spatial and mobile behav-
ior. By building upon ideas from Geometric Logic and Heyting Algebras [26]
we can also make them suitable as semantics structures for modal logic. In this
section we give an algebraic characterization of the concept of normal modality
as those maps that preserve finite suprema.

We can define a general form of implication by adapting the corresponding
notion from Heyting Algebras to constraint systems. Intuitively, a Heyting impli-
cation c → d in our setting corresponds to the weakest constraint one needs to
join c with to derive d: i.e., the greatest lower bound

�{e | e � c � d}. Similarly,
the negation of a constraint c, written ∼c, can be seen as the weakest constraint
inconsistent with c, i.e., the greatest lower bound

�{e | e � c � false} = c →
false.

Definition 4 (Constraint Frames). A constraint system (Con,�) is said to
be a constraint frame iff its joins distribute over arbitrary meets: More precisely,
c � �

S =
�{c � e | e ∈ S} for every c ∈ Con and S ⊆ Con. Given a

constraint frame (Con,�) and c, d ∈ Con, define Heyting implication c → d as�{e ∈ Con | c � e � d} and Heyting negation ∼c as c → false.

The following basic properties of Heyting implication are immediate conse-
quences of the above definitions.

Proposition 2. Let (Con,�) be a constraint frame. For every c, d, e ∈ Con we
have: (1) c�(c → d) = c�d, (2) c � (d → e) iff c�d � e, and (3) c → d = true
iff c � d.

In modal logics one is often interested in normal modal operators. The formulae
of a modal logic are those of propositional logic extended with modal operators.
Roughly speaking, a modal logic operator m is normal iff (1) the formula m(φ)
is a theorem (i.e., true in all models for the underlying modal language) when-
ever the formula φ is a theorem, and (2) the implication formula m(φ ⇒ ψ) ⇒
(m(φ) ⇒ m(ψ)) is a theorem. Since constraints can be viewed as logic assertions,
we can think of modal operators as self-maps on constraints. Thus, using Heyt-
ing implication, we can express the normality condition in constraint frames as
follows.

Definition 5 (Normal Maps). Let (Con,�) be a constraint frame. A self-
map m on Con is said to be normal if (1) m(true) = true and (2) m(c → d) →
(m(c) → m(d)) = true for each c, d ∈ Con.

We now prove that the normality requirement is equivalent to the requirement of
preserving finite suprema. The next theorem basically states that Condition (2)
in Definition 5 is equivalent to the seemingly simpler condition: m(c � d) =
m(c) � m(d).

220 M. Guzmán et al.

Theorem 1 (Normality & Finite Suprema). Let C be a constraint frame
(Con,�) and let f be a self-map on Con. Then f is normal if and only if f
preserves finite suprema.

Proof. It suffices to show that for any bottom preserving self-map f , ∀c, d ∈
Con : f(c → d) → (f(c) → f(d)) = true iff ∀c, d ∈ Con : f(c � d) = f(c) � f(d).
(Both conditions require f to be bottom preserving, i.e., f(true) = true, and
preservation of non-empty finite suprema is equivalent to the preservation of
binary suprema.) Here we show the only-if direction (the other direction is
simpler).

Assume that ∀c, d ∈ Con : f(c → d) → (f(c) → f(d)) = true. Take two
arbitrary c, d ∈ Con. We first prove f(c � d) � f(c) � (d). From the assumption
and Proposition 2(3) we obtain

f((c � d) → d) � f(c � d) → f(d). (1)

From Proposition 2(3) (c � d) → d = true. Since f(true) = true we have
f((c � d) → d) = true. We must then have, from Eq. 1, f(c � d) → f(d) = true
as well. Using Proposition 2(3) we obtain f(c � d) � f(d). In a similar fashion,
by exchanging c and d in Eq. 1, we can obtain f(d � c) � f(c). We can then
conclude f(c � d) � f(c) � f(d) as wanted.

We now prove f(c) � f(d) � f(c � d). From the assumption and Propo-
sition 2(3) we have

f(c → (d → c � d)) � f(c) → f(d → c � d). (2)

Using Proposition 2 one can verify that c → (d → c � d) = true. Since
f(true) = true then f(c → (d → c � d)) = true. From Eq. 2, we must then
have f(c) → f(d → c � d) = true and by using Proposition 2(3) we conclude
f(c) � f(d → c � d). From the assumption and Proposition 2(3) f(d → c � d) �
f(d) → f(c � d). We then have f(c) � f(d → c � d) � f(d) → f(c � d).
Thus f(c) � f(d) → f(c � d) and then using Proposition 2(2) we obtain
f(c) � f(d) � f(c � d) as wanted. �
By applying the above theorem, we can conclude that space functions from con-
straint frames are indeed normal self-maps, since they preserve finite suprema.

4 Extrusion Problem for Kripke Constraint Systems

This is the main and more technical part of the paper. Here we will study the
extrusion/right inverse problem for a meaningful family of spatial constraint
systems (scs’s); the Kripke scs. In particular we shall derive and give a complete
characterization of normal extrusion functions as well as identify the weakest
condition on the elements of the Kripke scs’s under which extrusion functions
may exist. To illustrate the importance of this study it is convenient to give some
intuition first.

Deriving Inverse Operators for Modal Logic 221

Kripke structures (KS) [16] are a fundamental mathematical tool in logic
and computer science. They can be seen as transition systems and they are
used to give semantics to modal logics. A KS M provides a relational structure
with a set of states and one or more accessibility relations i−→M between them:
s

i−→M t can be seen as a transition, labelled with i, from s to t in M . Broadly
speaking, the Kripke semantics interprets each modal formula φ as a certain
set �φ� of pairs (M, s), called pointed KS’s, where s is a state of the KS M . In
modal logics with one or more modal (box) operators �i, the formula �iφ is
interpreted as ��iφ� = {(M, s) | ∀t : s

i−→M t, (M, t) ∈ �φ�}.
Analogously, in a Kripke scs each constraint c is equated to a set of pairs

(M, s) of pointed KS. Furthermore, we have [c]i = {(M, s) | ∀t : s
i−→M

t, (M, t) ∈ c}. This means that formulae can be interpreted as constraints and
in particular �i can be interpreted by [·]i as ��iφ� = [�φ�]i.

Inverse modalities �−1
i , also known as reverse modalities, are used in many

modal logics. In tense logics they represent past operators [22] and in epis-
temic logic they represent utterances [13]. The basic property of a (right) inverse
modality is given by the axiom �i(�−1

i φ) ⇔ φ. In fact, given a modal logic one
may wish to see if it can be extended with reverse modalities (e.g., is there a
reverse modality for the always operator of temporal logic?).

Notice that if we have an extrusion function ↑i for [·]i we can provide the
semantics for inverse modalities �−1

i by letting ��−1
i φ� = ↑i(�φ�). We then have

��i(�−1
i φ)� = �φ� thus validating the axiom �i(�−1

i φ) ⇔ φ. This illustrates the
relevance of deriving extrusion functions and establishing the weakest conditions
under which they exist. Furthermore, the algebraic structure of Kripke scs may
help us stating derived properties of the reverse modality such as that of being
normal (Definition 5).

4.1 KS and Kripke SCS

We begin by recalling some notions and notations related to Kripke models.

Definition 6 (Kripke Structures). An n-agent Kripke Structure (KS) M
over a set of atomic propositions Φ is a tuple (S, π,R1, . . . ,Rn) where S is a
nonempty set of states, π : S → (Φ → {0, 1}) is an interpretation associating
with each state a truth assignment to the primitive propositions in Φ, and Ri is
a binary relation on S. A pointed KS is a pair (M, s) where M is a KS and s
is a state of M .

We shall use the following notation in the rest of the paper.

Notation 2. Each Ri is referred to as the accessibility relation for agent i. We
shall use i−→M to refer to the accessibility relation of agent i in M . We write
s

i−→M t to denote (s, t) ∈ Ri. We use �i(M, s) = {(M, t) | s
i−→M t} to

denote the pointed KS reachable from the pointed KS (M, s). The interpretation
function π tells us what primitive propositions are true at a given state: p holds
at state s iff π(s)(p) = 1. We shall use SM and πM to denote the set of states
and interpretation function of M .

222 M. Guzmán et al.

We now define the Kripke scs wrt a set Sn(Φ) of pointed KS.

Definition 7 (Kripke Spatial Constraint Systems [15]). Let Sn(Φ) be a
non-empty set of n-agent Kripke structures over a set of primitive propositions Φ
and let Δ be the set of all pointed Kripke structures (M, s) such that M ∈ Sn(Φ).
We define the Kripke n-scs for Sn(Φ) as K(Sn(Φ)) = (Con,�, [·]1, . . . , [·]n)
where Con = P(Δ), � = ⊇, and

[c]i
def= {(M, s) ∈ Δ | �i(M, s) ⊆ c}. (3)

The structure K(Sn(Φ)) = (Con,�, [·]1, . . . , [·]n) is a complete algebraic lattice
given by a powerset ordered by reversed inclusion ⊇. The join � is set intersec-
tion, the meet is set union, the top element false is the empty set ∅, and bottom
true is the set Δ of all pointed Kripke structures (M, s) with M ∈ Sn(Φ). Notice
that K(Sn(Φ)) is a frame since meets are unions and joins are intersections so the
distributive requirement is satisfied. Furthermore, each [·]i preserves arbitrary
suprema (intersection) and thus, from Theorem 1 it is a normal self-map.

Proposition 3. Let K(Sn(Φ)) = (Con,�, [·]1, . . . , [·]n) as in Definition 7. Then
(1) K(Sn(Φ)) is a spatial constraint frame and (2) each [·]i preserves arbitrary
suprema.

4.2 Existence of Right Inverses

We shall now address the question of whether a given Kripke constraint sys-
tem can be extended with extrusion functions. We shall identify a sufficient and
necessary condition on accessibility relations for the existence of an extrusion
function ↑i given the space [·]i. We shall also give explicit right inverse construc-
tions.

Notation 3. For notational convenience, we take the set Φ of primitive propo-
sitions and n to be fixed from now on and omit them from the notation. E.g., we
write M instead of Mn(Φ).

The following notions play a key role in our complete characterization, in terms
of classes of KS, of the existence of right inverses for Kripke space functions.

Definition 8 (Determinacy and Unique-Determinacy). Let S and R be
the set of states and an accessibility relation of a KS M , respectively. Given
s, t ∈ S, we say that s determines t wrt R if (s, t) ∈ R. We say that s uniquely
determines t wrt R if s is the only state in S that determines t wrt R. A state
s ∈ S is said to be determinant wrt R if it uniquely determines some state
in S wrt R. Furthermore, R is determinant-complete if every state in S is
determinant wrt R.

Example 1. Figure 1 illustrates some typical determinant-complete accessibility
relations for agent i. Notice that any determinant-complete relation i−→M is

Deriving Inverse Operators for Modal Logic 223

s1

s3 s4

s2

s5

...
...

...

i i i i

i i i

(i) M1

t1

t2

t3

...
...

t4

...
...

t5

t6

...
...

t7

...
...

i i

i i i i

i i i i i i i i

(ii)M2

u1

u2

u3

...

i

i

i

(iii)M3

u1

u2

u3

...

i

i

i

i

i

i

i

(iv) M4

v

i

(v) M5

Fig. 1. Accessibility relations for an agent i. In each sub-figure we omit the correspond-

ing KS Mk from the edges and draw s
i−→ t whenever s

i−→Mk t.

necessarily serial (or left-total): i.e., For every s ∈ SM , there exists t ∈ SM

such that s
i−→M t. Tree-like accessibility relations where all paths are infinite

are determinant-complete (Fig. 1(ii) and (iii)). Also some non-tree like struc-
tures such as Fig. 1(i) and (v). Figure 1(iv) shows a non determinate-complete
accessibility relation by taking the transitive closure of Fig. 1(iii).

We need to introduce some notation.

Notation 4. Recall that �i(M, s) = {(M, t) | s
i−→M t} where i−→M denotes

the accessibility relation of agent i in the KS M. We extend this definition to
sets of states as follows �i(M,S) =

⋃
s∈S �i(M, s). Furthermore, we shall write

s
i

�M t to mean that s uniquely determines t wrt i−→M .

The following proposition gives an alternative definition of determinant states.

Proposition 4. Let s ∈ SM . The state s is determinant wrt i−→M if and only
if for every S′ ⊆ SM : If �i(M, s) ⊆ �i(M,S′) then s ∈ S′.

The following theorem provides a complete characterization, in terms of classes
of KS, of the existence of right inverses for space functions.

Theorem 2 (Completeness). Let [·]i be a spatial function of a Kripke scs
K(S). Then [·]i has a right inverse if and only if for every M ∈ S the accessibility

relation i−→M is determinant-complete.

224 M. Guzmán et al.

Proof. – Suppose that for every M ∈ S, i−→M is determinant-complete. By
the Axiom of Choice, [·]i has a right inverse if [·]i is surjective. Thus, it
suffices to show that for every set of pointed KS d, there exists a set of
pointed KS c such that [c]i = d. Take an arbitrary d and let c = �i(M ′, S′)
where S′ = {s | (M, s) ∈ d}. From Definition 7 we conclude d ⊆ [c]i. It
remains to prove d ⊇ [c]. Suppose d 	⊇ [c]. Since d ⊆ [c] we have d ⊂ [c].
Then there must be a (M ′, s′), with M ′ ∈ S, such that (M ′, s′) 	∈ d and
(M ′, s′) ∈ [c]. But if (M ′, s′) ∈ [c]i then from Definition 7 we conclude that�i(M ′, s′) ⊆ c = �i(M ′, S′). Furthermore (M ′, s′) 	∈ d implies s′ 	∈ S′. It then
follows from Proposition 4 that s′ is not determinant wrt i−→M ′ . This leads
us to a contradiction since i−→M ′ is supposed to be determinant-complete.

– Suppose [·]i has a right inverse. By the Axiom of Choice, [·]i is surjective.

We claim that i−→M is determinant-complete for every M ∈ S. To show this
claim let us assume that there is M ′ ∈ S such that i−→M is not determinant-
complete. From Proposition 4 we should have s ∈ S and S′ ⊆ S such that�i(M ′, s) ⊆ �i(M ′, S′) and s 	∈ S′. Since [c′]i is surjective there must be
a set of pointed KS c′ such that {(M ′, s′) | s′ ∈ S′} = [c′]i. We can then
verify, using Definition 7, that �i(M,S′) ⊆ c′. Since �i(M ′, s) ⊆ �i(M ′, S′)
then �i(M ′, s) ⊆ c′. It then follows from Definition 7 that (M ′, s) ∈ [c′]i. But
[c′]i = {(M ′, s′) | s′ ∈ S′} then s ∈ S′, a contradiction. �

Henceforth we use MD to denote the class of KS’s whose accessibility relations
are determinant-complete. It follows from Theorem 2 that S = MD is the largest
class for which space functions of a Kripke scs K(S) have right inverses.

4.3 Right Inverse Constructions

Let K(S) = (Con,�, [·]1, . . . , [·]n) be the Kripke scs. The Axiom of Choice and
Theorem 2 tell us that each [·]i has a right inverse (extrusion function) if and
only if S ⊆ MD. We are interested, however, in explicit constructions of the right
inverses.

Remark 1. Recall that any Kripke scs K(S) = (Con,�, [·]1, . . . , [·]n) is ordered
by reversed inclusion (i.e., c � d iff d ⊆ c). Thus, for example, saying that some
f is the least function wrt ⊆ satisfying certain conditions is equivalent to saying
that f is the greatest function wrt � satisfying the same conditions. As usual
given two self-maps f and g over Con we define f � g iff f(c) � g(c) for every
c ∈ Con.

Since any Kripke scs space function preserve arbitrary suprema (Proposition 3),
we can apply Proposition 1.2 to obtain the following canonical greatest right-
inverse construction. Recall that the pre-image of c under [·]i is given by [c]−1

i =
{d | c = [d]i}.

Deriving Inverse Operators for Modal Logic 225

Definition 9 (Max Right Inverse). Let K(S) = (Con,�, [·]1, . . . , [·]n) be
a Kripke scs over S ⊆ MD. We define ↑M

i
as the following self-map on Con:

↑M
i

: c
→ ⊔
[c]−1

i .

It follows from Proposition 1.2 that ↑M
i

is a right inverse for [·]i, and furthermore,
from its definition it is clear that ↑M

i
is the greatest right inverse of [·]i wrt �.

Nevertheless, as stated in the following proposition, ↑M
i

is not necessarily
normal in the sense of Definition 5. To state this more precisely, let us first
extend the terminology in Definition 8.

Definition 10 (Indeterminacy and Multiple Determinacy). Let S and
R be the set of states and an accessibility relation of a KS M , respectively. Given
t ∈ S, we say that t is determined wrt R if there is s ∈ S such that s determines
t wrt R, else we say that t is indetermined (or initial) wrt R. Similarly, we say
that t is multiply, or ambiguously, determined if it is determined by at least two
different states in S wrt R.

The following statement and Theorem 1 lead us to conclude that the presence
of indetermined/initial states or multiple-determined states causes ↑M

i
not to be

normal.

Proposition 5. Let K(S) = (Con,�, [·]1, . . . , [·]n) and ↑M
i

as in Definition 9.

Let nd(S) = {(M, t) | M ∈ S & t is indetermined wrt i−→M} and md(S) =
{(M, t) | M ∈ S & t is multiply determined wrt i−→M}:
– If nd(S) 	= ∅ then ↑M

i
(true) 	= true.

– If md(S) 	= ∅ then ↑M
i
(c � d) 	= ↑M

i
(c) � ↑M

i
(d) for some c, d ∈ Con.

In what follows we shall identify right inverse constructions that are normal.
The notion of indeterminacy and multiply determinacy we just introduced in
Definition 10 will play a central role.

4.4 Normal Right Inverses

The following central lemma provides distinctive properties of any normal right
inverse.

Lemma 1. Let K(S) = (Con,�, [·]1, . . . , [·]n) be the Kripke scs over S ⊆ MD.
Suppose that f is a normal right-inverse of [·]i. Then for every M ∈ S, c ∈ Con:

1. �i(M, s) ⊆ f(c) if (M, s) ∈ c,
2. {(M, t)} ⊆ f(c) if t is multiply determined wrt i−→M , and
3. true ⊆ f(true).

The above property tell us what sets should necessarily be included in every
f(c) if f is to be both normal and a right inverse of [·]i. It turns out that it is
sufficient to include exactly those sets to obtain a normal right inverse of [·]i. In
other words the above lemma gives us a complete set of conditions for normal

226 M. Guzmán et al.

right inverses. In fact, the least self-map f wrt ⊆, i.e., the greatest one wrt the
lattice order �, satisfying Conditions 1, 2 and 3 in Lemma 1 is indeed a normal
right-inverse. We call such a function the max normal right inverse ↑MN

i
and is

given below.

Definition 11 (Max Normal-Right Inverse). Let K(S) = (Con,�, [·]1, . . . ,
[·]n) be a Kripke scs over S ⊆ MD. We define the max normal right inverse for
agent i, ↑MN

i
as the following self-map on Con:

↑MN
i

(c) def=

{
true if c = true

{(M, t) | t is determined wrt i−→M & ∀s : s
i

�M t, (M, s) ∈ c}
(4)

(Recall that s
i

�M t means that s uniquely determines t wrt i−→M .)

We now state that ↑MN
i

(c) is the greatest normal right inverse of [·]i wrt �.

Theorem 3. Let K(S) = (Con,�, [·]1, . . . , [·]n) and ↑MN
i

as in Definition 11.

– The self-map ↑MN
i

is a normal right inverse of [·]i,
– For every normal right-inverse f of [·]i, we have f � ↑MN

i
.

Notice that ↑MN
i

(c) excludes undetermined states if c 	= true. It turns out that we
can add them and obtain a more succinct normal right inverse:

Definition 12 (Normal Inverse). Let K(S) = (Con,�, [·]1, . . . , [·]n) be a
Kripke scs over S ⊆ MD. Define ↑N

i
: Con → Con as ↑N

i
(c) def= {(M, t) | ∀s :

s
i

�M t, (M, s) ∈ c}.

Clearly ↑N
i
(c) includes every (M, t) such that t is indetermined wrt i−→M .

Theorem 4. Let K(S) = (Con,�, [·]1, . . . , [·]n) and ↑N
i

as in Definition 12. The
self-map ↑N

i
is a normal right inverse of [·]i.

We conclude this section with the order of the right-inverses we identified.

Corollary 1. Let K(S) = (Con,�, [·]1, . . . , [·]n) be a Kripke scs over S ⊆
MD. Let ↑M

i
, ↑MN

i
, and ↑N

i
as in Definitions 9, 11 and 12, respectively. Then

↑N
i

� ↑MN
i

� ↑M
i
.

5 Applications

In this section we will apply and briefly discuss the results obtained in the
previous section in the context of modal logic. First we recall the notion of
modal language.

Deriving Inverse Operators for Modal Logic 227

Definition 13 (Modal Language). Let Φ be a set of primitive propositions.
The modal language Ln(Φ) is given by the following grammar: φ, ψ, . . . := p |
φ ∧ ψ | ¬φ | �iφ where p ∈ Φ and i ∈ {1, . . . , n}. We shall use the abbreviations
φ ∨ ψ for ¬(¬φ ∧ ¬ψ), φ ⇒ ψ for ¬φ ∨ ψ, φ ⇔ ψ for (φ ⇒ ψ) ∧ (ψ ⇒ φ), the
constant false ff for p ∧ ¬p, and the constant tt for ¬ff.

We say that a pointed KS (M, s) satisfies φ iff (M, s) |= φ where |= is defined
inductively as follows: (M, s) |= p iff πM (s)(p) = 1, (M, s) |= φ∧ψ iff (M, s) |=
φ and (M, s) |= ψ, (M, s) |= ¬φ iff (M, s) 	|= φ, and (M, s) |= �iφ

iff (M, t) |= φ for every t such that s
i−→M t. This notion of satisfiability is

invariant under a standard equivalence on Kripke structures: Bisimilarity, itself
a central equivalence in concurrency theory [14].

Definition 14 (Bisimilarity). Let B be a symmetric relation on pointed KS’s.
The relation is said to be a bisimulation iff for every ((M, s), (N, t)) ∈ B:
(1) πM (s) = πN (t) and (2) if s

i−→M s′ then there exists t′ s.t. t
i−→N t′

and ((M, s′), (N, t′)) ∈ B. We say that (M, s) and (N, t) are bisimilar, written
(M, s) ∼ (N, t) if there exists a bisimulation B such that ((M, s), (N, t)) ∈ B.

The well-known result of bisimilarity-invariance for modal satisfiability implies
that (M, s) and (M, t) satisfy the same formulae in Ln(Φ) whenever (M, s) ∼
(N, t) [14].

Modal logics are typically interpreted over different classes of KS’s obtained
by imposing conditions on their accessibility relations. Let Sn(Φ) be a non-empty
set of n-agent Kripke structures over a set of primitive propositions Φ. A modal
formula φ is said to be valid in Sn(Φ) iff (M, s) |= φ for each (M, s) such that
M ∈ Sn(Φ).

We can interpret modal formulae as constraints in a given Kripke scs C =
K(Sn(Φ)) as follows.

Definition 15 (Kripke Constraint Interpretation). Let C be a Kripke scs
K(Sn(Φ)). Given a modal formula φ in the modal language Ln(Φ), its interpre-
tation in the Kripke scs C is the constraint C�φ� inductively defined as follows:

C�p� = {(M, s) | πM (s)(p) = 1}
C�φ ∧ ψ� = C�φ� � C�ψ�

C�¬φ� = ∼ C�φ�

C��iφ� = [C�φ�]i

Remark 2. One can verify that for any Kripke scs K(Sn(Φ)), the Heyting nega-
tion ∼ c (Definition 4) is Δ\c where Δ is the set of all pointed Kripke structures
(M, s) such that M ∈ Sn(Φ) (i.e., boolean negation). Similarly, Heyting impli-
cation c → d is equivalent to (∼ c) ∪ d (i.e., boolean implication).

It is easy to verify that the constraint C�φ� includes those pointed KS (M, s),
where M ∈ Sn(Φ), such that (M, s) |= φ. Thus, φ is valid in Sn(Φ) if and only
if C�φ� = true.

228 M. Guzmán et al.

Notice that from Proposition 3 and Theorem 1, each space function [·]i of
K(Sn(Φ)) is a normal self-map. From Definitions 5 and 15 we can derive the
following standard property stating that �i is a normal modal operator: (Neces-
sitation) If φ is valid in Sn(Φ) then �iφ is valid in Sn(Φ), and (Distribution)
�i(φ ⇒ ψ) ⇒ (�iφ ⇒ �iψ) is valid in Sn(Φ).

Right-Inverse Modalities. Reverse modalities, also known as inverse modal-
ities, arise naturally in many modal logics. For example in temporal logics they
are past operators [20], in modal logics for concurrency they represent backward
moves [19], in epistemic logic they correspond to utterances [13].

To illustrate our results in the previous sections, let us fix a modal lan-
guage Ln(Φ) (whose formulae are) interpreted in an arbitrary Kripke scs C =
K(Sn(Φ)). Suppose we wish to extend it with modalities �−1

i , called reverse
modalities also interpreted over the same set of KS’s Sn(Φ) and satisfying some
minimal requirement. The new language is given by the following grammar.

Definition 16 (Modal Language with Reverse Modalities). Let Φ be a
set of primitive propositions. The modal language L+r

n (Φ) is given by the fol-
lowing grammar: φ, ψ, . . . := p | φ ∧ ψ | ¬φ | �iφ | �−1

i φ where p ∈ Φ and
i ∈ {1, . . . , n}.

The minimal semantic requirement for each �−1
i is that, regardless of the inter-

pretation we give to �−1
i φ, we should have:

�i�−1
i φ ⇔ φ valid in Sn(Φ). (5)

We then say that �−1
i is a right-inverse modality for �i (by analogy to the

notion of right-inverse of a function).
Since C��iφ� = [C�φ�]i, we can use the results in the previous sections to

derive semantic interpretations for �−1
i φ by using a right inverse ↑i for the space

function [·]i in Definition 15. Assuming that such a right inverse exists, we can
then interpret the reverse modality in C as

C��−1
i φ� = ↑i(C�φ�). (6)

Since each ↑i is a right inverse of [·]i, it is easy to verify that the interpretation
satisfies the requirement in Eq. 5. Furthermore, from Theorem 2 we can conclude
that for each M ∈ Sn(Φ), i−→M must necessarily be determinant-complete.

Normal Inverse Modalities. We can choose ↑i in Eq. 6 from the set
{↑N

i
, ↑MN

i
, ↑M

i
} of right-inverse constructions in Sect. 4.3. Assuming that ↑i is a

normal self-map (e.g., either ↑N
i

or ↑MN
i

), we can show from Definition 5 and Eq. 6
that �−1

i is itself a normal modal operator in the following sense: (1) If φ is valid
in Sn(Φ) then �−1

i φ is valid in Sn(Φ), and (2) �−1
i (φ ⇒ ψ) ⇒ (�−1

i φ ⇒ �−1
i ψ)

is valid in Sn(Φ).

Inconsistency Invariance. Since we assumed a right inverse for [·]i, from
Proposition 1(1) we should have

¬�iff valid in Sn(Φ) (7)

Deriving Inverse Operators for Modal Logic 229

(recall that ff is the constant false). Indeed using the fact that [·]i is a normal
self-map with an inverse ↑i and Theorem 1, we can verify the following:

C��iff� = C��i(ff ∧ �−1
i ff)� = C��iff ∧ �i�−1

i ff� = C��iff ∧ ff� = C�ff�

This implies �iff ⇔ ff is valid in Sn(Φ) and this means that ¬�iff is valid in
Sn(Φ).

Modal systems such Kn or Hennessy-Milner logic [14] where ¬�iff is not
an axiom cannot be extended with a reverse modality satisfying Eq. 5 (without
restricting their models). The issue is that the axiom ¬�iff, typically needed in
epistemic, doxastic and temporal logics, would require the accessibility relations
of agent i to be serial (recall that determinant-complete relations are necessarily
serial). In fact �iff is used in HM logic to express deadlocks wrt to i; (M, s) |=
�iff iff there is no s′ such that s

i−→M s′. Clearly there cannot be state deadlocks
wrt i if i−→M is required to be serial for each M .

Bisimilarity Invariance. Recall that bisimilarity invariance says that bisimilar
pointed KS’s satisfy the same formulae in Ln(Φ). The addition of a reverse
modality �−1

i may violate this invariance: Bisimilar pointed KS’s may not longer
satisfy the same formulae in L+r

n (Φ). This can be viewed as saying that the
addition of inverse modalities increases the distinguishing power of the original
modal language. We prove this next.

Let us suppose that the chosen right inverse ↑i in Eq. 6 is any normal self-map
whatsoever. It follows from Lemma 1(2) and Eq. 6 that if t is multiply-determined
wrt i−→M then (M, t) |= �−1

i ff. We can use Lemma 1(1) and Eq. 6 to show
that if t is uniquely determined wrt i−→M then (M, t) 	|= �−1

i ff.
Now take v and s4 as in Fig. 1. Suppose that πM5(v) = πM1(si) for every si

in the states of M1. Clearly (M1, s4) ∼ (M5, v). Since s4 is multiply determined
and v is uniquely determined, we conclude that (M1, s4) |= �−1

i ff but (M1, v) 	|=
�−1

i ff. Thus �−1
i ff can tell uniquely determined states from multiply determined

ones but bisimilarity cannot.

Temporal Operators. We conclude this section with a brief discussion on
some right-inverse linear-time modalities. Let us suppose that n = 2 in our
modal language Ln(Φ) under consideration (thus interpreted in Kripke scs C =
K(S2(Φ)). Assume further that the intended meaning of the two modalities �1

and �2 are the next operator (©) and the henceforth/always operator (�),
respectively, in a linear-time temporal logic. To obtain the intended meaning
we take S2(Φ) to be the largest set such that: If M ∈ S2(Φ), M is a 2-agent
KS where 1−→M is isomorphic to the successor relation on the natural numbers
and 2−→M is the reflexive and transitive closure of 1−→M . The relation 1−→M is
intended to capture the linear flow of time. Intuitively, s

1−→M t means t is the
only next state for s. Similarly, s

2−→M t for s 	= t is intended to capture the
fact that t is one of the infinitely many future states for s.

Let us first consider the next operator �1 = ©. Notice that 1−→M is
determinant-complete. If we apply Eq. 6 with ↑1 = ↑M

1
, i.e., the greatest right

230 M. Guzmán et al.

inverse of [·]1, we obtain �−1
1 = �, a past modality known in the literature as

strong previous operator [20]. The operator � is given by (M, t) |= � φ iff
there exists s such that s

M−→1 t and (M, s) |= φ. If we take ↑i to be the normal
right inverse ↑N

i
, we obtain �−1

1 = �̃ the past modality known as weak previous

operator [20]. The operator �̃ is given by (M, t) |= �̃ φ iff for every s if s
M−→1 t

then (M, s) |= φ. Notice that the only difference between the two operators is
the following: If s is an indetermined/initial state wrt 1−→M then (M, s) 	|= � φ
and (M, s) |= �̃ φ for any φ.

Let us now consider the always operator �2 = �. Notice that 2−→M is not
determinant-complete: Take any sequence s0

1−→M s1
1−→M . . . The state s1 is

not determinant because for every sj such that s1
2−→M sj we have s0

2−→M sj .
Theorem 2 says that there is no right-inverse ↑2 of [·]i that can give us a �−1

2

satisfying Eq. 5.
By analogy to the above-mentioned past operators, one may think that the

past operator it-has-always-been � [24] may provide a reverse modality for � in
the sense of Eq. 5. The operator is given by (M, t) |= �φ iff (M, s) |= φ for
every s such that s

2−→M t. Clearly ��φ ⇒ φ is valid in S2(Φ) but φ ⇒ �� φ
is not.

6 Concluding Remarks and Related Work

We studied the existence and derivation of right inverses (extrusion) of space
functions for the Kripke spatial constraint systems. We showed that being
determinant-complete is the weakest condition on KS’s that guarantees the exis-
tence of such right inverses. We identified the greatest normal right inverse of
any given space function. We applied these results to modal logic by using space
functions and their right inverses as the semantic counterparts of box modali-
ties and their right inverse modalities. We discussed our results in the context
of modal concepts such as bisimilarity invariance, inconsistency invariance and
temporal modalities.

Most of the related work was discussed in the previous sections. In previous
work [13] the authors derived an inverse modality but only for the specific case
of a logic of belief. The work was neither concerned with giving a complete char-
acterization of the existence of right inverse nor deriving normal inverses. The
constraint systems in this paper can be seen as modal extension of geometric
logic [26]. Modal logics have also been studied from an algebraic perspective by
using modal extensions of boolean and Heyting algebras in [2,4,17]. These works,
however, do not address issues related to inverse modalities. Inverse modalities
have been used in temporal, epistemic and logic for concurrency. In [24] the
authors discuss inverse temporal and epistemic modalities from a proof theory
perspective. The works [5,12,19] use modal logic with reverse modalities for
specifying true concurrency and [6,7] use backward modalities for characteriz-
ing branching bisimulation. None of these works is concerned with an algebraic
approach or with deriving inverse modalities for modal languages.

Deriving Inverse Operators for Modal Logic 231

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., et al. (ed.) Handbook
of Logic in Computer Science, vol. 3, pp. 1–168. Oxford University Press, Oxford
(1994)

2. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, 1st edn. Cambridge
University Press, Cambridge (2002)

3. Boer, F.S., Di Pierro, A., Palamidessi, C.: Nondeterminism and infinite computa-
tions in constraint programming. Theor. Comput. Sci. 151, 37–78 (1995)

4. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35 (1997)
5. De Nicola, R., Ferrari, G.L.: Observational logics and concurrency models. In: Nori,

K.V., Veni Madhavan, C.E. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 301–315.
Springer, Heidelberg (1990). doi:10.1007/3-540-53487-3 53

6. De Nicola, R., Montanari, U., Vaandrager, F.: Back and forth bisimulations. In:
Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165.
Springer, Heidelberg (1990). doi:10.1007/BFb0039058

7. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
(JACM) 42(2), 458–487 (1995)

8. Dı́az, J.F., Rueda, C., Valencia, F.D.: Pi+- calculus: a calculus for concurrent
processes with constraints. CLEI Electron. J. 1(2), 2 (1998)

9. Fages, F., Ruet, P., Soliman, S.: Linear concurrent constraint programming: oper-
ational and phase semantics. Inf. Comput. 165, 14–41 (2001)

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge,
4th edn. MIT Press, Cambridge (1995)

11. Falaschi, M., Olarte, C., Palamidessi, C., Valencia, F.: Declarative diagnosis of
temporal concurrent constraint programs. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 271–285. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74610-2 19

12. Goltz, U., Kuiper, R., Penczek, W.: Propositional temporal logics and equivalences.
In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 222–236. Springer,
Heidelberg (1992). doi:10.1007/BFb0084794

13. Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: An algebraic view of space/belief
and extrusion/utterance for concurrency/epistemic logic. In: PPDP 2015, pp. 161–
172. ACM (2015)

14. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM (JACM) 32(1), 137–161 (1985)

15. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic
modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.)
CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32940-1 23

16. Kripke, S.A.: Semantical considerations on modal logic. Acta Philos. Fennica 16,
83–94 (1963)

17. Macnab, D.: Modal operators on heyting algebras. Algebra Univers. 12(1), 5–29
(1981)

18. Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint pro-
gramming: denotation, logic and applications. Nord. J. Comput. 9(1), 145–188
(2002)

19. Phillips, I., Ulidowski, I.: A logic with reverse modalities for history-preserving
bisimulations. In: EXPRESS 2011. EPTCS, vol. 64, pp. 104–118 (2011)

http://dx.doi.org/10.1007/3-540-53487-3_53
http://dx.doi.org/10.1007/BFb0039058
http://dx.doi.org/10.1007/978-3-540-74610-2_19
http://dx.doi.org/10.1007/978-3-540-74610-2_19
http://dx.doi.org/10.1007/BFb0084794
http://dx.doi.org/10.1007/978-3-642-32940-1_23
http://dx.doi.org/10.1007/978-3-642-32940-1_23

232 M. Guzmán et al.

20. Pnueli, A., Manna, Z.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992)

21. Popkorn, S.: First Steps in Modal Logic, 1st edn. Cambridge University Press,
Cambridge (1994)

22. Prior, A.N.: Past, Present and Future, vol. 154. Oxford University Press, Oxford
(1967)

23. Réty, J.: Distributed concurrent constraint programming. Fundam. Inf. 34, 323–
346 (1998)

24. Ryan, M., Schobbens, P.-Y.: Counterfactuals and updates as inverse modalities. J.
Logic Lang. Inf. 6, 123–146 (1997)

25. Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: POPL 1991, pp. 333–352. ACM (1991)

26. Vickers, S.: Topology via Logic, 1st edn. Cambridge University Press, Cambridge
(1996)

Specifications

Specifying Properties of Dynamic Architectures
Using Configuration Traces

Diego Marmsoler(B) and Mario Gleirscher

Technische Universität München, Munich, Germany
{diego.marmsoler,mario.gleirscher}@tum.de

Abstract. The architecture of a system describes the system’s overall
organization into components and connections between those compo-
nents. With the emergence of mobile computing, dynamic architectures
became increasingly important. In such architectures, components may
appear or disappear, and connections may change over time.

Despite the growing importance of dynamic architectures, the spec-
ification of properties for those architectures remains a challenge. To
address this problem, we introduce the notion of configuration traces to
model properties of dynamic architectures. Then, we investigate these
properties to identify different types thereof. We show completeness and
consistency of these types, i.e., we show that (almost) every property
can be separated into these types and that a property of one type does
not impact properties of other types.

Configuration traces can be used to specify general properties of
dynamic architectures and the separation into different types provides
a systematic way for their specification. To evaluate our approach we
apply it to the specification and verification of the Blackboard pattern
in Isabelle/HOL.

1 Introduction

A systems architecture provides a set of components and connections between
their ports. With the emergence of mobile computing, dynamic architectures
became more and more important [5,10,20]. In such architectures, components
can appear and disappear and connections can change, both over time.

Despite the increasing importance of dynamic architectures some questions
regarding their specification still remain:

– How can properties of dynamic architectures be specified in general?
– How can those properties be separated into different types?

A property of dynamic architectures characterizes executions of such architec-
tures. Consider, for example, the following property for a publisher-subscriber [8]
system: Whenever a component p of type Publisher provides a message for
which a Subscriber component s was subscribed, s is connected to p. Another
example describes a property of a Blackboard architecture [8]: Whenever a com-
ponent of type BlackBoard provides a message containing a problem to be solved,
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 235–254, 2016.
DOI: 10.1007/978-3-319-46750-4 14

236 D. Marmsoler and M. Gleirscher

a component of type KnowledgeSource , able to solve this problem, is eventually
activated. Usually, such properties can be separated into different types, such
as: (i) Behavior properties characterizing the behavior of certain components.
(ii) Activation properties characterizing the activation/deactivation of compo-
nents. (iii) Connection properties characterizing the dynamic connection between
components.

To answer the above questions, we first introduce a formal model of dynamic
architectures. Thereby we model an architecture as a set of configuration traces
which, in turn, is a sequence over architecture configurations. An architecture
configuration is modeled as a set of components, valuations of the component
ports with messages, and connections between these ports.

In a second step, we characterize behavior, activation, and connection prop-
erties. We show the distinct nature of those types of properties and investigate
their expressive power. Thereby we characterize the notion of separable architec-
ture property and show that each of them can be uniquely described through the
intersection of a corresponding behavior, activation, and connection property.

We evaluate our approach by specifying (and analyzing) the Blackboard pat-
tern for dynamic architectures using the Isabelle/HOL [22] interactive theorem
prover. Therefore, we first specify behavior, activation, and connection proper-
ties for Blackboard architectures. Then, we specify the pattern’s guarantee as
an architecture property. Finally, we verify the pattern by proving its guarantee
from the original properties using Isabelle’s structured proof language Isar [28].

The remainder of the article is organized as follows: Sect. 2 reviews existing
work in this area. Section 3 introduces the Blackboard pattern as a running
example. Section 4 introduces our model for dynamic architectures. Section 5
describes and investigates different types of properties for those architectures.
Section 6 presents an approach to systematically specify properties and applies
it to specify the Blackboard pattern. In Sect. 7 we provide a critical discussion
of possible weaknesses of the approach. Finally, Sect. 8 summarizes our results
and discusses potential implications and future work.

2 Background and Related Work

Related work can be found in three different areas: 1. Architecture Description
Languages, 2. Modeling of Architectural Styles, and 3. Modeling of Constraints
for Dynamic Architectures. In the following we briefly discuss each of them.

2.1 Architecture Description Languages

Over the last three decades, a number of so-called Architecture Description
Languages (ADLs) emerged to support the formal specification of architec-
tures. Some of them also support the specification of dynamic aspects such as
Rapide [17], Darwin [18], Dynamic Wright [2,3], Π-ADL [23], xADL [11], and
ACME [13].

Specifying Properties of Dynamic Architectures Using Configuration Traces 237

While ADLs support the formal specification of architectures, they were
developed with the aim to specify individual architecture solutions, rather than
properties for architectures which require more abstract specification techniques.
Nevertheless, these works provide the conceptual foundation for our work since
many of the abstractions used in our model are based on the concepts introduced
by ADLs.

2.2 Modeling Architectural Styles

Architectural styles focus on the specification of architectural constraints, rather
than specific architectures.

One of the first approaches to formalize architectural styles is discussed by
Abowd et al. [1]. There, the authors apply a denotational semantics approach to
software architectures by using the specification language Z [26]. Other examples
used to specify architectural styles include the Chemical Abstract Machine [15]
or Wright [3] which allow for the specification of architectural constraints for
static architectures. Two further ideas come from Moriconi et al. [21] and Penix
et al. [24]. Both apply algebraic specification to software architectures. Finally,
Bernardo et al. [4] use process algebras to specify architectural types which can
be seen as a form of architectural styles.

While these approaches focus on the specification of architectural constraints
rather than architectures, they do usually not allow for the specification of
dynamic architectural constraints which is the focus of this work. Nevertheless,
these works provide many important conceptual insights into the specification
of architectural constraints on which we build.

2.3 Specification of Constraints for Dynamic Architectures

Work in this area is most closely related to our work.
The approach of Le Métayer [16] applies graph theory to specify architectural

evolution. The author proposes the use of graph grammars to specify architec-
tural evolution. A similar approach comes from Hirsch and Montanari [14] who
employ hypergraphs as a formal model to represent styles and their reconfig-
urations. While we also apply a graph-based approach to model architectural
properties, the major difference lies in the specification of behavior. While the
discussed approaches focus on structural aspects, we aim at a combination of
structural and behavioral aspects.

Another, closely related approach is the one of Wermlinger et al. [29]. The
authors combine behavior and structure to model dynamic reconfigurations. One
major difference to our work concerns the underlying model of interaction. While
the authors use an action synchronization communication model, our model is
based on time-synchronous communication. Both communication models have
their advantages and drawbacks. Thus, by providing a time-synchronous alter-
native, we actually complement their work.

Recently, categorical approaches to dynamic architecture reconfiguration
appeared such as the work of Castro et al. [9] or Fiadeiro and Lopes [12].

238 D. Marmsoler and M. Gleirscher

While these approaches provide fundamental insights into the specification of
dynamic architecture properties, their model remains implicitly in the categor-
ical constructions. Thus, we complement their work by providing an explicit
model of dynamic architecture properties.

Finally, we do not know of any existing work investigating different types of
properties of dynamic architectures. However, as stated in the introduction, this
is an important aspect to systematically specify properties of dynamic archi-
tectures. In this work we provide a formal investigation of properties which is
another contribution to current literature.

3 Running Example: Specifying Blackboard Architectures

In this paper, we use the Blackboard architecture design pattern as a running
example to show our approach to the specification and verification of dynamic
architectures. This pattern was described, for example, by Shaw and Garlan [25],
Buschmann et al. [8], and Taylor et al. [27].

Blackboards work with problems and solutions for them. Hence, we denote by
PROB the set of all problems and by SOL the set of all solutions. Complex problems
consist of subproblems which can be complex themselves. To solve a problem,
its subproblems have to be solved first. Therefore, we assume the existence of a
subproblem relation ≺ Ď PROB×PROB. For complex problems, this relation may
not be known in advance. Indeed, one of the benefits of a Blackboard architecture
is that a problem can be solved also without knowing this relation in advance.
However, the subproblem relation has to be well-founded (wf) for a problem to
be solvable. In particular, we do not allow cycles in the transitive closure of ≺.

While there may be different approaches to solve a problem (i.e. several ways
to split a problem into subproblems), we assume that the final solution for a
problem is unique. Thus, we assume the existence of a function solve : PROB →
SOL which assigns the correct solution to each problem. Note, however, that this
function is not known in advance and it is one of the reasons of using this pattern
to calculate this function.

4 A Model of Dynamic Architectures

In the following we introduce our model of dynamic architectures. It is based on
Broy’s Focus theory [6] and an adaptation of its dynamic extension [7]. A prop-
erty is modeled as a set of configuration traces which are sequences of architecture
configurations that, in turn, consist of a set of active components, valuation of
their ports with type-conform messages, and connections between their ports.
The model serves the specification of properties for dynamic architectures as
shown by the running example.

4.1 Foundations

This section introduces basic concepts of our model such as ports which can be
valuated by messages.

Specifying Properties of Dynamic Architectures Using Configuration Traces 239

Convention 1. In the following, we denote by X ��� Y , the set of partial func-
tions from a set X to a set Y . For a partial function f : X ��� Y , we denote
by:

– dom (f) the domain of f ,
– ran (f) the range of f , and by
– f |X′ the restriction of f to the set X ′ Ď X. If X = N and x ∈ N we denote

by f ↓x def
= f |{n∈N|n�x} the restriction of f to the first x numbers.

If dom (f) = X, f is called total and denoted by f : X → Y .

Messages and ports. In our model, components communicate by exchanging
messages over ports. Thereby, ports are typed by a set of messages which can go
through the corresponding port. Thus, we assume the existence of the following
sets:

– set M containing all messages,
– sets Pi and Po containing all input and output ports, respectively, and set

P = Pi Y Po containing all ports. We require a port to be either input or
output, but not both:

Pi X Po = ∅. (1)

Moreover, we assume the existence of a type function which assigns a set of
messages to each port:

(Tp)p∈P, with Tp Ď M for each p ∈ P. (2)

Valuation. In our model, components communicate by sending and receiving
messages through ports. This is achieved through the notion of port valuation.
Roughly speaking, a valuation for a set of ports is an assignment of messages to
each port. Note that in our model, ports can be valuated by a set of messages
meaning that a component can send/receive no message, a single message, or
multiple messages at each point in time.

For ports P Ď P, we denote by P the set of all possible port-valuations,
formally,

P
def= {μ : P → ℘(M) | ∀p ∈ P : μ(p) Ď Tp}. (3)

Moreover, we denote by [p1, p2, . . . �→ {m1}, {m2}, . . .] the valuation of ports
p1, p2, . . . with sets {m1}, {m2}, . . . , respectively. For singleton sets we shall
sometimes omit the set parentheses and simply write [p1, p2, . . . �→ m1,m2, . . .].

4.2 Components and Interfaces

This section introduces the basic notions of component and interface.

Components. In our model, the basic unit of computation is a component. A
component is identified by a component identifier which is why we postulate the
existence of the set of all component identifiers C.

240 D. Marmsoler and M. Gleirscher

Component port valuation. In our model, the same port can be reused by differ-
ent components. Thus, to uniquely identify a component port, we need to combine
it with the corresponding component. Therefore, we generalize the notion of port
valuation introduced in Eq. (3) to component ports P Ď C× P as follows:

P
def= {μ : P →℘(M) | ∀(c, p)∈P : μ((c, p)) Ď Tp}.

Interfaces. A component communicates with its environment through an inter-
face by sending and receiving messages over ports.

Definition 2. An interface is a pair (Pi, Po) with:

– input ports Pi Ď Pi, and
– output ports Po Ď Po.

The set of all interfaces is denoted by I.

Similar to components, interfaces have an identifier which is why we postulate
the existence of the set of all interface identifiers I.

Interface port valuation. As for components, the same port can be used by differ-
ent interfaces. Thus, to uniquely identify an interface port, we need to combine
it with the corresponding interface identifier. Therefore, we can generalize the
notion of valuation introduced in Eq. (3) to interface ports I × P as done for
component port valuations.

4.3 Interface Specifications

An interface specification declares a set of component and interface identifiers.
Moreover, it associates an interface identifier with each component identifier and
an interface with each interface identifier.

Definition 3. An interface specification is a 4-tuple (C, I, tc, ti) consisting of:

– a set of component identifiers C Ď C,
– a set of interface identifiers I Ď I,
– a mapping tc : C → I, assigning an interface identifier to each component,
– a mapping ti : I → I, which assigns an interface to each interface identifier.

The set of all interface specifications is denoted by SI .

Convention 4. For an n-tuple Z = (z1, . . . , zn), we denote by
[
z
]i = zi with

1 � i � n the projection to the i-th component of Z.

Convention 5. For interface specification Si = (C, I, tc, ti) ∈ SI we denote by:

– in(I ′, Si)
def
=

⋃
i∈I′({i} ×

[
ti(i)

]1) the set of input ports,

– out(I ′, Si)
def
=

⋃
i∈I′({i} ×

[
ti(i)

]2) the set of output ports,

– port(I ′, Si)
def
= in(I ′, Si) Y out(I ′, Si) the set of all ports,

for a set of interface identifiers I ′ Ď I, respectively.
The same notation can be used to denote the ports for a set of component

identifiers C ′ Ď C by substituting ti(i) with ti(tc(c)) for each c ∈ C ′ in the above
definitions.

Specifying Properties of Dynamic Architectures Using Configuration Traces 241

4.4 Architecture Configurations and Configuration Traces

Architectures are modeled as sets of configuration traces which are sequences
over architecture configurations.

Architecture Configurations. In our model, an architecture configuration
connects ports of active components. It consists of a set of active components
and a so-called connection relation connecting the component ports.

Definition 6. An architecture configuration over interface specification Si =
(C, I, tc, ti) ∈ SI is a triple (C ′, N, μ), consisting of:

– a set of active components C ′ Ď C,
– a connection N : in(C ′, Si) ��� ℘(out(C ′, Si)),
– a valuation μ ∈ port(C ′, Si).

We require connected ports to be consistent in their valuation, i.e. if a compo-
nent provides messages at its output port, these messages are transferred to the
corresponding connected input ports:

∀pi ∈ dom (N) : μ(pi) =
⋃

po∈N(pi)

μ(po). (4)

The set of all possible architecture configurations for interface specification Si ∈
SI is denoted by K(Si).

Note that connection N is modeled as a set-valued, partial function from
component input ports to component output ports, meaning that:

– input/output ports can be connected to several output/input ports, respec-
tively, and

– not every input/output port needs to be connected to an output/input port,
respectively.

Convention 7. In the following we use c :: I to denote that component vari-
able c requires the corresponding component to have the assigned interface I.
Moreover, port names are used to denote the corresponding port valuation.

Example 1. Assuming p1, p2, p3, (p1, s1), (p2, s2) ∈ M, ks1 , ks2 , bb ∈ C, ip, is ∈
Pi, and op, os ∈ Po. Figure 1 shows an architecture configuration (C ′, N, μ) for
interface specification SBB (as defined in Sect. 4.5 with C = {ks1 , ks2 , bb}), with:

– active components C ′ = {ks1 , bb};
– connection N , with N((bb, op)) = {(ks1, ip)}, N((bb, os)) = {(ks1, is)}, N((ks1,

op)) = {(bb, ip)}, N((ks1, os)) = {(bb, is)}; and
– valuation

μ=[(ks1,ip),(ks1,op),(bb,os),··· �→{p1,p2,p3},{(p2,{p4})},{(p1,s1)},···].
Convention 8. For an architecture configuration k = (C ′, N, μ) ∈ K(Si) over
interface specification Si = (C, I, tc, ti) ∈ SI we denote by

inoc(Si, k)
def
= in(C ′, Si) \ dom (N) , (5)

the set of open input configuration ports.

242 D. Marmsoler and M. Gleirscher

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

bb.op = ks1.ip = {p1, p2, p3}
bb.os = ks1.is = {p1, s1}
bb.ip = ks1.op = {p2, tp4}
bb.is = ks1.os = { p2, s2}

Fig. 1. Architecture configuration

Equivalences Between Architecture Configurations. Architecture config-
urations can be related according to several aspects. In the following we introduce
several notions of architecture configuration equivalence.

Definition 9. Two architecture configurations k = (C ′, N, μ), k′ = (C ′′, N ′, μ′)
over interface specification Si ∈ SI , with k, k′ ∈ K(Si), are behavior equivalent,
written k ≈b k′, iff

∀p ∈ port(C ′ X C ′′, Si) : μ(p) = μ′(p). (6)

Definition 10. Two architecture configurations k = (C ′, N, μ), k′ = (C ′′, N ′,
μ′) over interface specification Si ∈ SI , with k, k′ ∈ K(Si), are activation equiv-
alent, written k ≈a k′, iff

C ′ = C ′′. (7)

Definition 11. Two architecture configurations k = (C ′, N, μ), k′ = (C ′′, N ′,
μ′) over interface specification Si ∈ SI , with k, k′ ∈ K(Si), are connection equiv-
alent, written k ≈n k′, iff

∀p ∈ in(C ′ X C ′′, Si) : N(p) = N ′(p). (8)

These relations suffice to determine architecture configuration equivalence.

Property 1. Two ACs k, k′ ∈ K(Si) are the same iff they are behavior equivalent,
connection equivalent and activation equivalent:

k = k′ ⇐⇒ k ≈b k′ ∧ k ≈n k′ ∧ k ≈a k′.

However, not every relation is indeed an equivalence relation.

Property 2. Activation equivalence is an equivalence relation. Behavior and con-
nection equivalence are reflexive, symmetric, but not transitive.

Example 2 (Why behavior and connection equivalence are not necessarily tran-
sitive). Consider three architecture configurations k′ = (C ′′, N ′, μ′), k =
(C ′, N, μ), k′′ = (C ′′′, N ′′, μ′′) ∈ K(Si), such that C ′ Ď C ′′ and C ′ Ď C ′′′ but
there exists a c ∈ C ′′ X C ′′′ which is not in C ′ and μ′(c, p) �= μ′′(c, p) for some
port p. Furthermore, assume k′ ≈b k and k ≈b k′′. Since μ′(c, p) �= μ′′(c, p), we
have k′ �≈b k′′.

A similar example can be given for connection equivalence.

Specifying Properties of Dynamic Architectures Using Configuration Traces 243

Configuration traces. A configuration trace consists of a series of configura-
tion snapshots of an architecture during system execution. Thus, a configuration
trace is modeled as a sequence of architecture configurations at a certain point
in time.

Definition 12. A configuration trace (CT) over interface specification Si ∈ SI

is a mapping N → K(Si). The set of all CTs for Si is denoted by Kt(Si).

Example 3. Figure 2 shows a configuration trace t ∈ Kt(Si) with corresponding
configurations t(0) = k0, t(1) = k1, and t(2) = k2. Configuration k0, for example,
is shown in Example 1.

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k0

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k1

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k2

Fig. 2. Configuration trace (port valuations not shown, see Fig. 1 for an example)

Note that an architecture property is modeled as a set of configuration traces,
rather than just one single trace. This is due to the fact that component behavior,
as well as the appearance and disappearance of components, and the reconfig-
uration of the architecture is usually non-deterministic and dependent on the
current input provided to an architecture.

Moreover, note that our notion of architecture is highly dynamic in the fol-
lowing sense:

– components may appear and disappear over time and
– architecture configurations may change over time.

4.5 Running Example: Blackboard Interface Specification

A Blackboard architecture consists of a BlackBoard component and several
KnowledgeSource components. Figure 3 shows an interface specification SBB =
(C, I, tc, ti) ∈ SI of the pattern.

BlackBoard interface. A BlackBoard (BB) is used to capture the current state
on the way to a solution of the original problem. Its state consists of all currently
open subproblems and solutions for subproblems.

A BlackBoard expects two types of input: 1. via ip: a problem p ∈ PROB
which a KnowledgeSource is able to solve, together with a set of subproblems
P Ď PROB the KnowledgeSource requires to be solved before solving the original
problem P , 2. via is: a problem p ∈ PROB solved by a KnowledgeSource, together
with the corresponding solution s ∈ SOL.

244 D. Marmsoler and M. Gleirscher

A BlackBoard returns two types of output: 1. via op: a set P Ď PROB which
contains all the problems to be solved, 2. via os: a set of pairs PS Ď PROB×SOL.
Thus, we require the port types: Tip = PROB × ℘(PROB), and Tis = PROB × SOL,
Top = PROP and Tos = PROB× SOL.

KnowledgeSource interface. A KnowledgeSource (KS) is a domain expert able
to solve problems in that domain. It may lack expertise of other domains. More-
over, it can recognize problems which it is able to solve and subproblems which
have to be solved first by other KnowledgeSources.

A KnowledgeSource expects two types of input: 1. via ip: a set P Ď PROB
which contains all the problems to be solved, 2. via is: a set of pairs PS Ď
PROB× SOL containing solutions for already solved problems.

A KnowledgeSource returns one of two types of output: 1. via op: a problem
p ∈ PROB which it is able to solve together with a set of subproblems P Ď PROB
which it requires to be solved before solving the original problem, 2. via os: a
problem p ∈ PROB which it was able to solve together with the corresponding
solution s ∈ SOL. Thus, we require the port types: Tip = PROB and Tis = PROB×
SOL and Top = PROB× ℘(PROB) and Tos = PROB× SOL.

A KnowledgeSource can solve only certain types of problems which is why we
assume the existence of a mapping prob : C → PROB to associate a set of problems
with each KnowledgeSource. Then we require for each KnowledgeSource that
it only solves problems given by this mapping:

∀k ∈ K(SBB), (c, p) ∈ out(Si, k) : tc(c) = KS =⇒ [[
k
]3(p)

]1 ∈ prob(c). (9)

While we assume only one BlackBoard component bb ∈ C, the number of
KnowledgeSource components is not restricted.

KS

ip is op os

BB

op os ip is

Fig. 3. Interface specification for Blackboards.

5 Specifying Properties of Dynamic Architectures

Properties of dynamic architectures can be specified as sets of configuration
traces over an interface specification. In the following, we investigate the nature
of such properties and introduce the notion of behavior, activation, and connec-
tion properties as special kinds of architecture properties to our model. Moreover,
we introduce the notion of separable architecture property and show that such a

Specifying Properties of Dynamic Architectures Using Configuration Traces 245

property can always be represented as the intersection of corresponding behav-
ior, activation, and connection properties. Then, we show that the intersection of
such properties is guaranteed to be non-empty, given that the properties them-
selves are non-empty.

This way, we get a step-wise method for the specification of properties for
dynamic architectures by concentrating on the three different property-types as
shown below by our running example.

5.1 Architecture Properties

We first introduce a basic notion of architecture property which serves as a foun-
dation for all classes of architecture properties discussed below. An architecture
property is a set of configuration traces which does not constrain valuation of
open input ports. Thus, an architecture property is defined as a set of configu-
ration traces fulfilling a special closure property.

Definition 13. An architecture property (AP) is a set of configuration traces
P , such that input port valuations are not restricted:

∀t ∈ P, n ∈ N, μ ∈ inoc(Si, t(n)) ∃t′ ∈ P : t′ ↓n−1= t ↓n−1 ∧
∀p ∈ inoc(Si, t(n)) :

[
t′(n)

]3(p) = μ(p). (10)

5.2 Behavior Properties

A behavior property is an architecture property which does not constrain con-
nections and activations. Thus, a behavior property is defined as a set of config-
uration traces fulfilling a special closure property.

Definition 14. A behavior property (BP) for an interface specification Si =
(C, I, tc, ti) ∈ SI , is an AP B Ď Kt(Si), such that connections and activations
are not restricted:

∀t ∈ B,n ∈ N, k ∈ {k ∈ K(Si) | k ≈b t(n)}
∃t′ ∈ B : t′ ↓n−1= t ↓n−1 ∧t′(n) ≈a k ∧ t′(n) ≈n k. (11)

Example 4. Figure 4 shows how an architecture property B can violate
Definition 14: Assume that B allows a configuration trace t with t(0) and denies
some k with k ≈b t(0) at n = 0, i.e. � ∃t′ ∈ B : t′(0) ≈a k ∨ t′(n) ≈n k. Hence,
B constrains activation and, thus, contains unnecessary parts of an activation
property.

Running Example: Behavior Property Specification. We provide behav-
ior properties for both, BlackBoard and KnowledgeSource components. Thereby
we use a temporal-logic notation (based on [19]) to specify sets of configu-
ration traces. Variables denote component identifiers, problems and solutions.
Port names are used to denote port valuations and c :: I is used to denote that

246 D. Marmsoler and M. Gleirscher

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

t 0 t B

ks1 :: KS

ip is op os

bb :: BB

op os ip is

ks2 :: KS

ip is op os

k K Si

Fig. 4. Example of an ill-formed behavior property.

component identifier c has interface I.

BlackBoard behavior. A BlackBoard provides the current state towards solving
the original problem. If a KnowledgeSource requires subproblems to be solved,
the BlackBoard redirects those problems to other KnowledgeSources. Moreover,
the BlackBoard provides available solutions to all KnowledgeSources.

We view a BlackBoard as a set of configuration traces Kt(SBB) specified by
three behavior properties:

– if a solution to a subproblem is received on its input, then it is eventually
provided at its output:

� ((p, s) ∈ (bb, is) =⇒ ♦ ((p, s) ∈ (bb, os))) , (12)

– if solving a problem requires a set of subproblems to be solved first, those
problems are eventually provided at its output:

� ((p, P) ∈ (bb, ip) =⇒ (∀p′ ∈ P : ♦ (p′ ∈ (bb, op)))) , (13)

– a problem is provided as long as it is not solved:

�
(
p ∈ (bb, op) =⇒ ((p ∈ (bb, op)) W ((p, solve(p)) ∈ (bb, is)))

)
. (14)

KnowledgeSource behavior. A KnowledgeSource receives open problems via ip
and solutions for other problems via is. It might contribute to the solution of the
original problem by solving subproblems. Hence, it performs one of two possible
actions: 1. If it has solutions for all the required subproblems, it solves the prob-
lem and publishes the solution via os, 2. If it requires solutions to subproblems,
it notifies the BlackBoard about its ability to solve the problem and about these
subproblems via op.

We view a KnowledgeSource as a set of configuration traces Kt(SBB) spec-
ified by the following behavior properties:

– if a KnowledgeSource gets correct solutions for all the required subproblems,
then it solves the problem eventually:

�∀ks ::KS , (p, P)∈(ks , op) :
(

(∀p∈P : ♦ ((p, solve(p))∈(ks , is)))=⇒♦(p, solve(p))∈(ks , os)
)
, (15)

Specifying Properties of Dynamic Architectures Using Configuration Traces 247

– in order to solve a problem, a KnowledgeSource requires solutions only for
smaller problems:

�∀ks ::KS : ((p, P)∈(ks , op)=⇒∀p′∈P : p′≺p) , (16)

– if a KnowledgeSource is able to solve a problem it will eventually communicate
this:

�∀ks ::KS : p∈prob(ks) ∧ p∈(ks, ip)=⇒♦(∃PĎPROB : (p, P)∈(ks, op)). (17)

Note that Eqs. (12)-(17) constrain only the behavior of components. They
do neither restrict activation nor connections. Thus, the resulting architecture
property is indeed an example of a behavior property as defined in Definition 14.

5.3 Activation Properties

An architecture property is an activation property if it does neither restrict
behavior nor connection. Thus, activation properties are again defined by means
of a special closure property.

Definition 15. An activation property (AP) for interface specification Si ∈ SI ,
is an AP A Ď Kt(Si), such that connections and behavior are not restricted:

∀t ∈ A,n ∈ N, k ∈ {k ∈ K(Si) | k ≈a t(n)}
∃t′ ∈ A : t′ ↓n−1= t ↓n−1 ∧t′(n) ≈n k ∧ t′(n) ≈b k. (18)

Running Example: Activation Property Specification. Activation prop-
erties of the Blackboard pattern are described in a configuration diagram (Fig. 5):
The double solid frame for an interface (e.g. BB) denotes the condition that com-
ponents have to be active from the beginning on whereas interfaces with a single
frame (e.g. KS) allow components to be de-/activated over time.

KS

ip is op os

BB

op os ip is

Fig. 5. Configuration diagram
of Blackboards for activation
and connection

Fig. 6. Architecture violating Eq. (21)

248 D. Marmsoler and M. Gleirscher

Moreover, we require that whenever a knowledge source offers to solve some
problem, it is always activated when solutions to the required subproblems are
provided1:

�∀c ::KS, (p, P) ∈ (k, op) :
(∀q ∈ P : ♦(q, solve(q)) ∈ (bb, os)) =⇒ ♦(q, solve(q)) ∈ (bb, os) ∧ ‖c‖. (19)

Note that the activation constraints induced by the diagram in Fig. 5 as well
as Eq. (19) constrain only the activation of components. They do neither restrict
connections nor behavior which is why the resulting architecture property is
indeed an example of an activation property as defined in Definition 15.

5.4 Connection Properties

A connection property is not allowed to restrict neither behavior nor activation.
Again this is described by a special closure property.

Definition 16. A connection property (CP) for interface specification Si ∈ SI ,
is an AP N Ď Kt(Si), such that activations and behavior are not restricted:

∀t ∈ N,n ∈ N, k ∈ {k ∈ K(Si) | k ≈n t(n)}
∃t′ ∈ N : t′ ↓n−1= t ↓n−1 ∧t′(n) ≈a k ∧ t′(n) ≈b k. (20)

Running Example: Connection Property Specification. Connection
properties are also specified graphically in the configuration diagram in Fig. 5.
The solid arcs denote a constraint requiring that the ports of a KnowledgeSource
component are connected with the corresponding ports of a BlackBoard com-
ponent as depicted, whenever both components are active.

Note that the connection constraints induced by the diagram in Fig. 5 con-
strain only the connection of components. They do neither restrict activation
nor behavior. Thus, the resulting architecture property is indeed an example of
a connection property as defined in Definition 16.

5.5 Separable Architecture Properties

A separable architecture property is an architecture property which can be spec-
ified as the intersection of the types above.

Definition 17. A separable architecture property (SAP) for interface speci-
fication Si = (C, I, tc, ti) ∈ SI , is an AP K Ď Kt(Si), such that activation,
connection, and behavior do not influence each other:

∀t ∈ Kt(Si), n ∈ N :
((∃tb ∈ K : tb ↓n−1= t ↓n−1 ∧tb(n) ≈b t(n)

)∧
(∃tn ∈ K : tn ↓n−1= t ↓n−1 ∧tn(n) ≈n t(n))∧
(∃ta ∈ K : ta ↓n−1= t ↓n−1 ∧ta(n) ≈a t(n))

)

=⇒ ∃t′ ∈ K : t′ ↓n= t ↓n . (21)
1 We use ‖c‖ to denote that component c is active at the corresponding time.

Specifying Properties of Dynamic Architectures Using Configuration Traces 249

Example 5 (Architecture violating Eq. (21)). Figure 6 shows an example of an
architecture property K which violates the condition required by Eq. (21): t′′(0)
is connection and activation equivalent with t(0), and behavior equivalent with
t′(0). Hence, architectural property K has to permit t′′.

Running Example: Blackboard Guarantee. In the following, we specify a
guarantee of blackboard architectures as a separable architecture property over
the interface specification SBB .

Theorem 1. Assuming that knowledge sources are active when required:

�
(
p ∈ (bb, op) =⇒ ♦

(
∃ks ::KS : p ∈ prob(ks)∧

(∀p′ ∈ P : (♦ ((p′, s) ∈ (bb, os) =⇒ ‖ks‖)))
))

, (22)

a Blackboard architecture guarantees to solve the original problem:

�
(
p ∈ (bb, ip) =⇒ ♦

(
(p, solve(p)) ∈ (bb, os))

))
. (23)

Proof (Sketch. A detailed proof is given in Isabelle/HOL.). The proof is by well-
founded induction over the problem relation ≺: We are sure that for each prob-
lem eventually a KnowledgeSource exists which is capable to solve the prob-
lem, Eq. (22). The required subproblems are provided to the BlackBoard by
the connection constraint of Fig. 5. The BlackBoard will provide these sub-
problems eventually on its output op, Eq. (13). Since the subproblems provided
to the BlackBoard are strictly less, Eq. (16), they will be solved and provided
by the BlackBoard by induction over the steps 1 to 4. A KnowledgeSource
will eventually be activated for each solution, Eq. (22), and connected to the
BlackBoard (Fig. 5). This KnowledgeSource eventually has all solutions to its
subproblems and will then solve the original problem by Eq. (15). The solution
is received eventually by the BlackBoard due to Fig. 5. Finally, this solution is
provided by the BlackBoard due to Eq. (12).

5.6 Completeness

In the following we discuss an important property of the proposed methodology
which ensures that each separable architectural property can be described as the
intersection of a corresponding behavior, connection, and activation property.

Theorem 2. Each SAP K Ď Kt(Si) for interface specification Si ∈ SI can be
uniquely described through the intersection of a BP B Ď Kt(Si), CP N Ď Kt(Si),
and AP A Ď Kt(Si):

B X N X A = K. (24)

Proof (Sketch). Given an AP, construct the corresponding BP, AP, and CP.
Then show equality of the original property and the intersection.

250 D. Marmsoler and M. Gleirscher

5.7 Consistency

Another important property of the proposed methodology regards the consis-
tency of the different properties. It ensures that the methodology does indeed
not introduce any inconsistencies. Formally, we show that the intersection of
behavior, activation, and connection properties is always non-empty if the cor-
responding properties are non-empty.

Theorem 3. For each BP B Ď Kt(Si), CP N Ď Kt(Si), and AP A Ď Kt(Si),
such that the properties are non-empty:

B,N,A �= ∅, (25)

the intersection is non-empty: B X N X A �= ∅.

Proof (Sketch). Show

∀n ∈ N ∃t ∈ Kt(Si), tb ∈ B, tn ∈ N, ta ∈ A : t ↓n= tb ↓n= ta ↓n= tn ↓n
by induction over n to have ∃t ∈ B X N X A.

6 Specifying Properties of Dynamic Architectures

In this section, we describe an approach to the specification of separable prop-
erties of dynamic architectures based on the theory discussed so far.

Properties can be specified directly by a set of configuration traces. Moreover,
Fig. 7 depicts an overview of the proposed approach to separate the specification
into the different types.

In a first step one has to specify an interface. Based on the interface spec-
ification one can then define behavior properties, connection properties, and
activation properties. The intersection of the corresponding configuration traces
represent the specified architectures.

Specifying interfaces. To specify interfaces first one has to specify a set of ports
and corresponding types of messages. This can be achieved by traditional spec-
ification techniques such as algebraic specifications [30]. Interfaces can then be
specified by grouping a set of ports.

Specifying behavior properties. Based on an interface specification, one can spec-
ify behavior properties. This can be achieved e.g. by specifying execution traces
over the ports of an interface.

Specifying activation properties. Finally, activation properties may be specified
by traces over a set of components. Such traces specify the set of active compo-
nents at each point in time.

Specifying connection properties. Connection properties have to be specified as
special kind of configuration traces.

Specifying Properties of Dynamic Architectures Using Configuration Traces 251

Fig. 7. Specifying Architectural Styles

Running Example: Blackboard Verification. For the verification of the
blackboard architecture pattern, we transferred behavior, activation, and con-
nection properties (see Sects. 5.2, 5.3, and 5.4) as well as the pattern’s guarantee
(see Sect. 5.5) into Isabelle/HOL [22]. There, we proved that each implemen-
tation complying with the three individual properties fulfills the architecture
property describing the guarantee underlying any blackboard architecture2

7 Discussion

In the following, we briefly discuss our approach and possible limitations.
Thereby, we critically examine some of its potential weaknesses in more detail.

Dynamic interfaces. One possible weakness concerns the nature of our under-
lying model. Definition 12 does not allow components to change their interface
over time. This could be seen as a restriction of the model, however, it was a
deliberate decision since for now, we did not yet find the need for components
to change their interfaces. Indeed, it remains an open question whether dynamic
interfaces are useful, at all. However, if the need for them arises, it should be
noted, that the underlying model can be adapted to allow for dynamic interfaces
as well.

2 The script can be downloaded at http://www.marmsoler.com/pattern/Blackboard.
thy

http://www.marmsoler.com/pattern/Blackboard.thy
http://www.marmsoler.com/pattern/Blackboard.thy

252 D. Marmsoler and M. Gleirscher

Mapping to Isabelle/HOL. Another possible weakness concerns the encoding of
the blackboard example into Isabelle/HOL. The resulting Isabelle/HOL speci-
fication is indeed specific to the blackboard pattern and cannot be applied to
other patterns. However, the methodology of how a pattern specification can
be systematically translated into a corresponding Isabelle/HOL specification is
indeed generalizable to other patterns as well. Indeed, the mapping could be
fully automated for specifications in our language.

Quality attributes. A last point which needs to be discussed in more detail
regards an important aspect of software architectures in general. Our approach
does actually not provide means to directly specify quality attributes such as
performance, availability, etc. However, as our example shows, it allows us to
specify the technical realization of such aspects. The theorem provided for the
blackboard pattern ensures, that a problem can be solved also in the absence of
certain components. This can be actually seen as one possible implementation
(or technical definition) of what is sometimes called reliability.

8 Conclusion

In this article, we provide a formal notion of properties for dynamic architec-
tures and investigate different types of properties. The major results can be
summarized as follows:

– We provide a novel model for dynamic architectures and a formal notion of
properties for these kind of architectures (Sect. 4). Thereby we introduce the
notion of architecture configuration and configuration traces (Definition 6).
Then we model an architecture property as a set of configuration traces (Def-
inition 12) for which open input port valuations are not restricted (Defini-
tion 13).

– We provide a characterization of behavior properties, activation properties,
and connection properties for dynamic architectures (Sect. 5). Each property-
type is defined as an architecture property fulfilling a special closure prop-
erty: A behavior property is not allowed to restrict activations or connections
(Definition 14). An activation property, on the other hand, is neither allowed
to restrict connections nor behavior (Definition 15). Finally, a connection prop-
erty is not allowed to restrict activation or behavior (Definition 16).

– We provide a characterization of separable architecture properties, architec-
ture properties which can be separated into behavior, activation, and con-
nection parts (Definition 17). We show that each separable architecture prop-
erty can indeed be separated into behavior, activation, and connection prop-
erties (Theorem 2). We show that the intersection of behavior, activation,
and connection properties always yields a non-empty architecture property
(Theorem 3).

We evaluated our results by deriving a systematic way to specify properties for
dynamic architectures and apply it to the specification of blackboard architec-
tures (Sect. 6):

Specifying Properties of Dynamic Architectures Using Configuration Traces 253

– We specified the constraints imposed by the pattern as behavior, activation,
and connection properties.

– We formulated the pattern’s guarantee as an architecture property.
– We verified the correctness of the pattern by proving its guarantee from the

pattern’s constraints in Isabelle/HOL.

We imagine the following implications of our results: (i) The proposed model
can be used to specify properties for dynamic architectures. (ii) The results on
the different types of properties provide a systematic way to specify separable
architecture properties for those kinds of architectures by focusing on different
aspects of a dynamic architecture.

We perceive future work in three major areas:

– Based on the insights provided by our results, we aim to build specialized
specification and analysis techniques for the three identified property-types:
activation, connection, and behavior properties. Especially the specification
of behavior properties remains an open issue since they are usually specified
locally to a component instead of over the whole architecture. Thus, we are
currently investigating how such local specifications can be transformed to
specifications over dynamic architectures where the specified component can
be activated/deactivated over time.

– Another direction of work concerns the transformation of specifications to
(interactive) theorem provers to support the verification of specifications. Cur-
rently we are working on a systematic way to transform specifications in the
presented formalism to corresponding Isabelle/HOL specifications.

– Finally, the approach should be applied to specify and investigate patterns for
dynamic architectures to further evaluate our approach and (maybe even more
important) to provide detailed insights into the nature of existing patterns as
well as to discover new patterns for dynamic architectures.

Acknowledgments. We would like to thank Jonas Eckhardt, Vasileios Koutsoumpas,
and the reviewers of ICTAC 2016 for their comments and helpful suggestions.

References

1. Abowd, G.D., Allen, R., Garlan, D.: Formalizing style to understand descriptions
of software architecture. ACM TOSEM 4, 319–364 (1995)

2. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software
architectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 21–37.
Springer, Heidelberg (1998). doi:10.1007/BFb0053581

3. Allen, R.J.: A formal approach to software architecture. Technical report, DTIC
Document (1997)

4. Bernardo, M., Ciancarini, P., Donatiello, L.: On the formalization of architectural
types with process algebras. ACM SIGSOFT SEN 25, 140–148 (2000)

5. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: WOSS (2004)

6. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

http://dx.doi.org/10.1007/BFb0053581

254 D. Marmsoler and M. Gleirscher

7. Broy, M.: A model of dynamic systems. In: Bensalem, S., Lakhneck, Y., Legay,
A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 39–53. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54848-2 3

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: A system of
patterns: Pattern-oriented software architecture (1996)

9. Castro, P.F., Aguirre, N.M., López Pombo, C.G., Maibaum, T.S.E.: Towards
managing dynamic reconfiguration of software systems in a categorical setting.
In: Cavalcanti, A., Deharbe, D., Gaudel, M.-C., Woodcock, J. (eds.) ICTAC
2010. LNCS, vol. 6255, pp. 306–321. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14808-8 21

10. Clements, P.C.: A survey of architecture description languages. In: IWSSD (1996)
11. Dashofy, E.M., Van der Hoek, A., Taylor, R.N.: A highly-extensible, xml-based

architecture description language. In: WICSA, IEEE (2001)
12. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration in service-oriented

architectures. Softw. Syst. Model. 12(2), 349–367 (2013)
13. Garlan, D.: Formal modeling and analysis of software architecture: components,

connectors, and events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS,
vol. 2804, pp. 1–24. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39800-4 1

14. Hirsch, D., Montanari, U.: Two graph-based techniques for software architecture
reconfiguration. Electron. Notes Theor. Comput. Sci. 51, 177–190 (2002)

15. Inverardi, P., Wolf, A.L.: Formal specification and analysis of software architectures
using the chemical abstract machine model. IEEE TSE 21, 373–386 (1995)

16. Le Métayer, D.: Describing software architecture styles using graph grammars.
IEEE TSE 24, 521–533 (1998)

17. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and analysis of system architecture using Rapide. IEEE TSE 21,
336–355 (1995)

18. Magee, J., Kramer, J.: Dynamic structure in software architectures. ACM SIG-
SOFT SEN 21, 3–14 (1996)

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New york (2012)

20. Medvidovic, N.: ADLs and dynamic architecture changes. In: ISAW (1996)
21. Moriconi, M., Qian, X., Riemenschneider, R.A.: Correct architecture refinement.

IEEE TSE 21, 356–372 (1995)
22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. Springer Science & Business Media, Heidelberg (2002)
23. Oquendo, F.: π-ADL: an architecture description language based on the higher-

order typed π-calculus for specifying dynamic and mobile software architectures.
ACM SIGSOFT SEN 29, 1–14 (2004)

24. Penix, J., Alexander, P., Havelund, K.: Declarative specification of software archi-
tectures. In: ASE (1997)

25. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline, vol. 1. Prentice Hall Englewood Cliffs, Upper Saddle River (1996)

26. Spivey, J.M., Abrial, J.: The Z notation (1992)
27. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,

Theory, and Practice. Wiley Publishing, Hoboken (2009)
28. Wenzel, M.: Isabelle/Isar: a generic framework for human-readable proof docu-

ments. From Insight to Proof: Festschrift in Honour of Andrzej Trybulec 10, 277–
298 (2007)

29. Wermelinger, M., Lopes, A., Fiadeiro, J.L.: A graph based architectural (re) con-
figuration language. ACM SIGSOFT SEN 26(5), 21–32 (2001)

30. Wirsing, M.: Algebraic Specification. MIT Press, Cambridge (1991)

http://dx.doi.org/10.1007/978-3-642-54848-2_3
http://dx.doi.org/10.1007/978-3-642-14808-8_21
http://dx.doi.org/10.1007/978-3-642-14808-8_21
http://dx.doi.org/10.1007/978-3-540-39800-4_1

Behavioural Models for FMI Co-simulations

Ana Cavalcanti(B), Jim Woodcock, and Nuno Amálio

University of York, York, UK
ana.cavalcanti@york.ac.uk

Abstract. Simulation is a favoured technique for analysis of cyber-
physical systems. With their increase in complexity, co-simulation, which
involves the coordinated use of heterogeneous models and tools, has
become widespread. An industry standard, FMI, has been developed to
support orchestration; we provide the first behavioural semantics of FMI.
We use the state-rich process algebra, Circus, to present our modelling
approach, and indicate how models can be automatically generated from
a description of the individual simulations and their dependencies. We
illustrate the work using three algorithms for orchestration. A stateless
version of the models can be verified using model checking via trans-
lation to CSP. With that, we can prove important properties of these
algorithms, like termination and determinism, for example. We also show
that the example provided in the FMI standard is not a valid algorithm.

Keywords: Verification · Modelling · Circus · CSP

1 Introduction

The Functional Mock-up Interface (FMI) [12] is an industry standard for co-
simulation: collaborative simulation of separately developed models. It has been
applied across a variety of domains, including automotive, energy, aerospace,
and real-time systems integration; dozens of tools support the standard.

An FMI co-simulation [4] is organised around black-box slave FMUs (Func-
tional Mockup Units): effectively, wrappings of models that are interconnected
through their inputs and outputs. FMUs are passive entities whose simulation is
triggered and orchestrated by a master algorithm. A simulation is divided into
steps that serve as synchronisation and data exchange points; between these
steps, the FMUs are simulated independently. The master algorithm communi-
cates with the FMUs via a number of functions that compose the FMI API.

Here, we present the first behavioural formal semantics for FMI-based co-
simulations. We use Circus [21], a state-rich process algebra that combines Z [26]
for data modelling and CSP [23] for behavioural specification. We characterise
formally master algorithms and FMUs that make appropriate use of the FMI
API. These abstract models of a co-simulation can be automatically generated
from the number of FMUs, their inputs and outputs and dependencies.

The general models can be used to verify specific master algorithms and the
adequacy of simulation models for FMUs. We have verified a classic algorithm
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 255–273, 2016.
DOI: 10.1007/978-3-319-46750-4 15

256 A. Cavalcanti et al.

from the FMI standard for Simulink [19], and a more robust algorithm that caters
for FMU failures [4]. This revealed that the example in the standard implicitly
assumes that FMUs do not raise fatal errors; it is not a valid algorithm.

Circus models, with abstracted state, can be translated to CSP and verified
using the FDR3 model checker [16]. We prove important properties discussed
in the FMI literature, like termination and determinism using the FDR3 model
checker. Richer models can be verified using a Circus theorem prover [14]. Given
a choice of master algorithm and formal models of the FMUs, our work can
also be used to prove properties of an overall system described by the separate
simulations. Circus can currently cater only for discrete-time models. On the
other hand, a continuous time extension of Circus that can be used to give
semantics to continuous-systems simulations [13] is under development.

Broman [4] has presented the most influential formalisation of FMI to date:
a state-based model of the three main API functions that set and get FMU
variables and trigger a simulation step with two master algorithms and a proof
of core properties. Our model of a co-simulation also has its interface defined by
the interactions corresponding to the simulation steps and the exchange of data
associated with them. Our behavioural model covers a large portion of the FMI
API, defining valid patterns for its usage and error treatment.

Sections 2 and 3 describe FMI for co-simulation and Circus. Section 4 describes
theCircus semantics ofFMI.The specificationandverificationofmaster algorithms
and co-simulations is discussed in Sect. 5. Section 6 presents our conclusions.

2 FMI

Modelling and simulating cyber-physical systems (CPSs) [10] involves different
engineering fields: a global system with components tackled by domain engi-
neers using specialised tools. Co-simulation [18] involves tool interoperability for
modelling and simulating heterogeneous components. FMI avoids the need for
tool-specific integration, by exchanging dynamic models, co-simulating heteroge-
neous models, and protecting intellectual property. We deal with co-simulation,
but we can also reason about simulations with model exchange.

A master algorithm orchestrates a collection of FMUs that may be stand-
alone, containing runnable code, or be coupled, in which case it contains a wrap-
per to a simulation tool. Like FMI, our model is agnostic to the particular
realisation of an FMU, and does not cover any communication infrastructure
that may be in place to support distributed co-simulation. We assume that com-
munication between the master algorithm and the various FMUs is reliable.

When the co-simulation is started, the models of the FMUs are solved inde-
pendently between two discrete communication points defined by a step. For
that, the master algorithm reads the outputs of the FMUs, sets their inputs,
and then waits for all FMUs to simulate up to the defined communication point,
before advancing the simulation time. Master algorithms differ in their approach
to handling the definition of the step sizes and any simulation errors.

Although the FMI standard does not specify any particular master algo-
rithms, or the technology for development of FMUs, it specifies an API that can

Behavioural Models for FMI Co-simulations 257

be used to orchestrate the various simulations. Restrictions on the use of the
API functions specify, indirectly and informally, how a master algorithm can be
defined and how an FMU may respond. Our model captures a significant subset
of the FMI API, and defines formally validity for algorithms and FMUs.

3 Circus

The main construct of Circus is a process, used to specify a system and its com-
ponents. Processes communicate with each other via channels. Communications
are instantaneous and synchronous events. A process can have a state, defined
using a Z schema, and a behaviour, defined using an action.

To illustrate Circus, Fig. 1 presents the model of a Timer from a valid master
algorithm. Timer takes as parameters the current time ct, the step size hc, and
the end time tN of the simulation. Although it is possible to set up experiments
without an end time, we restrict ourselves to experiments that are time bounded.

channel : setT : TIME ; updateSS : NZTIME ; step : TIME × NZTIME ; end
process Timer =̂ ct , hc, tN : TIME • begin
stateState == [currentTime, stepSize : TIME]
Step =

setT?t : t ≤ tN −→ currentTime := t ; Step
updateSS?ss −→ stepSize := ss; Step
step!currentTime!stepSize −→ currentTime := currentTime + stepSize; Step
currentTime = tN end −→ Stop

• currentTime, stepSize := ct , hc; Step
end

Fig. 1. Circus specification of a Timer process

Timer’s state contains two components: currentT ime and stepSize. Its
behaviour is defined by the action at the end. After initialising currentT ime
and stepSize using ct and hc, it calls the local action Step. It takes inputs
on channels setT and updateSS to update the current time and step size. The
channel declarations define the type of the values that can be communicated
through them: TIME is the set of natural numbers, and NZTIME excludes
0. Step sizes cannot be 0. It uses a channel step to output the current time
and step size. After a communication on step, the current time is advanced to
the next simulation step; at the end of the experiment (currentT ime = tN), it
synchronises on end.

The action Step offers communications on the above channels in external
choice (�). The time t input through setT cannot exceed the end time tN of the
simulation. The offer of synchronisation on end is guarded by currentT ime = tN
and only becomes available if this condition holds. After the event end, the timer
deadlocks: behaves like the action Stop.

258 A. Cavalcanti et al.

Processes can also be defined by combination of other processes. For exam-
ple, the specification of the process TimedInteractions below combines three
processes Timer, endSimulation and Interaction.

TimedInteractions has two parameters: a start and an end time t0 and tN . It
uses Timer defined above with arguments t0, 1, and tN . Timer can be inter-
rupted (Δ) by the process endSimulation. It, however, runs in parallel ([[]])
with the process Interaction. They synchronise on communications on step, end,
setT , updateSS, and endsimulation, but otherwise proceed independently. The
process that results from the parallelism hides (\) communications on step, end,
setT , and updateSS, which are used just internally by Timer and Interaction.

A complete account of Circus can be found in [8]. We explain any extra
notation not explained here as needed.

4 A Model of FMI

The FMI API consists of functions used by the master algorithm to orchestrate
the FMUs. In our model, these functions are defined as channels whose types
correspond to the input and output types of the functions; see Table 1.

We use the given type FMI2COMP to represent an instance of an FMU.
In FMI, these are pointers to an FMU-specific structure that contains the infor-
mation needed to simulate it. Here, we use identifiers for such components.

Valid variable names and values are represented by the sets V AR and V AL.
We do not model the FMI type system, which includes reals, integers, booleans,

Table 1. Channels that model FMI API functions

fmi2Get FMI2COMP.V AR.V AL.FMI2ST

fmi2Set FMI2COMP.V AR.V AL.FMI2STF

fmi2DoStep FMI2COMP.TIME.NZTIME.FMI2STF

fmi2Instantiate FMI2COMP.Bool

fmi2SetUpExperiment FMI2COMP.TIME.Bool.T IME.FMI2ST

fmi2EnterInitializationMode FMI2COMP.FMI2ST

fmi2ExitInitializationMode FMI2COMP.FMI2ST

fmi2GetBooleanStatusfmi2Terminated FMI2COMP.Bool.FMI2ST

fmi2GetMaxStepSize FMI2COMP.TIME.FMI2ST

fmi2Terminate FMI2COMP.FMI2ST

fmi2FreeInstance FMI2COMP.FMI2ST

fmi2GetFMUState FMI2COMP.FMUSTATE.FMI2ST

fmi2SetFMUState FMI2COMP.FMUSTATE.FMI2ST

Behavioural Models for FMI Co-simulations 259

characters, strings, and bytes; however, it is not difficult to cater for this type
system. Extensions to the type system are expected in future versions of FMI.

The type FMI2ST contains flags of the FMI type fmi2Status that are
returned by the API functions. We include fmi2OK, fmi2Error, and fmi2Fatal,
which indicate, respectively, that all is well, the FMU encountered an error, and
the computations are irreparable for all FMUs. The extra flag fmi2Discard is
also included in the superset FMI2STF ; it can only be returned by fmi2Set
and fmi2DoStep. fmi2Set indicates that a status cannot be returned, and in the
case of fmi2DoStep that a smaller step size is required or the requested infor-
mation cannot be returned. We do not include fmi2Warning, used for logging,
and fmi2Pending, used for asynchronous simulation steps.

FMUSTATE contains values that represent an internal state of an FMU. It
comprises all values (of parameters, inputs, buffers, and so on) needed to continue
a simulation. It can be recorded by a master algorithm to support rollback.

The signature of the channels impose restrictions on the use of the API. It is
not possible to call fmi2DoStep with a non-positive step size. Given a particular
configuration of FMUs, we can define the types of the fmi2Get and fmi2Set
channels so that setting or getting a variable that is not in the given FMU
is undefined. Without this fine tuning, such attempts lead to deadlocks in our
model: a check for deadlock freedom ensures the absence of such problems. The
API actually includes specialised fmi2Get and fmi2Set functions for each data
type available. As already said, we do not cater for the FMI type system.

The function fmi2Instantiate returns a pointer to a component, and null
if the instantiation fails. Since we do not model pointers, we use a boolean to
cater for the possibility of failure. The function fmi2GetMaxStepSize is not part
of the standard; we use it to implement the rollback algorithm in [4].

The overall structure of our models of a co-simulation is shown in Fig. 2.
The visible channels are fmi2Get, fmi2Set, and fmi2DoStep. So, we can use our
model to verify properties of co-simulations that can be described in terms of
these interactions, and involving variables from any of the FMUs involved.

The other channels enforce the expected control flow of a master algorithm.
They are used for communication between the process MAlgorithm that models
a master algorithm and each process FMUInterface(i) that models the FMU
identified by i. We call FMIWrapper the collection of FMU interfaces: they
execute independently in parallel, that is, in interleaving.

The control channel endsimulation is used to shutdown the simulation.
Since an FMU may fail, its termination may not be carried out gracefully (with
fmi2Terminate and fmi2FreeInstance). So, endsimulation is used to indicate
the end of the experiment in all cases and shutdown the model processes.

In what follows, we describe our specifications of MAlgorithm (Sect. 4.1)
and FMUInterface (Sect. 4.2), which provide a correctness criterion for these
components. In Sect. 4.3, we describe how to construct models of specific FMUs.
Applications of our models are described in Sect. 5.

260 A. Cavalcanti et al.

Cosimulation

MAlgorithm

FMIWrapper

FMUInterface(1) FMUInterface(2) FMUInterface(3)

endsimulation,fmi2∗
fmi2Set, fmi2Get, fmi2DoStep

Fig. 2. Structure of a co-simulation model

4.1 Master Algorithms

A master algorithm is a monolithic program that defines the connections between
the FMUs and the time of the simulation steps, and handles any errors raised by
an FMU. In our model, we consider each of these aspects of a master algorithm
separately. The overall structure of the MAlgorithm process is described in
Fig. 3. It provides a general characterisation of the valid history of interactions
of a master algorithm. It does not commit to specific policies to define step sizes
and error handling in case an API function returns fmi2Discard. The treatment
of fmi2Error and fmi2Fatal is restricted by the standard.

MAlgorithm has three main components described next. TimedInteractions
specifies the co-simulation steps and orchestration of the FMUs. FMUStates-
Manager controls access to the internal state of the FMUs. ErrorHandler mon-
itors the occurrence of an fmi2Error or fmi2Fatal from the API functions.

TimedInteractions has two components. Timer is presented in Sect. 3. It
uses step and end to drive the Interaction process, which defines the orchestra-
tion of the FMUs. This is the core process that restricts the order in which the
API functions can be used. Timer also exposes channels setT and updateSS to
allow Interaction to define algorithms will rollback or a variable step size. The
timer can be terminated by the signal endsimulation raised by Interaction.

Interaction is the sequential composition of Instantiation, Instantiation-
Mode, InitializationMode, and slaveInitialized, which correspond to states that
define the stages of a co-simulation [12, p.103]. The definitions of these processes
depend on the configuration of the FMUs. Given such a configuration, they can
be automatically generated as indicated below. A configuration is characterised by
a sequence of FMU identifiers (FMUs : seqFMI2COMP), and sequences that
define the parameters and their values (parameters : seq(FMI2COMP ×V AR×
V AL)), inputs and their initial values (inputs : seq(FMI2COMP × V AR ×
V AL)), outputs (outputs : seq(FMI2COMP × V AR)), and an input/output

Behavioural Models for FMI Co-simulations 261

ErrorHandler

ErrorMonitor FatalErrorMonitor

Δ ErrorManager

FMUStatesManager
fmi2GetFMUState

fmi2SetFMUState

Timer Δ endSimulation Interaction
fmi2.∗

TimedInteraction

error

fmi2∗
endsimulation

step, end,SetT
updateSS

endsimulation

endsimulation

fmi2∗, endsimulation

Fig. 3. Structure of a model of a master algorithm

port dependency graph [4] pdg. Some of this information is also needed to generate
automatically a sketch of the models of the FMUs (see Sect. 4.3).

The port dependency graph pdg is a relation between outputs and inputs
defined by a pair of type FMI2COMP × V AR. The graph establishes how the
inputs of each of the FMUs depend on the outputs of the others. It must be
acyclic, and this can be automatically checked using the CSP model checker.
Using the port dependency graph, once we retrieve the outputs, via the fmi2Get
function, we know how to provide the inputs, via the fmi2Set function.

Instantiation, defined below, instantiates the FMUs. It is an iterated sequen-
tial composition (;) of actions fmi2Instantiate.i?sc → Skip, where i comes from
FMUs and Skip is the action that terminates immediately.

InstantiationMode and InitializationMode allow the setting up of para-
meters and initial values of inputs before calling the API function that signals
the start of the next phase. We show below InitializationMode. For an ele-
ment inp of inputs, we use projection functions FMU , name and val to get its
components.

We can easily generalise the model to allow an interleaving of the events involved.
The value of such a generalisation, however, is unclear (and it harms the possi-
bility of automated verification via model checking).

262 A. Cavalcanti et al.

process slaveInitialized =̂
state State == [rinps : FMI 2COMP (VAR VAL)]
· · ·
TakeOutputs =̂
; out : outputs • fmi2Get .(FMU out).(name out)?v−→

; inp : pdg(out) •
rinps := rinps ⊕ { (FMU inp) �→ ((rinps (FMU inp)) ⊕ {(name inp) �→ v}) }

Main =̂ end −→ Skip
step?t?hc −→ TakeOutputs; DistributeInputs; Step

• Main
end

Fig. 4. Sketch of slaveInitialized

The process slaveInitialized is sketched in Fig. 4; it is driven by the Timer.
Its state contains a component rinps: a function that records, for each FMU
identifier a function from the names of its inputs to values. This function is
defined by taking the value of each output from the FMUs, and updating rinps
to record that value for the inputs associated with the output in the port depen-
dency graph. If the Timer signals the end, slaveInitialized finishes. Otherwise,
it collects the outputs, distributes the inputs, and carries out a step.

Similarly to that of InitializationMode, the definition of TakeOutputs uses
an iterated sequence, now over outputs: the sequence of pairs that identify an
FMU and an output name. Once the value v of an output out is obtained, it is
assigned to each input inp in the sequence pdf(out) associated with out in the
port dependency graph pdg. We use ⊕ to denote function overriding.

DistributeInputs uses inp to set the inputs of the FMUs using fmi2Set.
Step proceeds with the calls to fmi2DoStep and if all goes well, recurses back
to the Main action of slaveInitialized. Their definitions are omitted for brevity.

FMUStatesManager controls the use of the functions fmi2GetFMUState
and fmi2SetFMUState for each of the FMUs. It is an interleaving of instances
of the process FMUStateManager(i) in Fig. 5 for each of the FMUs. Once an
FMU is instantiated, then it is possible to retrieve its state. After that, both gets
and sets are allowed. The actual values of the state are defined in the FMUs,
but recorded in the master algorithm via fmi2GetFMUState for later use with
fmi2SetFMUState as defined in FMUStateManager(i).

For complex internal states, model checking can become infeasible (although
we have managed it for simple examples). To carry out verifications that are
independent of the values of the internal state of the FMUs, we need to adjust
only this component. Some examples, explored in the next section, are properties
of algorithms that do not support retrieval and resetting of the FMU states,
determinism and termination of algorithms, and so on.

TheErrorHandler process contains twocomponents:monitors forfmi2Error
and fmi2Fatal. If any of the API functions returns an error, they signal that
to the ErrorManager via a channel error. Upon an error, the ErrorManager

Behavioural Models for FMI Co-simulations 263

process FMUStatesManager =̂ i : FMI 2COMP • begin

AllowAGet =̂ fmi2GetFMUState.i?s?st −→ AllowsGetsAndSets(s)

AllowsGetsAndSets =̂ s : FMUSTATE •
fmi2GetFMUState.i?t?st −→ AllowsGetsAndSets(t)

fmi2SetFMUState.i !s?st −→ AllowsGetsAndSets(s)

• fmi2Instantiate.i?b −→ AllowAGet

end

Fig. 5. Model of FMUStateManager

interrupts the main flow of execution. In the case of an fmi2Fatal error, the
simulation is stopped via endsimulation. In the case of an fmi2Error, a call to
fmi2FreeInstance is allowed, before the simulation is ended.

4.2 FMU Interfaces

The model of a valid FMU is simpler. It captures the control flow of an FMU,
specifying, at each stage, the API functions to which it can respond. Unsurpris-
ingly, it has some of the restrictions of a master algorithm, but it is much more
lax, in that it captures just the expected capabilities of an FMU.

At first, the only API function that is available is fmi2Instantiate. The
simple action below specifies this behaviour.

A state component status records the result of the last call to an API function.
In this case, it is updated based on the boolean b returned by fmi2Instantiate.
If the instantiation is successful, the behaviour is described by Instantiated,
sketched below; otherwise, it is unrestricted: specified by RUN(FMUAPI(i)),
which allows the occurrence of any API functions, in any order.

Again, if there is a fatal error, the behaviour is unrestricted. If there is no error,
all functions except fmi2Instantiate are available. Finally, if there is a non-
fatal error, only fmi2FreeInstance is possible.

While a pattern of calls is defined by a master algorithm, so that, for example,
all outputs are obtained before the inputs are distributed, the FMU is passive

264 A. Cavalcanti et al.

and does not impose such a policy on its use. So, the various actions enforce
only the restrictions in the standard [12, p.105].

Although it is possible to specify a more restricted behaviour for FMUs, such
a specification rules out robust FMU implementations that handle calls to the
API functions that do not necessarily follow the strict pattern of a co-simulation.
Next, we describe how to generate FMU models that follow a more restricted
pattern that is adequate for use with valid master algorithms.

4.3 Specific FMU Models

In the previous section, we have presented a general model for an FMU. The
particular model of an FMU depends, of course, on its functionality, and must
conform to (trace refine) our general model. This can be proved via model check-
ing for stateless models of FMUs that do not offer the facility to retrieve and set
its internal state. In this case, the models do not offer the choices of communi-
cations fmi2GetFMUState.i?st and fmi2SetFMUState.i?st. The availability
of such facilities is defined by capability flags of the FMU.

We can, however, generate a sketch of the model of an FMU using information
about its structure: lists of parameters pi, inputs inpi, and outputs outi. This
information is used to construct a master algorithm (see Sect. 4.1). Figure 6

process FMUSketch =̂ i : FMI 2COMP • begin

stateState = [currentTime, endTime : TIME ; cpi , cinpi , cevi , couti]

Instantiation = fmi2Instantiate.i !true −→ Skip

InstantiationMode =
fmi2Set .i .pi?v !fmi2OK −→ cpi := v ; InstantiationMode

fmi2SetUpExperiment .i?t0!true?tN !fmi2OK−→
currentTime, endTime := t0, tN ;
fmi2EnterInitializationMode.i !fmi2OK −→ Skip

InitializationMode =
fmi2Set .i .inpi?v !fmi2OK −→ cinpi := v ; InitializationMode

fmi2ExitInitializationMode.i !fmi2OK −→ UpdateState

slaveInitialized =
fmi2Get .i .outi !couti !fmi2OK −→ slaveInitialized

fmi2Set .i .inpi?v .fmi2OK −→ cinpi := v ; slaveInitialized
fmi2DoStep.i?t?ss!fmi2OK −→ (UpdateState; slaveInitialized)

• Instantiation; InstantiationMode; InitializationMode;
(slaveInitialized Δ

fmi2Terminate.i !fmi2OK −→ fmi2FreeInstance.i !fmi2OK −→ Stop)

end

Fig. 6. Sketch of a model for a specific FMU

Behavioural Models for FMI Co-simulations 265

Fig. 7. Test case for sampling of discrete event signals [5]

shows the sketch of a Circus process with the FMU behaviour. Its state includes
components cpi, cinpi, and couti, besides the current and end simulation time.

Its structure is similar to that of the Interaction process used to model a mas-
ter algorithm. In all cases, the interactions flag success (fmi2OK). If an FMU
makes assumptions about its inputs, the possibility of error can be modelled. For
example, Instantiation indicates success, but to explore the possibility of fail-
ure, we can define it as fmi2Instantiate.i?b → Skip. The action UpdateState
is left unspecified. It is this action that specifies the functionality of the FMU. It
can be automatically generated if there is a more complete model of the FMU.
For example, [7] shows the case if a discrete-time Simulink model is available.

If the FMU supports retrieval and update of its state, we need to
add the following choices to InstantiationMode, InitializationMode, and
slaveInitialized.

Via fmi2GetFMUState, it outputs the whole state record, that is, θState, and
via fmi2SetFMUState, we can update it.

If the state, either via setting of parameters and input or via an update, may
become invalid, we can flag fmi2Fatal and deadlock. For example, we consider
the test case shown in Fig. 7 taken from [5]. It has been designed to show that
components with discrete timed behaviour coordinate their representation of
time. There are three main components: two periodic discrete signal generators,
both generating the same signal, one with period one time unit and the other two
time units; and a discrete sampler. The test criterion is that the output of the
Sampler should equal the output of the second periodic discrete signal generator
at all superdense times. There is an implicit constraint that the period p should
not be 0; therefore, we specify its InstantiationMode action as follows.

266 A. Cavalcanti et al.

In this case, if the experiment is set up when p is 0, we have a fatal error.
An FMU model generated as just explained trace refines FMUInterface(i).

This means that all possible histories of interactions of the FMU are possible
for FMUInterface(i) and, therefore, valid according to that criterion. We have
proofs of refinement for all FMUs in Fig. 7 and for a data-flow network.

5 Evaluation: Verification Applications

In this section, we show how we can use our formal semantics for FMI to verify
master algorithms and to study system properties via their co-simulations. For
automation, our semantics can be translated from Circus to CSPM (the input
language for the model checker FDR3), using a strategy similar to that of [20],
so that it can be both model checked in FDR3 and executed in ProBe (FDR’s
process behaviour explorer), for suitably chosen model parameters.

5.1 Master Algorithms

As well as giving a correctness criterion for a master algorithm, the model pre-
sented in Sect. 4 gives an indication of how to construct models for particular
algorithms. We consider here three examples.

Classic Brute-Force. The simplest algorithm uses a fixed step size, has no
access to the state of the FMUs, and queries them for termination if fmi2Discard
is flagged. To model this algorithm, we define a process ClassicMAlgorithm
with the same structure shown in Fig. 3, but more specific components.

ClassicMAlgorithm uses a simple timer that does not use setT or updateSS.
For the FMUStatesManager, we use a simple process that just termi-
nates immediately. Finally, for Interaction, we use the parallel composition
of Interaction itself with a process DiscardMonitor, whose main action is
Monitor defined below, followed by an action Terminated that shuts down
the FMUs.

Behavioural Models for FMI Co-simulations 267

Monitor ignores all flags st returned by fmi2DoStep except fmi2Discard.
If this flag is returned, it queries the FMU using fmi2GetBooleanStatusfmi2
Terminated. If the FMU requests termination, Monitor behaves like ToDiscard
whose simple definition we omit. In ToDiscard, when completion of the step is
indicated via either a stepAnalysed or a step?t?hc event, the co-simulation is ter-
minated. The signal stepAnalysed is not part of the Interaction interface, but is
used to indicate that fmi2DoStep has been carried out for all FMUs, and we are
now in a position to decide how to continue with the co-simulation.

Since ClassicMAlgorithm has the same structure as MAlgorithm, we can
prove refinement by considering each of the components in isolation. While proof
of refinement by model checking for the whole model is not feasible, it is feasible
for the individual components. In the sequel, we use the same approach to analyse
more complex algorithms. It is also feasible to prove that ClassicMAlgorithm
terminates, but otherwise does not deadlock, and is deterministic.

The example in the FMI standard is a classic algorithm with a fixed step
and handling of fmi2Discard, but does not include error management. So, its
specification does not include the ErrorHander and the ErrorManager. Model
checking can show that this is not a valid algorithm. A simple counterexample
shows that it continues and calls fmi2Instantiate a second time even after the
first call returns an fmi2Fatal flag. This is explicitly ruled out in the standard.

Simulink. This is a widely used tool for simulation based on control law dia-
grams [19]. A popular solver uses a variable-step policy based on change rate
of the state. To model this algorithm, we use a process SimulinkMAlgorithm,
which is similar to ClassicMAlgorithm, but has another monitor V aryStep,
specified in Fig. 8. It is composed in parallel with Interaction to define a process
V ariableStepInteraction used in SimulinkMAlgorithm.

V aryStep takes as parameters a threshold for change and the initial value
of the step size initialSS. Taking a simple approach, we define a state that
records the old (oldOuts) and new (newOuts) values of the outputs, besides
the current step size currentSS. After the state is initialised (using the action
Init) to record undefined (ε) old values for the outputs, no new values (empty
function ∅), and the initial step size, the monitor steps by recording the new
output values (Monitor) and then changing the step size (Adjust). Adjustment
is based just on a comparison between the old and new values defined by an
(omitted) function delta. If the threshold is reached, a new step size is defined
by another function newstep and informed to the Timer.

We have established that SimulinkMAlgorithm is valid, that is, it refines
MAlgorithm, by proving that the new V ariableStepInteraction refines
Interaction. We have also proved termination, deadlock freedom, and deter-
minism.

Rollback. In the same way as illustrated by V aryStep in Fig. 8, we can model
a sophisticated algorithm suggested in [4]. We define a Rollback monitor that
has the same structure as V aryStep. Its Monitor (a) saves the state using

268 A. Cavalcanti et al.

processVaryStep =̂ threshold : VAL; initialSS : NZTIME • begin

state
State = [oldOuts,newOuts : (FMI 2COMP × VAR) � →VAL; currentSS : NZTIME]

Init
State ′

dom oldOuts ′ = ran outputs ∧ ran oldOuts = ε ∧ newOuts ′ = ∅

currentSS ′ = initialSS

Monitor =̂; out : outputs •
fmi2Get .(FMU out).(name out)?nv?st −→ newOuts := newOuts ⊕ {out �→ nv}

Adjust =̂ if delta(oldOuts,newOuts) ≥ threshold−→
currentSS := newstep(delta(oldOuts,newOuts), currentSS);
updateSS !currentSS −→ Skip
delta(oldOuts,newOuts) > threshold −→ Skip

fi

Step = Monitor ; Adjust ; Step

• Init ; (Step Δ endSimulation)

end

Fig. 8. Model of V aryStep

fmi2GetFMUState before each step of co-simulation, and (b) queries the max-
imum step size that each FMU is prepared to take. This uses an extra FMI
API function fmi2GetMaxStepSize. In Adjust, if any of the maximum val-
ues returned is lower than that originally proposed, the states of the FMUs
are reset using fmi2SetFMUState, and the time as well as the step size are
adjusted (using setT and updateSS). We have again proved validity, termina-
tion, and determinism.

In [4], determinism is also based on the FMU states, which are visible via
fmi2Get and fmi2Set. On the other hand, that work considers determinism
with respect to the order of retrieval and update of variables and execution
of the FMUs. In our models, this order is fixed. To establish determinism in
that sense, we need to consider a highly parallel model with all valid execution
orders respecting the port dependency graph. This is the approach in [7], where
verification uses theorem proving. The approach taken here is more amenable to
model checking and sufficient to verify sequential implementations of simulations.

As explained in the previous section, the definition of Interaction is deter-
mined by structural information about the FMUs configuration. Using that infor-
mation, and a choice of master algorithm (fixed or variable step, treatment of
fmi2Discard, and so on), we can obtain a model. For the FMUs, in the previous
section, we have explained how to derive (sketches of) models.

Behavioural Models for FMI Co-simulations 269

5.2 Co-simulations

Our semantics is also useful for analysis using FDR of the FMU compositions
in co-simulations for deadlock, livelock, and determinism. We have done this
verification, for instance, for the discrete event signal example in Fig. 7.

The semantics can also be used to validate the results of co-simulation runs.
For example, Fig. 9 describes a short scenario involving two co-simulation steps.
We specify it using CSP-M, rather than Circus, and write the traces refine-
ment ([T=) assertion we use for verification. The assertion says that this scenario
is a possible trace of the model: it is a correct co-simulation run. (We may check
this by noting that the final two operations set the same inputs for FMU 4 (Check
Equality)—the FMU that checks equality in the simulation model.) To facilitate
model checking, we use numbers for the names of the variables. With this app-
roach, we validate our model against an actual co-simulation.

DSynchronousEventsSpec =

-- Set parameters

fmi2Set.1.1.1.fmi2OK -> fmi2Set.1.2.1.fmi2OK ->

fmi2Set.2.1.1.fmi2OK -> fmi2Set.2.2.2.fmi2OK ->

-- Set initial values of inputs

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.1.1.fmi2OK -> fmi2Set.4.2.1.fmi2OK ->

-- Steps

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

fmi2DoStep.1.0.2.fmi2OK -> fmi2DoStep.2.0.2.fmi2OK ->

fmi2DoStep.3.0.2.fmi2OK -> fmi2DoStep.4.0.2.fmi2OK ->

fmi2Get.1.1.1.fmi2OK -> fmi2Get.2.1.1.fmi2OK -> fmi2Get.3.3.1.fmi2OK ->

fmi2Set.3.1.1.fmi2OK -> fmi2Set.3.2.1.fmi2OK ->

fmi2Set.4.2.1.fmi2OK -> fmi2Set.4.1.1.fmi2OK ->

fmi2DoStep.1.2.2.fmi2OK -> fmi2DoStep.2.2.2.fmi2OK ->

fmi2DoStep.3.2.2.fmi2OK -> fmi2DoStep.4.2.2.fmi2OK -> SKIP

assert Cosimulation(0,2) [T= SynchronousEventsSpec

Fig. 9. Scenarios for Fig. 7: sampling of discrete event signals

Moreover, we can go further and check behavioural correctness too. The
specification of an FMI composition C is an assertion over traces of events corre-
sponding to the FMI API, principally doStep, get, and set. A similar technique
is used for specification of processes in CSPm based on traces of events [17], and
in CCS, using temporal logic over actions [3].

An alternative is to use a more abstract composition of FMUs A as a speci-
fication. A can be used as an oracle in testing the simulation: do a step of C and
then compare it with a step of A. A and C can be used even more directly in
our model by carrying out a refinement check in FDR3.

270 A. Cavalcanti et al.

X 1

X 2

X 3

left1

left

left2

mid

right

Fig. 10. A data-flow example

Consider a dataflow process taken from [17, p.124] and depicted in
Fig. 10 that computes the weighted sums of consecutive pairs of inputs.
So, if the input is x0, x1, x2, x3, . . ., then the output is (a ∗ x0 + b ∗ x1),
(a ∗ x1 + b ∗ x2), (a ∗ x2 + b ∗ x3), . . ., for weights a and b. The network has two
external channels, left and right, and three internal channels. X2 multiplies an
input on channel left1 by a and passes the result to X3 on mid. X3 multiplies
an input on the left2 channel by b and adds the result to the corresponding
value from the mid channel. X1 duplicates its inputs and passes them to the
other two processes (since all values except the first and last are used twice),
where the multiplications can be performed in parallel. A little care needs to be
taken to get the order of communications on the left1 and left2 channels right,
otherwise a deadlock soon ensues.

The CSP specification of this network remembers the previous input.

The key part of the main FMU in this specification is shown in Fig. 11.
Once the slave FMU has been initialised, the master algorithm can instruct

it to perform a simulation step (fmi2DoStep). The FMU fetches the state item,
gets the next input, fetches the parameters a and b, performs the necessary
computation, and stores it as the current output.

We have been able to encode both the specification and implementation of
the data flow network, with small values for maxint, and check behavioural
refinement. We have identified the problem alluded to above, in getting the
communications on left1 and left2 in the wrong order; issues to do with deter-
minism concerning hidden state in our model; and termination issues to do with
the end of the experiment and closing down resources. We have also been able
to demonstrate in a small way the consistency of the semantics model.

Behavioural Models for FMI Co-simulations 271

DFSPECFMUProc(i) =

let

slaveInitialized(hc) =

...

[]

fmi2DoStep.i?t?ss!fmi2OK -> (UpdateState; slaveInitialized(ss))

UpdateState =

get.i.1?x:INPUTVALP ->

getinput.i.1?y:INPUTVALP ->

getparam.i.1?a:PARAMVAL -> getparam.i.2?b:PARAMVAL ->

setoutput.i.1!(a*x+b*y) -> SKIP

within

Instantiation; InstantiationMode(eps,eps);

InitializationMode; slaveInitialized(0)

Fig. 11. Data flow specification

The transformation from Circus to CSPM corresponding to the FMI API
requires the identification of barrier synchronisations that correspond to the
doStep commands. An appropriate strategy is outlined in [6].

6 Conclusions

We have provided a comprehensive model of the FMI API, characterising for-
mally valid master algorithms and FMUs. We can use our models to prove valid-
ity of master algorithms and FMU models. For stateless models, model checking
is feasible, and we can use that to establish properties of interest of algorithms
and FMU models. For state-rich models, we need theorem proving.

Given information about the network of FMUs and a choice of master algo-
rithm, it is possible to construct a model of their co-simulation automatically
for reasoning about the whole system. This is indicated by how our models are
defined in terms of information about parameters, inputs, and so on, for each
FMU, and about the FMU connections. A detailed account of the generation
process and its mechanisation are, however, left as future work.

We have discussed a few example master algorithms. This includes a sophisti-
cated rollback algorithm presented in [4] using a proposed extension of the FMI.
It uses API functions to get and set the state of an FMU. In [4], this algorithm
uses a doStep function that returns an alternative step size, in case the input
step size is not possible. Here, instead, we use an extra function that can get
the alternative step size. This means that our standard algorithms respect the
existing signature of the fmi2DoStep function. As part of our future work, we
plan to model one additional master algorithm proposed in [4].

There has been very practical work on new master algorithms, generation of
FMUs and simulations, and hybrid models [2,9,11,22]. Tripakis [25] shows how
components with different underlying models (state machines, synchronous data
flow, and so on) can be encoded as FMUs. Savicks [24] presents a framework for

272 A. Cavalcanti et al.

co-simulation of Event-B and continuous models based on FMI, using a fixed-
step master algorithm and a characterisation of simulation components as a class
specialised by Event-B models or FMUs. This work has no semantics for the FMI
API, but supplements reasoning in Event-B with simulation of FMUs.

Pre-dating FMI, the work in [15] presents models of co-simulations using
timed automata, with validation and verification carried out using UPPAAL,
and support for code generation. It concentrates on the combination of one con-
tinuous and one discrete component using a particular orchestration approach.
The work in [5] discusses the difficulties for treatment of hybrid models in FMI.

There are several ways in which our models can be enriched: definition of the
type system, consideration of asynchronous FMUs, sophisticated error handling
policies that allow resetting of the FMU states, and increased coverage of the
API. FMI includes capability flags that define the services supported by FMUs,
like asynchronous steps, and retrieval and update of state, for example. We need
a family of models to consider all combinations of values of the capability flags.
We have explained here how a typical combination can be modelled.

Our long-term goal is to use our semantics to reason about the overall system
composed of the various simulation models. In particular, we are interested in
hybrid models, involving FMUs defined by languages for discrete and for con-
tinuous modelling. To cater for models involving continuous FMUs, we plan to
use a Circus extension [13]. Using current support for Circus in Isabelle [14], we
may also be able to explore code generation from the models. We envisage fully
automated support for generation and verification of models and programs.

Acknowledgements. The work is funded by the EU INTO-CPS project (Horizon
2020, 664047). Ana Cavalcanti and Jim Woodcock are also funded by the EPSRC
grant EP/M025756/1. Anonymous referees have made insightful suggestions. No new
primary data were created during this study.

References

1. Abrial, J.R.: Modeling in Event-B-System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Bastian, J., Clauß, C., Wolf, S., Schneider, P.: Master for co-simulation using FMI.
In: Modelica Conference (2011)

3. Bradfield, J., Stirling, C.: Verifying temporal properties of processes. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 115–125. Springer,
Heidelberg (1990). doi:10.1007/BFb0039055

4. Broman, D., et al.: Determinate composition of FMUs for co-simulation. In: ACM
SIGBED International Conference on Embedded Software. IEEE (2013)

5. Broman, D., et al.: Requirements for hybrid cosimulation standards. In: 18th Inter-
national Conference on Hybrid Systems: Computation and Control, pp. 179–188.
ACM (2015)

6. Butterfield, A., Sherif, A., Woodcock, J.: Slotted-circus. In: Davies, J., Gibbons, J.
(eds.) IFM 2007. LNCS, vol. 4591, pp. 75–97. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-73210-5 5

http://dx.doi.org/10.1007/BFb0039055
http://dx.doi.org/10.1007/978-3-540-73210-5_5
http://dx.doi.org/10.1007/978-3-540-73210-5_5

Behavioural Models for FMI Co-simulations 273

7. Cavalcanti, A.L.C., Clayton, P., O’Halloran, C.: From control law diagrams to ada
via Circus. Formal Aspects Comput. 23(4), 465–512 (2011)

8. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A refinement strategy for
Circus. Formal Aspects Comput. 15(2–3), 146–181 (2003)

9. Denil, J., et al.: Explicit semantic adaptation of hybrid formalisms for FMI co-
simulation. In: Spring Simulation Multi-Conference (2015)

10. Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber-physical systems. Proc.
IEEE 100(1), 13–28 (2012)

11. Feldman, Y.A., Greenberg, L., Palachi, E.: Simulating Rhapsody SysML blocks in
hybrid models with FMI. In: Modelica Conference (2014)

12. FMI development group: Functional mock-up interface for model exchange and
co-simulation, 2.0. (2014). https://www.fmi-standard.org

13. Foster, S., et al.: Towards a UTP semantics for Modelica. In: Unifying Theories of
Programming. LNCS. Springer (2016)

14. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-14806-9 2

15. Gheorghe, L., et al.: A formalization of global simulation models for continu-
ous/discrete systems. In: Summer Computer Simulation Conference, pp. 559–566.
Society for Computer Simulation International (2007)

16. Gibson-Robinson, T., et al.: FDR3–a modern refinement checker for CSP. In: Tools
and Algorithms for the Construction and Analysis of Systems, pp. 187–201 (2014)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

18. Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput.
Modell. Dynamical Syst. 6(2), 93–113 (2000)

19. The MathWorks Inc: Simulink. www.mathworks.com/products/simulink
20. Oliveira, M., Cavalcanti, A.: From Circus to JCSP. In: Davies, J., Schulte, W.,

Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 320–340. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30482-1 29

21. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP semantics for
Circus. Formal Aspects Comput. 21(1–2), 3–32 (2009)

22. Pohlmann, U., et al.: Generating functional mockup units from software specifica-
tions. In: Modelica Conference (2012)

23. Roscoe, A.W.: Understanding concurrent systems. In: Texts in Computer Science.
Springer (2011)

24. Savicks, V., et al.: Co-simulating event-b and continuous models via FMI. In: Sum-
mer Simulation Multiconference, pp. 37:1–37:8. Society for Computer Simulation
International (2014)

25. Tripakis, S.: Bridging the semantic gap between heterogeneous modeling for-
malisms and FMI. In: International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation, pp. 60–69. IEEE (2015)

26. Woodcock, J.C.P., Davies, J.: Using Z-Specification, Refinement, and Proof.
Prentice-Hall, New York (1996)

https://www.fmi-standard.org
http://dx.doi.org/10.1007/978-3-319-14806-9_2
www.mathworks.com/products/simulink
http://dx.doi.org/10.1007/978-3-540-30482-1_29

An Abstract Model for Proving Safety
of Autonomous Urban Traffic

Martin Hilscher and Maike Schwammberger(B)

Department of Computing Science, University of Oldenburg, Oldenburg, Germany
{hilscher,schwammberger}@informatik.uni-oldenburg.de

Abstract. The specification of Multi-lane Spatial Logic (MLSL) was
introduced in [1,2] for proving safety (collision freedom) on multi-lane
motorways and country roads. We now consider an extension of MLSL to
deal with urban traffic scenarios, thereby focusing on crossing manoeu-
vres at intersections. To this end, we modify the existing abstract model
by introducing a generic topology of urban traffic networks. We then
show that even at intersections we can use purely spatial reasoning,
detached from the underlying car dynamics, to prove safety of controllers
modelled as extended timed automata.

Keywords: Multi-dimensional spatial logic · Urban traffic · Bended
view · Virtual lanes · Autonomous cars · Collision freedom · Timed
Automata

1 Introduction

Traffic safety is a relevant topic as driving assistance systems and probably soon
fully autonomously driving cars are increasingly capturing the market. In this
context, safety means collision freedom and thus reasoning about car dynamics
and spatial properties. An approach to separate the car dynamics from the spa-
tial considerations and thereby simplify reasoning, was introduced in [1] with
the Multi-lane Spatial Logic (MLSL) for expressing spatial properties on multi-
lane motorways. This logic and its dedicated abstract model was extended with
length measurement in [2] for country roads with oncoming traffic.

MLSL is inspired by Moszkowski’s interval temporal logic [3], Zhou, Hoare
and Ravn’s Duration Calculus [4] and Schäfer’s Shape Calculus [5]. MLSL
extends interval temporal logic by a second dimension, whilst considering con-
tinuous (positions on lanes) and discrete components (the number of a lane).
With these two-dimensional features we can, for instance, express that a car is
occupying a certain space on a lane.

Aside from highway traffic and country roads, safety in urban traffic scenarios
is of high importance. There, drivers’ mistakes lead to large amounts of human

This research was partially supported by the German Research Council (DFG) in
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 274–292, 2016.
DOI: 10.1007/978-3-319-46750-4 16

Proving Safety for Urban Traffic Scenarios 275

casualties. Because of that, we now extend the approaches of [1,2] to urban
traffic manoeuvres.

Whereas in [1,2] the abstract model consisted of adjacent lanes with infinite
length and without any overlaps, we now consider intersecting lanes and the
safety of crossing manoeuvres, like turning left or right, on such lanes. To deal
with these new conditions, the extension of MLSL by length measurement given
in [2] is quite convenient as we, e.g., need to talk about a car’s distance to a
crossing to ensure it is not just passing it without any consideration. Further-
more, our intersecting lanes are no longer infinite, as we consider lanes to be
finite road segments between two intersections.

Related work. Loos and Platzer present an approach for intersections of single
lanes with one car on each lane in [6]. They use traffic lights as a control mecha-
nism, where a car is not permitted to enter an intersection when the light is red.
The authors verify the safety of their hybrid systems with the tool KeYmaera.

In [7], Werling et al. examine safety of their algorithm for handling moving
traffic in urban scenarios, which was deployed on the DARPA Urban Challenge
2007 finalist AnnyWAY and uses a hierarchical finite state machine. This app-
roach has strong assumptions, e.g. a constant vehicular speed of all cars.

A number of solutions have been proposed to improve vehicular safety by
using intelligent transportation systems. An example for this is given by Colombo
and Del Vecchio in [8], where a supervisor for collision avoidance at intersections
is synthesised. This supervisor is based on a hybrid algorithm and acts as a
scheduler for the cars.

The key contribution of our paper is the adaption of the existing abstract
model and the logic MLSL from [2] to a more powerful model with intersections
for urban traffic scenarios. For this, in Sect. 2 we present the new concept of
bended views to cope with the concept of turning left resp. right at intersec-
tions. In Sect. 3, we introduce semantics of an extension of timed automata [9],
the automotive-controlling timed automata (ACTA). With these, we construct a
controller for crossing manoeuvres and adapt the lane change controller from [2]
for our purposes. Finally, we prove safety of this crossing controller in Sect. 4.
A conclusion, more work directly related to our approach and ideas for future
work is given in Sect. 5.

2 Abstract Model

Our abstract model for urban traffic focuses on modelling traffic situations at
intersections and contains a set of crossing segments CS = c0, c1, . . . and a set of
lanes L = 0, 1, . . . connecting different crossings, with typical elements l,m, n.
Adjacent lanes are bundled to road segments RS = {0, 1}, {2, 3}, . . . such that RS
is a subset of the power set of L. Typical elements of RS are r0, r1, r2. Adjacent
crossing segments form an intersection. Every car has a unique car identifier
from the set I = A,B, . . . and a real value for its position pos on a lane.

276 M. Hilscher and M. Schwammberger

In the following, we will use car E as the car under consideration and we
introduce the special constant ego with valuation ν(ego) = E to refer to this
car. When we are talking about an arbitrary car, we will use the identifier C.

To simplify reasoning, only local parts of traffic are considered as every car
has its own local view. If no crossing is within some given horizon, the standard
view V (E) of car E only contains a bounded extension of all adjacent lanes.

If an intersection is within the horizon of car E, its standard view covers a
bounded part of the road segment it is driving on, the intersection itself, and a
bounded extension of the road segment it is about to drive on after passing the
crossing. We refer to this as a bended view as the car E may turn left or right
at the crossing (cf. Fig. 1). We straighten this bended view to virtual lanes, to
allow for purely spatial reasoning around the corner with our later introduced
logic Urban Multi-lane Spatial Logic (UMLSL).

0

F

1

2

3
C

D

D

4

C

5

B

6 A
B

7 E c0 c1

c2
C

c3
B

V (E)

r3

r2

r1

r0

Fig. 1. In its view V (E), indicated by the gray shading, car E sees car A driving on
lane 6 and cars B and C which are currently both turning right at the intersection.
V (E) does not cover the road segments r0 and r1 an thus not the positions of car F
and D.

UMLSL extends the logic introduced in [1] by atoms to formalise traffic
situations on crossing segments and has a continuous (real positions on lanes) and
a discrete dimension (number of lanes and crossing segments). In the following
we will talk about car E as the owner of view V (E).

Example. In a part of view V (E) (cf. Fig. 1) the formula φ ≡ re(ego) � free �
cs ∧ free holds. Here, re(ego) is the space car E reserves on lane 7, the atom free
represents the free space in front of car E, and cs ∧ free stands for the unoccupied
space on crossing segment c0. The horizontal chop operator � is similar to its equiv-
alent in interval temporal logic and is used to deal with adjacent segments. ��

Proving Safety for Urban Traffic Scenarios 277

While a reservation re(ego) is the space car E is actually occupying, a claim
cl(ego) is akin to setting the direction indicator (cf. dotted part of car D in
Fig. 1, showing the desire of car D to change its lane). Thus, a claim represents
the space a car plans to drive on in the future. Reserved and claimed spaces have
the extension of the safety envelopes of the cars, which include a car’s physical
size and its braking distance. For now, we will use a concept of perfect knowledge
which means thus assume that every car perceives the safety envelopes of all
other cars in its view.

We distinguish between the movement of cars on lanes and on crossings. We
allow for two-way traffic on continuous lanes of finite length, assuming every lane
has one direction, but cars may temporarily drive in the opposite direction to
perform an overtaking manoeuvre. As a car’s direction will change while turning
on an intersection, we cannot assign one specific direction to a crossing segment.
Therefore, we consider crossing segments as discrete elements which are either
fully occupied by a car or empty.

When a car is about to drive onto a discrete crossing segment and time
elapses, the car’s safety envelope will stretch to the whole crossing segment,
while disappearing continuously on the lane it drove on. An example for this
behaviour are cars B and C in Fig. 1, where B leaves lane 5 and enters lane 6
continuously, while it occupies the whole discrete crossing segment c3.

2.1 Topology

For this paper we restrict the abstract model to road segments with two lanes,
one in each direction. Intersections are four connected crossing segments with
four road segments meeting at a crossing, comparable to our example in Fig. 1.

We describe the connections between lanes and crossing segments by a graph
N , whose nodes are elements from L and CS. Additionally, as we are dealing
with traffic that is presumably evolving over time, we need to capture the (finite
and real) length of lanes and crossing segments in our graph. We group adja-
cent crossing segments to strongly connected components Ics (intersections) and
neighbouring lanes to components Irs (road segments). Later, we will use the
information given by N to determine the parts of lanes and crossing segments
the safety envelope of an arbitrary car C occupies.

Definition 1 (Urban Road Network). An urban road network is defined by
a graph N = (V,Eu, Ed, ω, Ics, Irs), where

– V is a finite set of nodes, with V = L ∪ CS,
– Eu ⊆ L × L is the set of undirected edges,
– Ed ⊆ (V × V) \ (L × L) is the set of directed edges,
– ω : V → R

+ is a mapping assigning a weight to each node in V , describing
the length of the related segment,

– Ics ⊆ P(CS) is a set of strongly connected components idcs, where elements
v1, v2 ∈ CS are part of the same component iff there exists a finite sequence
πv1,2 of directed edges between v1 and v2 and for all elements πi of πv1,2 :

278 M. Hilscher and M. Schwammberger

πi ∈ CS. For an arbitrary crossing segment cs′ ∈ V the function Ics : CS → Ics

with cs′
→ idcs returns the strongly connected component cs′ is part of.
– Irs ⊆ P(L) is a set of strongly connected components idrs, where v1, v2 ∈ L are

in the same component iff there is a finite sequence πv1,2 of undirected edges
between v1 and v2 and for all elements πi of πv1,2 : πi ∈ L. For an arbitrary
lane l ∈ L the function Irs : L → Irs with valuation l
→ idrs returns the
strongly connected component l is part of.

080 1 80

2

100

3

100

4 80580

6

100

7

100

c0

10

c1

10

c2
10

c3
10

Fig. 2. Urban road network for Fig. 1.

Note that self-loops are excluded. Two elements v1, v2 ∈ L with (v1, v2) ∈ Eu

moreover constitute two parallel lanes, where the undirected edge allows for lane
change manoeuvres between these two lanes. Every car C has a path pth(C)
which is infinite in both directions and comprises its travelling route.

Example. Considering the traffic situation depicted in Fig. 1 and the corre-
sponding road network in Fig. 2, pth(E) = 〈. . . , 7, c0, c1, c2, 4, . . .〉 is a suitable
path for the car under consideration E, where it plans on turning left. ��

2.2 Traffic Snapshot

In this paragraph we present a model T S of a traffic snapshot, which captures the
traffic on an urban road network at a given point in time. We recall definitions
from [1], extending them where needed and assign an infinite path pth(C) ∈ V Z

to every car C.
The node car C is currently driving on we call pth(C)curr(C), where curr(C)

is the index of this node in pth(C). The real-valued position pos(C) defines the
position of car C on the current node pth(C)curr(C). The node in pth(C) that is
reached after some time t elapses, we call pth(C)next(C). Note that curr(C) =
next(C), iff C did not move far enough to leave its current node.

To formalise two-way traffic on road segments, we assume that every lane
has one direction and cars normally drive on a lane in the direction of increas-
ing real values. Cars may only temporarily drive in the opposite direction of a
lane to perform an overtaking manoeuvre. We differentiate between claims and
reservations on continuous lanes (clm, res) and on discrete crossing segments
(cclm, cres).

Proving Safety for Urban Traffic Scenarios 279

Definition 2 (Traffic Snapshot). A traffic snapshot T S is a structure
T S = (res, clm, cres, cclm, pth, curr , pos) with

– res : I → P(L) such that res(C) is the set of lanes that car C reserves,
– clm : I → P(L) such that clm(C) is the set of lanes car C claims,
– cres : I → P(CS) such that cres(C) is the set of crossing segments car C

reserves,
– cclm : I → P(CS) such that cclm(C) is the set of crossing segments car C

claims,
– pth : I → V Z such that pth(C) is the path car C pursues,
– curr : I → Z such that curr(C) is the index of the current element of pth(C)

the car C is driving on and
– pos : I → R such that pos(C) is the position of the rear of car C on its lane.

Let TS denote the set of all traffic snapshots.

When time elapses, every car C with a positive speed will change its current
position according to the path pth(C). The function nextCrossing(C) is then
used to identify all crossing segments of the next intersection for C along pth(C).

nextCrossing(C) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∅ if pth(C)next(C) �∈ CS

〈πi, . . . , πi+n〉 if pth(C) = 〈. . . , πi−1, πi, . . . , πi+n, . . .〉
∧i ≤ next(C) ≤ i + n
∧∀j ∈ {i, . . . , i + n} : πj ∈ CS

∧πi−1 ∈ RS

We allow for the following transitions between traffic snapshots to model the
behaviour of cars in urban traffic and use the overriding notation ⊕ of the math-
ematical notation language Z for function updates [10].

Definition 3 (Transitions). The following transitions describe the changes
that may occur at a traffic snapshot T S = (res, clm, cres, cclm, pth, curr , pos).

T S t−→T S ′ ⇔ T S ′ = (res′, clm, cres′, cclm, pth, curr ′, pos ′)
∧ ∀C ∈ I : 0 ≤ pos ′(C) ≤ ω(pth(C)next(C)) (1)
∧ cres′(C) = cres ⊕ {C
→ {nextCrossing(C)}}
∧next(C) �= curr(C) → (|res(C)| = 1 ∧ |clm(C)| = 0)

T S c(C,n)−−−−→T S ′ ⇔ T S ′ = (res, clm′, cres, cclm, pth, curr , pos)
∧ |clm(C)| = |cclm(C)| = |cres(C)| = 0
∧ |res(C)| = 1 (2)
∧ {n + 1, n − 1} ∩ res(C) �= ∅
∧ clm′ = clm ⊕ {C
→ {n}}

T S wd c(C)−−−−−→T S ′ ⇔ T S ′ = (res, clm′, cres, cclm, pth, curr , pos)
∧ clm′ = clm ⊕ {C
→ ∅} (3)

280 M. Hilscher and M. Schwammberger

T S r(C)−−−→T S ′ ⇔ T S ′ = (res′, clm′, cres, cclm, pth, curr , pos)
∧ clm′ = clm ⊕ {C
→ ∅}
∧|cclm(C)| = |cres(C)| = 0 (4)
∧ res′ = res ⊕ {C
→ res(C) ∪ clm(C)}

T S wd r(C,n)−−−−−−→T S ′ ⇔ T S ′ = (res′, clm, cres, cclm, pth, curr , pos)
∧ res′ = res ⊕ {C
→ {n}} (5)
∧n ∈ res(C) ∧ |res(C)| = 2

T S cc(C)−−−→T S ′ ⇔ T S ′ = (res, clm, cres, cclm′, pth, curr , pos)
∧ |res(C)| = 1
∧ |clm(C)| = |cclm(C)| = |cres(C)| = 0 (6)
∧ cclm′ = cclm ⊕ {C
→ {nextCrossing(C)}}

T S wd cc(C)−−−−−−→T S ′ ⇔ T S ′ = (res, clm, cres, cclm′, pth, curr , pos)
∧ cclm′ = cclm ⊕ {C
→ ∅} (7)

T S rc(C)−−−→T S ′ ⇔ T S ′ = (res, clm, cres′, cclm′, pth, curr , pos)
∧ |res(C)| = 1 ∧ |clm(C)| = 0
∧ cclm′ = cclm ⊕ {C
→ ∅} (8)
∧ cres′ = cres ⊕ {C
→ cclm(C)}

T S wd rc(C)−−−−−→T S ′ ⇔ T S ′ = (res, clm, cres′, cclm, pth, curr , pos)
∧ cres′ = cres ⊕ {C
→ ∅}. (9)

In (1) we allow for the passage of time, where cars move along their paths in
the urban road network. We assume this movement to be continuous but give
no concrete formula here, because of the idea of separating spatial reasoning
from car dynamics. We reuse the transitions (2)–(5) from [1] for creating (resp.
removing) a claim or reservation for a neighbouring lane. These transitions are
only allowed on road segments between two intersections. To (2) and (4) we
add the further restriction that we are not allowed to make new claims (resp.
reservations) while on a crossing segment. With (6)–(9) we add four transitions
which create (resp. remove) claims and reservations for crossing segments to pass
through an intersection.

2.3 Bended View and Virtual Lanes

For proving safety we restrict ourselves to finite parts of the traffic snapshot
T S. The intuition is that the safety of a car depends only on its immediate
surroundings. We encode this by introducing a structure called view, which only
contains the part of lanes and crossing segments that lie within some distance h
called horizon.

Proving Safety for Urban Traffic Scenarios 281

In previous works [1,2] covering highway and country road traffic, the set of
lanes L in a view was obtained by taking a subinterval of the global set of parallel
lanes L. This is no longer possible for the urban traffic scenario, since taking an
arbitrary subset of lanes can yield a set of lanes which are not neighbouring.
We therefore have to construct a view from the urban road network, the current
traffic snapshot, a given real-valued interval X = [a, b] and a car E which we
call owner of the view. We can adapt the definition from [1] as follows.

Definition 4 (View). The view V = (L,X,E) of car E contains

– a set of virtual lanes L ⊆ P(V Z) and
– an interval of space along the lanes X = [a, b] ⊆ R relative to E’s position.

If an intersection is within the horizon h, we deal with a bended view as
cars are allowed to turn in any possible direction at the crossing (cf. V (E) in
Fig. 1). To allow for our spatial reasoning with the logic UMLSL, we construct
straight and adjacent virtual lanes from the urban road network and the path
of car E. For each of these virtual lanes, we map the nodes of E’s path to the
appropriate segments of the virtual lane, such that traversing along the virtual
lanes corresponds to moving through the nodes of the urban road network along
the path of E.

To build our virtual lanes, we first need to find the crossings and road seg-
ments E traverses. These can be obtained from the path pth(E) by building
a second path called track of the car, track(E), which is more coarse-grained.
Every element of E’s path is abstracted to its connected component idcs (idrs

resp.). Subsequent occurrences of the same component are recorded only once.
Example (track of a car). Let us recall the situation in Fig. 1 and the cor-

responding Urban Road Network from Fig. 2. Furthermore, assume that car
E’s path contains the subpath 〈7, c0, c1, c2, 4〉. From Fig. 1 we can see, that 6, 7
form road segment r3 and 4, 5 are road segment r2. We additionally name the
strongly connected component composed of c0, . . . , c3 with cr0. We then obtain
track(E) = 〈. . . , r3, cr0, r2, . . .〉. ��

From these tracks we now construct two neighbouring infinite lanes, −→πE for
the lane in E’s driving direction and ←−πE for the opposing traffic. We find one
path in the urban road network, which traverses the crossing and road segments
in track(E) in the same order along the directed edges (−→πE) and one traversing
them in opposite order along the edges (←−πE).

Example (infinite lanes). For car E with track(E) = 〈. . . , r3, cr0, r2, . . .〉 of
the previous example, we need to find a πi with πi ∈ r3 and there is a directed
edge from πi to some node in cr0 = {c0, . . . , c4}. This is only satisfied for
the choice of 7 and c0. Continuing this way, we obtain the infinite partial lane
〈. . . , 7, c0, c1, c2, 4, . . .〉. Similarly we obtain 〈. . . , 6, c3, 5, . . .〉 as second lane. ��

We have now obtained a set of infinite lanes. Since views are just subsets
of lanes the last step for finding our virtual lanes is to obtain the finite infix of
path −→πE which is visible in the view. We start at pth(E)curr(E) and examine the
next elements πn ∈ −→πE and sum up all weights of nodes between pth(E)curr(E)

and πn. If this sum is in the interval X = [a, b] the path element is visible in

282 M. Hilscher and M. Schwammberger

6 A B B B

7 E 4

5

c0 c1 c2
C

C

c3

V (E)

Fig. 3. Virtual lanes with cars for view V (E) in Fig. 1.

the view and therefore part of the finite virtual lane −→πE
v. ←−πE

v is constructed
symmetrically.

Example (virtual lanes). Previously, for car E we determined the infinite lane
〈. . . , 7, c0, c1, c2, 4, . . .〉. We construct the finite virtual lane 〈7, c0, c1, c2, 4〉. The
second virtual lane is determined symmetrically and we get the set of virtual
lanes depicted in Fig. 3 for car E. ��
Definition 5 (Constructed View). For a car E and X = [a, b] the con-
structed view of E is defined by VC = ({−→πE

v
,←−πE

v}, [a, b], E), where −→πE
v and←−πE

vare virtual lanes.

We adapt the chopping operations of views from [11] to the new notion
of views. Note that while horizontal chopping is analogous to ITL [3], vertical
chopping is defined concretely for two lanes.

Definition 6 (Operations on Views). Let V1, V2 and V be views of a traffic
snapshot T S. Then V = V1 � V2 iff V = (L,X,E), V1 = (L1,X,E) and V2 =
(L2,X,E) and L1 = ∅ or L1 = {←−πE} or L1 = {−→πE ,←−πE}. Furthermore, V =
V1 � V2 iff V = (L, [r, t], E) and ∃s ∈ [r, t] with V1 = V[r,s] and V2 = V[s,t].

We call a view of the form VS(E, T S) = ({−→πE
v
,←−πE

v}, [−h,+h], E) a standard
view of E, where h is a sufficiently large horizon, such that any car at maximum
velocity can come to a complete standstill within this distance.

To model sensor capabilities of a car E, we introduce a sensor function ΩE .
This function returns the size of a car as perceived by the sensors of E. A
possible implementation is, e.g., a car may calculate its own braking distance,
while it can only perceive the physical size of all other cars. In the remainder
of this paper we will consider an implementation, where every car perceives the
breaking distances of all other cars.

Sensor Function. The car dependent sensor function ΩE : I × TS → R yields,
given an arbitrary car C and a traffic snapshot T S, the size of a car C as
perceived by E’s sensors.

Visible Segments of Cars. For both virtual lanes, we need to find all segments
segV (C) which are (partially) occupied by a car C and visible in the view of E.
Therefore, we first add the value of ΩE(C, T S) to the position pos(C). Since
this distance may span more than one lane segment (crossing segment resp.) we
have to split this distance whenever the weight ω(s) of a segment along C’s path

Proving Safety for Urban Traffic Scenarios 283

is exceeded. Finally, we make the position of the segment relative to the position
of the car E by adding the distance (dist) between the positions of E and C
along the path of E.

2.4 UMLSL Syntax and Semantics

For the specification of the Multi-lane Spatial Logic for urban traffic UMLSL, we
start with the set of car variables CVar ranging over car identifiers with typical
elements c and d. RVar is used for variables ranging over the real numbers, with
typical elements x, y. We assume RVar ∩ CVar = ∅. The set of all variables
Var = CVar ∪ RVar ∪ {ego} has typical elements u, v. For this paper we restrict
ourselves to real-valued constants for the values of RVar, for a more complete
discussion including real-valued terms see [2].

Formulas of UMLSL are built from atoms, Boolean connectors and first-order
quantifiers. Furthermore, we use two chop operations, one for a horizontal chop,
denoted by � like for interval temporal logic and a vertical chop operator given
by the vertical arrangement of formulas. Intuitively, a formula φ1 �φ2 holds if
we can split the view V horizontally into two views V1 and V2 such that on V1

φ1 holds and V2 satisfies φ2. Similarly a formula φ2
φ1

is satisfied by V , if V can be
chopped at a lane into two subviews, V1 and V2, where Vi satisfies φi for i = 1, 2.

Besides the atom free which represents free space on a lane, UMLSL extends
MLSL by the atom cs to represent crossing segments. Hereby, we can, e.g., state
that car E occupies a crossing segment (cs∧ re(ego)) or that a crossing segment
is free (cs ∧ free).

Definition 7 (Syntax). The syntax of the Urban Multi-lane Spatial Logic
UMLSL is defined as follows.

φ ::= true | u = v | free | cs | re(c) | cl(c) | ¬φ | φ1 ∧ φ2 | ∃c • φ1 | φ1 � φ2 | φ2
φ1

,

where c ∈ CVar∪{ego} and u, v ∈ Var. We denote the set of all UMLSL formulas
by ΦU.

Definition 8 (Valuation and Modification). A valuation is a function
ν : Var → I∪R respecting the types of variables. To modify the valuation we use
the overriding notation ν ⊕ {v
→ α}, where the value of v is modified to α.

While the syntax of UMLSL is not very different from previous versions of
MLSL [1,2], the semantics of the atoms change drastically, to accommodate for
bended views. Note that for the following definition of the semantics of UMLSL,
the semantics of ¬, ∧ and ∃ are defined as usual and thus not given here.

Definition 9 (Semantics). The satisfaction of formulas with respect to a traf-
fic snapshot T S, a view V = (L,X,E) and a valuation of variables ν is defined
inductively as follows:

284 M. Hilscher and M. Schwammberger

T S, V, ν |= true for all T S, V, ν

T S, V, ν |= u = v ⇔ ν(u) = ν(v)
T S, V, ν |= free ⇔ |L| = 1 and ‖X‖ > 0 and

∀i ∈ I : segV (i) = ∅
T S, V, ν |= cs ⇔ {πL} = L and ‖X‖ > 0 and

∀π ∈ πL : π ∈ cs
T S, V, ν |= re(c) ⇔ {πL} = L and ‖X‖ > 0 and

∀π ∈ πL : ∃X ′ : (π,X ′) ∈ segV (ν(c)) and

X ⊆
⋃

{(s,X′)|s∈segV (ν(c)) and s∈πL and s �∈cclm(ν(c))}
X ′

T S, V, ν |= cl(c) ⇔ {πL} = L and ‖X‖ > 0 and
(∀π ∈ πL : π ∈ CS and π ∈ cclm(ν(c)) or
({π} = πL and π �∈ CS and segV (ν(c)) = {(π,X ′)}
and X ⊆ X ′)

T S, V, ν |= 	 = x ⇔ ‖X‖ = ν(x)
T S, V, ν |= φ1 �φ2 ⇔ ∃V1, V2 • V = V1 � V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

T S, V, ν |= φ1
φ2

⇔ ∃V1, V2 • V = V1 � V2 and

T S, V1, ν |= φ1 and T S, V2, ν |= φ2

For re(c) to hold the whole view has to be occupied by a reservation of the
car C. This is the case if the view consists of only one virtual lane πL and has
a size larger than 0 (‖X‖ > 0). If all of these conditions are satisfied, we finally
have to check that all segments in this view are completely occupied by C.
Abbreviation. In the following we will often use the abbreviation 〈φ〉 to state
that a formula φ holds somewhere in the considered view of car E.

3 Controllers for Safe Crossing Manoeuvres

For urban traffic manoeuvres, we have three types of controllers: A lane-change
controller to cover lane-change manoeuvres on road segments, a crossing con-
troller to handle crossing manoeuvres and a distance controller that maintains
the braking distance to a car in front of an occupied crossing. For every car, each
equipped with these three controllers, we will show safety in Sect. 4.

Our controllers are defined as timed automata [9] extended with UMLSL
formulas as guards, data variables for cars and lanes and controller actions to,
e.g., change lanes or reserve crossing segments. We call these extended timed
automata automotive-controlling timed automata (ACTA).

Proving Safety for Urban Traffic Scenarios 285

3.1 Syntax of Automotive-Controlling Timed Automata

To describe traffic situations we use data variables DL ranging over the set of
lanes L and clock variables ranging over R+. For data and clock variables, we
use data constraints ϕD ∈ ΦD, similar to guards and invariants in UPPAAL [12]
and build up our guards and invariants from these data constraints and UMLSL
formulas.

Definition 10 (Guards and Invariants). With the set of all data constraints
ϕD ∈ ΦD and the set of all UMLSL formulas ϕU ∈ ΦU the set of guards and
invariants ϕ ∈ Φ is inductively defined by

ϕ ::=ϕD | ϕU | ϕ1 ∧ ϕ2 | true.

Example. The guard (resp. invariant) φ ≡ ∃c, d : 〈re(c) ∧ re(d)〉 ∨ x > t
consists of the MLSL formula ∃c, d : 〈re(c) ∧ re(d)〉 and the data constraint
x > t. It states that somewhere exists a collision between cars C and D or the
clock x exceeded t. ��

For modifications νact ∈ VAct of data and clock variables, we again refer to
UPPAAL. We express possible driving manoeuvres by controller actions, which
may occur at the transitions of ACTA. For this, we introduce the set of car
variables DI that map to car identifiers I. Controller actions enable a car to set
or withdraw a (crossing) claim or a (crossing) reservation.

Definition 11 (Controller Actions). With c ∈ DI, the set of all controller
actions CtrlAct is defined by

cact ::= c(c, ψD) | wd c(c) | cc(c) | wd cc(c) | r(c) | wd r(c, ψD)
| rc(c) | wd rc(c) | τ ,

where ψD ::= k | d1 | d1 + d2 | d1 − d2 with k ∈ N, d1, d2 ∈ DL and r ∈ R.

Note that in contrast to c(c, ψD), the action cc(c) gets along without a second
parameter, because the path through the crossing will automatically be claimed
by the traffic snapshot (cf. Sect. 2.2). The case for wd rc(c) is analogous.

Since we are considering at least three controllers (distance controller, lane-
change controller, crossing controller) in one single car we need a way to identify
the car in which an ACTA is located. For this purpose we introduce an identifying
tuple I ∈ DI ∪ {ego} × I whereby for a controller action r(c) with I = (c, C) the
traffic snapshot will recognise a reservation for car C.

We will use the special constant ego to identify the car under consideration
E with I = (ego,E). This car is the owner of the view V (E).

Definition 12 (Automotive-Controlling Timed Automaton). An ACTA
is defined by a tuple A = (Q,X,D, I, T, qini, I), where

– Q is a finite set of states q0, q1, q2, . . . ∈ Q,
– X is the set of clocks x, y, z, . . .,
– D = DL ∪ DI is the set of data variables d1, d2, d3, . . .,

286 M. Hilscher and M. Schwammberger

– I : Q → Φ assigns an invariant I(q) to every state q,
– T ⊆ Q × Φ × CtrlAct × VAct × Q is the set of all directed edges, where an

element (q, ϕ, cact, νact, q
′) ∈ T is an edge from states q to q′ labelled with a

guard ϕ, a controller action cact and a set of variable modifications νact,
– qini ∈ Q is the initial state and
– I ∈ DI ∪ {ego} × I identifies the car for which the controller works.

An example for an automotive-controlling timed automaton is given later by
the crossing controller in Sect. 3.3 Fig. 4.

3.2 Semantics of Automotive-Controlling Timed Automata

The formal semantics of an automotive-controlling timed automaton
ACTA = (Q,X,D, I, T, qini, I) is defined by a transition system

T (ACTA) = (Conf (ACTA), CtrlAct ∪ Time, { λ−−→ | λ ∈ CtrlAct ∪ Time}, Cini),

where a configuration C ∈ Conf (ACTA) consists of a traffic snapshot T S, a valu-
ation ν for all clock and data variables and a state q. The set of all configurations
is given by Conf (ACTA) = {〈T S, ν, q〉 | q ∈ Q ∧ T S, Vs(E, T S), ν |= I(q)}.

Furthermore there exists an initial configuration Cini ∈ Conf (ACTA), where
Cini = 〈T Sini, νini, qini〉 with νini(x) = 0 for all clocks x ∈ X and νini |= I(qini).

For ∼∈ {cc, wd c, wd cc, r, rc, wd rc} exists 〈T S, ν, q〉 ∼(c)−−−−→ 〈T S ′, ν′, q′〉,
iff with respective transitions T S ∼(C)−−−−−→ T S ′ and q

ϕ/∼(c);νact−−−−−−−→ q′, where

T S, Vs(E, T S), ν ⊕ I |= ϕ and T S ′, Vs(E, T S ′), ν′ ⊕ I |= I(q′) hold.

With ∼∈{c, wd r} and n ∈ L, a transition 〈T S, ν, q〉 ∼(c,n)−−−−−→ 〈T S ′, ν′, q′〉
exists, iff there are transitions T S ∼(C,n)−−−−−−→ T S ′ and q

ϕ/∼(c,l);νact−−−−−−−−→ q′, where

T S, Vs(E, T S), ν ⊕ I |= ϕ and with ν′(l) = n furthermore T S ′, Vs(E, T S ′), ν′ ⊕
I |= I(q′) holds.

For λ ∈ Time, we refer to the semantics of timed automata, where addition-
ally guards and invariants must hold for Vs(E, T S) and traffic snapshot T S.

3.3 Controller Construction

We now construct the crossing controller Acc for turning manoeuvres on crossings
and we adapt the lane change controller for two-way traffic from [2] to a road
controller Arc for manoeuvres on road segments between intersections. Finally,
we need a distance controller Adc to preserve the safety envelope of an arbitrary
car and prevent it from driving onto an intersection without a reservation. For
such a distance controller we refer to [13].

As mentioned in the introduction, we separate our controllers from the car
dynamics. That is, our controllers, e.g., decide how and whether a lane change or
a crossing manoeuvre is conducted. Setting inputs for the actuators is delegated

Proving Safety for Urban Traffic Scenarios 287

to a lower level of controllers. This approach allows for a purely spatial reasoning
in our safety proof in Sect. 4. However, a good example for controllers on the
dynamics level is given by Damm et al. in [14], where the authors introduce a
velocity and a steering controller.

Crossing Controller. This controller is based on the idea of the lane change
controller from [1]. Therefore, we first claim an area we want to enter and reserve
it only if no collision is detected. We assume a crossing manoeuvre to take at
most tcr time to finish. At this point we would like to recall the constant ego
with valuation ν(ego) = E.

As we want to prevent different reservations from overlapping, we introduce
a collision check for the actor E expressed by the UMLSL formula

col(ego) ≡ ∃c : c �= ego ∧ 〈re(ego) ∧ re(c)〉.

We assume ¬col(ego) to hold in the initial state of our crossing controller. Next
we need to detect whether a car approaches a crossing. To that end, we formalise
a crossing ahead check for the actor E by the formula

ca(ego) ≡ 〈re(ego) � ¬re(ego) ∧ ¬〈cs〉 ∧ 	 ≥ dc
� cs〉,

where dc is a constant, whose length is at most the size of the safety envelope of
the fastest car with the weakest brakes. In order to enter a crossing, a car first
needs to claim a path through the crossing and check if there are any overlaps
of other cars’ claims or reservations, formalised by the potential collision check

pc(c) ≡ c �= ego ∧ 〈cl(ego) ∧ re(c) ∨ cl(c)〉.

If a potential collision is detected, the car must withdraw its claim. Further on,
we want to exclude that the actor is entering an intersection while changing
lanes. Therefore we introduce the lane change check

lc(ego) ≡
〈

re(ego)
re(ego)

〉
.

When lc(ego) does not hold, the actor reserves the claimed path and starts the
crossing manoeuvre. To prevent deadlocks, we set a time bound tc for the time
that may pass between claiming and reserving crossing segments. If the actor
reserves any crossing segments, the on crossing check

oc(ego) ≡ 〈re(ego) ∧ cs〉

holds. When the actor has left the last crossing segment and is driving on a
normal lane, the crossing manoeuvre is finished. The reservation of actor E is
then reduced to the lane which is the next segment in pth(E). The constructed
crossing controller is depicted in Fig. 4

288 M. Hilscher and M. Schwammberger

q0 : ¬col(ego) q1 : ca(ego) q2 : ca(ego)

q3 :
ca(ego)

∧¬∃c : pc(c)
∧x ≤ tc

q4 :
x ≤ tcr

∧oc(ego)

ca(ego)
cc(ego)

∃c : pc(c)/ wd cc(ego)

¬∃c : pc(c)
/x := 0

x ≥ tc
∨∃c : pc(c)
/ wd cc(ego)

¬∃c : pc(c) ∧ ¬lc(ego)
/ rc(ego) ;x := 0

x ≥ tcr/
wd rc (ego)

Fig. 4. Crossing controller Acc

Road Controller. This controller is responsible for overtaking manoeuvres on
road segments between intersections. As these road segments are structurally
comparable to country roads, we refer to [2], where a lane change controller for
these types of roads was presented. We only modify this controller by the require-
ment, that as soon as ca(ego) holds, any claim must be withdrawn immediately
and no new claim or reservation might be created until the crossing is passed.
However, the car may finish an already begun overtaking manoeuvre, wherefore
we make sure the distance dc used in ca(ego) is big enough to do so.

4 Safe Crossing Manoeuvres

The desired safety property is that at any moment the spaces reserved by dif-
ferent cars are disjoint. This property is formalised by the formula

Safe ≡ ∀c, d : c �= d → ¬〈re(c) ∧ re(d)〉,
which defines that in any lane the reservations of two arbitrary different cars are
not overlapping. A traffic snapshot T S is called safe, if T S |= Safe holds. For
the following proof sketch, we assume that every car perceives the safety envelope
of all other cars in its view. Furthermore, we rely on the following assumptions
for the overall safety property to hold.

Assumption A1. The initial traffic snapshot T S0 is safe.
Assumption A2. Every car is equipped with a distance controller Adc, a road

controller Arc and a crossing controller Acc as introduced in Sect. 3.

Theorem 1 (Urban Traffic Safety). If Assumptions A1 and A2 hold, every
traffic snapshot T S that is reachable from T S0 by time transitions and transi-
tions allowed by the road controller and the crossing controller is safe.

Proving Safety for Urban Traffic Scenarios 289

Proof. We prove safety from the perspective of an arbitrary car E, because all
cars behave similarly. Therefore, we show, that all traffic snapshot T S reachable
from T S0, for all subviews V of E and all valuations ν with ν(ego) = E are safe

T S, V, ν |= Safeego , where Safeego ≡ ¬∃c �= ego ∧ 〈re(ego) ∧ re(c)〉. (10)

Our approach is a proof by induction over the number of transitions needed to
reach a traffic snapshot from T S0. The induction basis holds, as T S0 is already
safe by Assumption A1. Now assume that that T Sk is reachable from T S0 in
k steps and that T Sk is safe. For the induction step we show for k → k + 1
that the traffic snapshot T Sk+1, reachable from T Sk by one further transition,
is safe as well.

Observe that overlaps can only occur if either the road controller Arc creates
a reservation on a lane, the crossing controller creates a crossing reservation for
a crossing segment or time passes.

Time passes. For time transitions T Sk
t−−→ T Sk+1 the distance controller Adc

assures that the distance to a car ahead or an intersection remains positive.
Thus if E reaches a crossing and Acc is not permitted to commit a crossing
reservation timely, Adc will force E to decelerate and probably stop. In this case
no automatic crossing reservation is reserved for E by the traffic snapshot and
the safety property is not violated.

Reservations on lanes. The road controller Arc corresponds to the lane change
controller proven safe in [2] except for one additional feature; As provided in
Sect. 3.3, Arc will withdraw a committed claim as soon as a crossing is ahead
and will not create a new claim or reservation, but E may finish an already begun
overtaking manoeuvre. [2] specifies lane change manoeuvres to take at most tlc
time to finish, wherefore we simply make sure the distance dc used in the crossing
ahead check is large enough to let E finish the overtaking manoeuvre.

Crossing reservations. For the crossing controller Acc the only possibility of
a crossing reservation is the transition from state q3 to q4. At this transition,
the guard ¬lc(ego) again keeps the car from triggering a crossing reservation
with an active lane change manoeuvre. If more than tc time passes and lc(ego)
still holds or a potential collision is detected, I(q3) and the outgoing transitions
from state q3 force Acc to change back to q1 and withdraw its crossing claim.
Observe that the invariant ca(ego) holds until E is granted a crossing reservation
and Acc therefore changed to state q4. While all crossing segments necessary for
E’s crossing manoeuvre are reserved exclusively for E, no other car can create a
crossing reservation for the reserved segments until the on crossing check oc(ego)
does not hold anymore and therefore cres(E) = ∅.

We analysed all cases where a reservation for a lane or a crossing reservation
is created or time passes and ensured that the safety property (10) is not violated
in any case. ��

290 M. Hilscher and M. Schwammberger

5 Conclusion

The innovation of our approach is the level of abstraction from car dynamics to
merely spatial reasoning for safety properties in urban traffic scenarios. In [1,2]
this was shown for motorways and country roads. We were able to build on these
settings, by adding new topological features (urban road network, paths) to the
abstract model and a representation of crossing segments to the Multi-lane Spatial
Logic. Furthermore, we defined a crossing controller with new controller actions
for crossing manoeuvres (crossing claim and reservation). With the syntax and
semantics of automotive-controlling timed automata we presented a new type
of automaton to formally implement our crossing controller as well as the lane-
change controllers from [1,2]. Finally, we proved safety of our crossing controller.

More on related work. While we detached spatial aspects from the car dynamics,
it is of high interest to relate our spatial reasoning to car dynamics and thus link
our work to hybrid systems. In [15] Olderog et al. propose a concrete dynamic
model suitable for our abstract model. There the authors refine the spatial atoms
of MLSL to distance measures.

In [16], Linker shows that the spatial fragment of the original logic MLSL
is undecidable. As UMLSL is an extension of MLSL, this undecidability result
applies for UMLSL too. Fortunately, in [17] Fränzle et al. prove that MLSL
is decidable, when considering only a bounded scope around the cars. This is a
reduction motivated by reality, because actual autonomous cars can only process
state information of finitely many environmental cars in real-time.

Future work. So far, we considered a concept of perfect knowledge, where every
car knows the safety envelopes of all other cars, including their braking distances.
To build a more realistic model, we will extend this approach to imperfect knowl-
edge, where every car only perceives the physical size of other cars, as given by
its sensors. To this end, we plan to integrate a concept of communication via
broadcast channels. In [18], Alrahman et al. provide a calculus for attribute-
based broadcast communication between dynamic components, that could be of
use for our purposes.

We intend to formalise our safety proof by extending and applying the proof
system defined for highway manoeuvres by Linker [16].

In addition, we would like to investigate our abstract model for further appli-
cations, for example an extension to roundabout traffic and crossings with more
or less than four intersecting road segments. Furthermore, one could consider
cars driving onto crossings while being in an overtaking manoeuvre or a crossing
controller that is able to dynamically change its path at an oncoming crossing.

Finally, an interesting question is to extend our controllers to consider not
only safety, but also liveness and fairness properties. To this end we would first
need to extend the syntax and semantics of UMLSL by operators from temporal
logic [19]. With this we could express, that a car that desires so finally (♦) passes
an intersection:

Life ≡ ∀c : (ca(c) ∧ pth(c)next(c) ∈ CS → ♦oc(c)).

Proving Safety for Urban Traffic Scenarios 291

References

1. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for prov-
ing safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM
2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24559-6 28

2. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on
country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming
and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39698-4 12

3. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Com-
puter 18, 10–19 (1985)

4. Zhou, C., Hoare, C., Ravn, A.: A calculus of durations. Inf. Process. Lett. 40,
269–276 (1991)

5. Schäfer, A.: A calculus for shapes in time and space. In: Liu, Z., Araki, K. (eds.)
ICTAC 2004. LNCS, vol. 3407, pp. 463–477. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-31862-0 33

6. Loos, S.M., Platzer, A.: Safe intersections: at the crossing of hybrid systems and
verification. In: Yi, K. (ed.) Intelligent Transportation Systems (ITSC), pp. 1181–
1186. Springer, Heidelberg (2011)

7. Werling, M., Gindele, T., Jagszent, D., Gröll, L.: A robust algorithm for handling
moving traffic in urban scenarios. In: Proceedings of IEEE Intelligent Vehicles
Symposium, Eindhoven, The Netherlands, pp. 168–173 (2008)

8. Colombo, A., Del Vecchio, D.: Efficient algorithms for collision avoidance at inter-
sections. In: Proceedings of the 15th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2012, pp. 145–154. ACM, New York
(2012)

9. Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)
10. Woodcock, J., Davies, J.: Using Z - Specification, Refinement, and Proof. Prentice

Hall, Upper Saddle River (1996)
11. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. In: Liu, Z.,

Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 231–248. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39718-9 14

12. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30080-9 7

13. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
Int. J. Control 79, 395–421 (2006)

14. Damm, W., Möhlmann, E., Rakow, A.: Component based design of hybrid systems:
a case study on concurrency and coupling. In: Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control, pp. 145–150. ACM
(2014)

15. Olderog, E., Ravn, A.P., Wisniewski, R.: Linking spatial and dynamic models for
traffic maneuvers. In: 54th IEEE Conference on Decision and Control, CDC 2015,
Osaka, Japan, pp. 6809–6816, 15–18 December 2015

16. Linker, S.: Proofs for Traffic Safety - Combining Diagrams and Logic. Ph.d thesis,
University of Oldenburg (2015)

17. Fränzle, M., Hansen, M.R., Ody, H.: No need knowing numerous neighbours. In:
Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol.
9360, pp. 152–171. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23506-6 11

http://dx.doi.org/10.1007/978-3-642-24559-6_28
http://dx.doi.org/10.1007/978-3-642-24559-6_28
http://dx.doi.org/10.1007/978-3-642-39698-4_12
http://dx.doi.org/10.1007/978-3-540-31862-0_33
http://dx.doi.org/10.1007/978-3-540-31862-0_33
http://dx.doi.org/10.1007/978-3-642-39718-9_14
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-319-23506-6_11

292 M. Hilscher and M. Schwammberger

18. Alrahman, Y.A., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.:A calculus for
attribute-based communication. In: Proceedings of the 30th Annual ACM Sympo-
sium on Applied Computing, SAC 2015, pp. 1840–1845. ACM, New York (2015)

19. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS 1977, Washington, DC,
USA, pp. 46–57. IEEE Computer Society (1977)

Composition and Transformation

Unifying Heterogeneous State-Spaces
with Lenses

Simon Foster1(B), Frank Zeyda2, and Jim Woodcock1

1 Department of Computer Science, University of York, York YO10 5GH, UK
{simon.foster,jim.woodcock}@york.ac.uk

2 School of Computing, Teesside University, Middlesbrough TS1 3BA, UK
f.zeyda@tees.ac.uk

Abstract. Most verification approaches embed a model of program
state into their semantic treatment. Though a variety of heterogeneous
state-space models exists, they all possess common theoretical proper-
ties one would like to capture abstractly, such as the common algebraic
laws of programming. In this paper, we propose lenses as a universal
state-space modelling solution. Lenses provide an abstract interface for
manipulating data types through spatially-separated views. We define a
lens algebra that enables their composition and comparison, and apply
it to formally model variables and alphabets in Hoare and He’s Unifying
Theories of Programming (UTP). The combination of lenses and rela-
tional algebra gives rise to a model for UTP in which its fundamental
laws can be verified. Moreover, we illustrate how lenses can be used to
model more complex state notions such as memory stores and parallel
states. We provide a mechanisation in Isabelle/HOL that validates our
theory, and facilitates its use in program verification.

1 Introduction

Predicative programming [17] is a unification technique that uses predicates to
describe abstract program behaviour and executable code alike. Programs are
denoted as logical predicates that characterise the observable behaviours as map-
pings between the state before and after execution. Thus one can apply predicate
calculus to reason about programs, as well as prove the algebraic laws of pro-
gramming themselves [20]. These laws can then be applied to construct seman-
tic presentations for the purpose of verification, such as operational semantics,
Hoare calculi, separation logic, and refinement calculi, to name a few [2,8]. This
further enables the application of automated theorem provers to build program
verification tools, an approach which has seen multiple successes [1,23].

Modelling the state space of a program and manipulation of its variables is
a key problem to be solved when building verification tools [27]. Whilst rela-
tion algebra, Kleene algebra, quantales, and related algebraic structures provide
excellent models for point-free laws of programming [3,14], when one considers
point-wise laws for operators that manipulate state, like assignment, additional
behavioural semantics is needed. State spaces can be heterogeneous — that is
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 295–314, 2016.
DOI: 10.1007/978-3-319-46750-4 17

296 S. Foster et al.

consisting of different representations of state and variables. For example, separa-
tion logic [6] considers both the store, a static mapping from names to values, and
the heap, a dynamic mapping from addresses to values. Nevertheless, one would
like a uniform interface for different variable models to facilitate the definition
and use of generic laws of programming. When considering parallel programs [21],
one also needs to consider subdivision of the state space into non-interfering
regions for concurrent threads, and their eventual reconciliation post execution.
Moreover, we have the overarching need for meta-logical operators on state, like
variable substitution and freshness, that are often considered informally but are
vital to express and mechanise many laws of programming [17,20,21].

In this paper, we propose lenses [12] as a unifying solution to state-space
modelling. Lenses provide a solution to the view-update problem in database
theory [13], and are similarly applied to manipulation of data structures in func-
tional programming [11]. They employ well-behaved get and put functions to
identify a particular view of a source data structure, and allow one to perform
transformations on it independently of the wider context.

Our contribution is an extension of the theory of lenses that allows their use
in modelling variables as abstract views on program state spaces with a uniform
semantic interface. We define a novel lens algebra for manipulation of variables
and state spaces, including separation-algebra-style operators [6] such as state
(de)composition, that enable abstract reasoning about program operators that
modify state spaces in sophisticated ways. Our algebra has been mechanised in
Isabelle/HOL [24] and includes a repository of verified lens laws.

We apply the lens algebra to model heterogeneous state space models within
the context of Hoare and He’s Unifying Theories of Programming [7,21] (UTP), a
predicative programming framework with an incremental and modular approach
to denotational model construction. Therein, we use lenses to semantically model
UTP variables and the predicate calculus’ meta-logical functions, with no need
for explicit abstract syntax, and thence provide a purely algebraic basis for
the meta-logical laws, predicate calculus laws, and the laws of programming.
We have further used Isabelle/HOL to mechanise a large repository of UTP
laws; this both validates the soundness of our lens-based UTP framework and,
importantly, paves the way for future program verification tools1.

The structure of our paper is as follows. In Sect. 2, we provide backgroundmate-
rial and related work. In Sect. 3, we present a mechanised theory of lenses, in the
form of an algebraic hierarchy, concrete instantiations, and algebraic operators,
including a useful equivalence relation. This theory is standalone, and we believe
has further applications beyond modelling state. Crucially, all the constructions we
describe require only a first-order polymorphic type system which makes it suit-
able for Isabelle/HOL. In Sect. 4, we apply the theory of lenses to show how dif-
ferent state abstractions can be given a unified treatment. For this, we construct
the UTP’s relational calculus, associated meta-logical operators, and prove vari-
ous laws of programming. Along the way, we show how our model satisfies various

1 For supporting Isabelle theories, including mechanised proofs for all laws in this
paper, see http://cs.york.ac.uk/∼simonf/ictac2016.

http://cs.york.ac.uk/~simonf/ictac2016

Unifying Heterogeneous State-Spaces with Lenses 297

important algebraic structures to validate its adequacy. We also use lenses to give
an account to parallel state in Sect. 4.4. Finally, in Sect. 5, we conclude.

2 Background and Related Work

2.1 Unifying Theories of Programming

The UTP [21] is a framework for defining denotational semantic models based
on an alphabetised predicate calculus. A program is denoted as a set of possible
observations. In the relational calculus, imperative programs are in view and
thus observations consist of before variables x and after variables x′. This allows
operators like assignment, sequential composition, if-then-else, and iteration to
be denoted as predicates over these variables, as illustrated in Table 1. From
these denotations, algebraic laws of programming can be proved, such as those
in Table 2, and more specialised semantic models developed for reasoning about
programs, such as Hoare calculi and operational semantics. UTP also supports
more sophisticated modelling constructs; for example concurrency is treated in
[21, Chap. 7] via the parallel-by-merge construct P ||M Q, a general scheme for
parallel composition that creates two copies of the state space, executes P and Q
in parallel on them, and then merges the results through the merge predicate M .
This is then applied to UTP theory of communication in Chap. 8, and henceforth
to give a UTP semantics to the process calculus CSP [7,19].

Mechanisation of the UTP for the purpose of verification necessitates a model
for the predicate and relational calculi [16,29] that must satisfy laws such as those
in Table 2. LP1 and LP2 are point-free laws, and can readily be derived from
algebras like relation algebra or Kleene algebra [14]. The remaining laws, how-
ever, are point-wise in the sense that they rely on the predicate variables. Whilst
law LP3 can be modelled with KAT [2] (Kleene Algebra with Tests) by consid-
ering b to be a test, the rest explicitly reference variables. LP4 and LP5 require

Table 1. Imperative programming in the alphabetised relational calculus

Table 2. Typical laws of programming

298 S. Foster et al.

that we support quantifiers and substitution. LP6 additionally requires we can
specify free variables. Thus, to truly provide a generic algebraic foundation for
the UTP, a more expressive model supporting these operators is needed.

2.2 Isabelle/HOL

Isabelle/HOL [24] is a proof assistant for Higher Order Logic. It includes a
functional specification language, a proof language for discharging specified goals
in terms of proven theorems, and tactics that help automate proof. Its type
system supports first-order parametric polymorphism, meaning types can carry
variables – e.g. α list for type variable α. Built-in types include total functions
α ⇒ β, tuples α × β, booleans bool, and natural numbers nat. Isabelle also
includes partial function maps α ⇀ β, which are represented as α ⇒ β option,
where β option can either take the value Some (v : β) or None. Function dom(f)
gives the domain of f , f(k �→ v) updates a key k with value v, and function
the : α option ⇒ α extracts the valuation from a Some constructor, or returns
an underdetermined value if None is present.

Record types can be created using record R = f1 : τ1 · · · fn : τn, where fi : τi

is a field. Each field fi yields a query function fi : R ⇒ τi, and update function
fi-upd : (τi ⇒ τi) ⇒ (R ⇒ R) with which to transform R. Moreover Isabelle
provides simplification theorems for record instances (|f1 = v1 · · · fn = vn|):

fi(| · · · fi = v · · · |) = v fi-upd g (| · · · fi = v · · · |) = (| · · · fi = g(v) · · · |)

The HOL logic includes an equality relation = : α ⇒ α ⇒ bool that equates
values of the same type α. In terms of tactics, Isabelle provides an equational
simplifier simp, generalised deduction tactics blast and auto, and integration of
external automated provers using the sledgehammer tool [5].

Our paper does not rely on detailed knowledge of Isabelle, as we present our
definitions and theorems mathematically, though with an Isabelle feel. Techni-
cally, we make use of the lifting and transfer packages [22] that allow us to lift
definitions and associated theorems from super-types to sub-types. We also make
use of Isabelle’s locale mechanism to model algebraic hierarchies as in [14].

2.3 Mechanised State Spaces

Several mechanisations of the UTP in Isabelle exist [9,10,16,29] that take a
variety of approaches to modelling state; for a detailed survey see [29]. A general
comparison of approaches to modelling state was made in [27] which identifies
four models of state, namely state as functions, tuples, records, and abstract
types, of which the first and third seem the most prevalent.

The first approach models state as a function Var ⇒ Val, for suitable value
and variable types. This approach is taken by [8,16,25,29], and requires a deep
model of variables and values, in which concepts such as typing are first-class.
This provides a highly expressive model with few limitations on possible manip-
ulations [16]. However, [27] highlights two obstacles: (1) the machinery required

Unifying Heterogeneous State-Spaces with Lenses 299

Fig. 1. Visualisation of a simple lens Fig. 2. Lens algebraic hierarchy

for deep reasoning about program values is heavy and a priori limits possible
constructions, and (2) explicit variable naming requires one to consider issues
like α-renaming. Whilst our previous work [29] effectively mitigates (1), at the
expense of introducing axioms, the complexities associated with (2) remain. Nev-
ertheless, the approach seems necessary to model dynamic creation of variables,
as required, for example, in modelling memory heaps in separation logic [6,8].

The alternative approach uses records to model state; a technique often used
by verification tools in Isabelle [1,2,9,10]. In particular, [9] uses this approach
to create a shallow embedding of the UTP and library of laws2 which, along
with [25], our work is inspired by. A variable in this kind of model is abstractly
represented by pairing the field-query and update functions, fi and fi-upd, yield-
ing a nameless representation. As shown in [2,9,10], this approach greatly simpli-
fies automation of program verification in comparison to the former functional
approach through directly harnessing the polymorphic type system and auto-
mated proof tactics. However, the expense is a loss of flexibility compared to
the functional approach, particularly in regards to decomposition of state spaces
and handling of extension as required for local variables [27]. Moreover, those
employing records seldom provide general support for meta-logical concepts like
substitution, and do not abstractly characterise the behaviour of variables.

Our approach generalises all these models by abstractly characterising the
behaviour of state and variables using lenses. Lenses were created as an abstrac-
tion for bidirectional programming and solving the view-update problem [12].
They abstract different views on a data space, and allow their manipulation
independently of the context. A lens consists of two functions: get that extracts
a view from a larger source, and put that puts back an updated view. [11] gives
a detailed study of the algebraic lens laws for these functions. Combinators are
also provided for composing lenses [12,13]. They have been practically applied
in the Boomerang language3 for transformations on textual data structures.

Our lens approach is indeed related to the state-space solution in [27] of using
Isabelle locales to characterise a state type abstractly and polymorphically. A
difference though is the use of explicit names, where our lenses are nameless.
Moreover, the core lens laws [11] bear a striking resemblance to Back’s vari-
able laws [4], which he uses to form the basis for the meta-logical operators of
substitution, freshness, and specification of procedures.
2 See archive of formal proofs: https://www.isa-afp.org/entries/Circus.shtml.
3 Boomerang home page: http://www.seas.upenn.edu/∼harmony/.

https://www.isa-afp.org/entries/Circus.shtml
http://www.seas.upenn.edu/~harmony/

300 S. Foster et al.

3 Lenses

In this section, we introduce our lens algebra, which is later used in Sect. 4 to
give a uniform interface for variables. The lens laws in Sect. 3.1 and composition
operator of Sect. 3.3 are adapted from [11,12], though the remaining operators,
such as independence and sublens, are novel. All definitions and theorems have
been mechanically validated1.

3.1 Lens Laws

A lens X : V =⇒ S , for source type S and view type V , identifies V with a
subregion of S , as illustrated in Fig. 1. The arrow denotes X and the hatched
area denotes the subregion V it characterises. Transformations on V can be
performed without affecting the parts of S outside the hatched area. The lens
signature consists of a pair of total functions4 getX : S ⇒ V that extracts a
view from a source, and putX : S ⇒ V ⇒ S that updates a view within a given
source. When speaking about a particular lens we omit the subscript name. The
behaviour of a lens is constrained by one or more of the following laws [11].

get (put s v) = v (PutGet)
put (put s v′) v = put s v (PutPut)

put s (get s) = s (GetPut)

PutGet states that if we update the view in s to v, then extracting the view
yields v. PutPut states that if we make two updates, then the first update is
overwritten. GetPut states that extracting the view and then putting it back
yields the original source. These laws are often grouped into two classes [12]:
well-behaved lenses that satisfy PutGet and GetPut, and very well-behaved lenses
that additionally satisfy PutPut. We also identify weak lenses that satisfy only
PutGet, and mainly well-behaved lenses that satisfy PutGet and PutPut but
not GetPut. These weaker classes prove useful in certain contexts, notably in
the map lens implementation (see Sect. 3.2). Moreover [11,12] also identify the
class of bijective lenses that satisfy PutGet and also the following law.

put s (get s′) = s′ (StrongGetPut)

StrongGetPut states that updating the view completely overwrites the state, and
thus the source and view are, in some sense, equivalent. Finally we have the class
of ineffectual lenses whose views do not effect the source. Our complete algebraic
hierarchy of lenses is illustrated in Fig. 2, where the arrows are implicative.

4 Partial functions are sometimes used in the literature, e.g. [13]. We prefer total func-
tions, as these circumvent undefinedness issues and are at the core of Isabelle/HOL.

Unifying Heterogeneous State-Spaces with Lenses 301

3.2 Concrete Lenses

We introduce lenses that exemplify the above laws and are applicable to mod-
elling different kinds of state spaces. The function lens (fl) can represent total
variable state functions Var ⇒ Val [16], whilst the map lens (ml) can represent
heaps [8]. The record lens (rl) can represent static variables [2,10].

Definition 1 (Function, Map, and Record lenses)

getfl(k) � λf. f(k) putfl(k) � λf v. f(k := v)
getml(k) � λf. the(f(k)) putml(k) � λf v. f(k �→ v)
getrl(fi) � fi getrl(fi) � λr v. fi-upd (λx. v) r

The (total) function lens fl(k) focusses on a specific output associated with input
k. The get function applies the function to k, and the put function updates the
valuation of k to v. It is a very well-behaved lens:

Theorem 1 (The function lens is very well-behaved)

Proof. Included in our mechanised Isabelle theories1.

The map lens ml(k) likewise focusses on the valuation associated with a given
key k. If no value is present at k then get returns an arbitrary value. The map
lens is therefore not a well-behaved lens since it does not satisfy GetPut, as
f(k �→ the(f(k))) �= f when k /∈ dom(f) since the maps have different domains.

Theorem 2 (The map lens is mainly well-behaved)

Finally, we consider the record lens rec(fi). As mentioned in Sect. 2.3, each record
field yields a pair of functions fi and fi-upd, and associated simplifications for
record instances. Together these can be used to prove the following theorem:

Theorem 3 (Record lens). Each fi : R ⇒ τi yields a very well-behaved lens.

This must be proved on a case-by-case basis for each field in each newly defined
record; however the required proof obligations can be discharged automatically.

Fig. 3. Lens composition visualised Fig. 4. Lens independence visualised

302 S. Foster et al.

3.3 Lens Algebraic Operators

Lens composition X �Y : V1 =⇒ S , for X : V1 =⇒ V2 and Y : V2 =⇒ S allows
one to focus on regions within larger regions. The intuition in Fig. 3 shows how
composition of X and Y yields a lens that focuses on the V1 subregion of S . For
example, if a record has a field which is itself a record, then lens composition
allows one to focus on the inner fields by composing the lenses for the outer with
those of the inner record. The definition is given below.

Definition 2 (Lens composition)

putX�Y � λs v. putY s (putX (getY s) v) getX�Y � getX ◦ getY

The put operator of lens composition first extracts view V2 from source S , puts
v : V1 into this, and finally puts the combined view. The get operator simply
composes the respective get functions. Lens composition is closed under all lens
classes ({weak,wb,mwb, vwb}-lens). We next define the unit lens, 0 : unit =⇒ S ,
and identity lens, 1 : S =⇒ S .

Definition 3 (Unit and identity lenses)

put0 � λs v.s get0 � λs.() put1 � λs v.v get1 � λs.s

The unit lens view is the singleton type unit. Its put has no effect on the source,
and get returns the single element (). It is thus an ineffectual lens. The identity
lens identifies the view with the source, and it is thus a bijective lens. Lens com-
position and identity form a monoid. We now consider operators for comparing
lenses which may have different view types, beginning with lens independence.

Definition 4 (Lens independence). Lenses X : V1 =⇒ S and Y : V2 =⇒ S
are independent, written X �� Y , provided they satisfy the following laws:

putX(putY s v) u = putY (putX s u) v (LI1)
getX(putY s v) = getX s (LI2)
getY (putX s u) = getY s (LI3)

Intuitively, two lenses are independent if they identify disjoint regions of the
source as illustrated in Fig. 4. We characterise this by requiring that the put
functions of X and Y commute (LI1), and that the put functions of each lens
has no effect on the result of the get function of the other (LI2, LI3). For example,
independence of function lenses follows from inequality of the respective inputs,
i.e. fl(k1) �� fl(k2) ⇐⇒ k1 �= k2. Lens independence is a symmetric relation,
and it is also irreflexive (¬(X �� X)), unless X is ineffectual.

The second type of comparison between two lenses is containment.

Definition 5 (Sublens relation). Lens X : V1 =⇒ S is a sublens of Y :
V2 =⇒ S, written X 	 Y , if the equation below is satisfied.

X 	 Y � ∃Z : V1 =⇒ V2. Z ∈ wb-lens ∧ X = Z � Y

Unifying Heterogeneous State-Spaces with Lenses 303

The intuition of sublens is simply that the source region of X is contained within
that of Y . The definition is explained by the following commuting diagram:

S
V1

X �������� Z ��������� V2

Y��������

Intuitively, Z is a “shim” lens that identifies V1 with a subregion of V2. Focusing
on region V1 in V2, followed by V2 in S is the same as focusing on V1 in S . The
sublens relation is transitive and reflexive, and thus a preorder. Moreover 0 is
the least element (0 	 X), and 1 is the greatest element (X 	 1), provided X
is well-behaved. Sublens orders lenses by the proportion of the source captured.
We have also proved the following theorem relating independence to sublens:

Theorem 4 (Sublens preserves independence)

If X 	 Y and Y �� Z then also X �� Z.

We use sublens to induce an equivalence relation X ≈ Y � X 	 Y ∧ Y 	 X.
It is a weaker notion than homogeneous HOL equality = between lenses as it
allows the comparison of lenses with differently-typed views. We next prove two
correspondences between bijective and ineffectual lenses.

Theorem 5 (Bijective and ineffectual lenses equality equivalence)

X ∈ ief-lens ⇔ X ≈ 0 X ∈ bij-lens ⇔ X ≈ 1

The first law states that ineffectual lenses are equivalent to 0, and the second that
bijective lenses are equivalent to 1. Showing that a lens is bijective thus entails
demonstrating that it characterises the whole state space, though potentially
with a different view type. We lastly describe lens summation.

Definition 6 (Lens sum)

putX⊕Y � λs (u, v). putX (putY s v) u getX⊕Y � λs.(getX s, getY s)

The intuition is given in Fig. 5. Given independent lenses X : V1 =⇒ S and
Y : V2 =⇒ S , their sum yields a lens V1 × V2 =⇒ S that characterises both
subregions. The combined put function executes the put functions sequentially,
whilst the get extracts both values simultaneously. A notable application is to

Fig. 5. Lens sum visualised

304 S. Foster et al.

define when a source can be divided into two disjoint views X �� Y , a situation
we can describe with the formula X ⊕ Y ≈ 1, or equivalently X ⊕ Y ∈ bij-lens,
which can be applied to framing or division of a state space for parallel programs
(see Sect. 4.4). Lens sum is closed under all lens classes. We also introduce two
related lenses for viewing the left and right of a product source-type, respectively.

Definition 7 (First and second lenses)

putfst � (λ(s, t)u.(u, t)) getfst � fst
putsnd � (λ(s, t)u.(s, u)) getsnd � snd

We then prove the following lens sum laws:

Theorem 6 (Sum laws). Assuming X �� Y , X �� Z, and Y �� Z:

X ⊕ Y ≈ Y ⊕ X X ⊕ (Y ⊕ Z) ≈ (X ⊕ Y) ⊕ Z

X ⊕ 0 ≈ X (X ⊕ Y) � Z = (X � Z) ⊕ (Y � Z)

X 	 X ⊕ Y fst ⊕ snd = 1

X ⊕ Y �� Z if X �� Z and Y �� Z

Lens sum is commutative, associative, has 0 as its identity, and distributes
through lens composition. Naturally, each summand is a sublens of the whole,
and it preserves independence as the next law demonstrates. The remaining law
demonstrates that a product is fully viewed by its first and second component.

4 Unifying State-Space Abstractions

In this section, we apply our lens theory to modelling state spaces in the context
of the UTP’s predicate calculus. We construct the core calculus (Sect. 4.1), meta-
logical operators (Sect. 4.2), apply these to the relational laws of programming
(Sect. 4.3), and finally give an algebraic basis to parallel-by-merge (Sect. 4.4). We
also show that our model satisfies various important algebras, and thus justify
its adequacy.

4.1 Alphabetised Predicate Calculus

Our model of alphabetised predicates is α ⇒ bool, where α is a suitable type for
modelling the alphabet, that corresponds to the state space. We do not constrain
the structure of α, but require that variables be modelled as lenses into it. For
example, the record lens rl can represent a typed static alphabet [2,9,10], whilst
the map lens ml can support dynamically allocated variables [8]. Moreover, lens
composition can be used to combine different lens-based representations of state.
We begin with the definition of types for expressions, predicates, and variables.

Unifying Heterogeneous State-Spaces with Lenses 305

Definition 8 (UTP types)

(τ, α) uexpr � (α ⇒ τ) α upred � (bool, α) uexpr

(α, β) urel � (α × β) upred (τ, α) uvar � (τ =⇒ α)

All types are parametric over alphabet type α. An expression (τ, α) uexpr is a
query function mapping a state α to a given value in τ . A predicate α upred
is a boolean-valued expression. A (heterogeneous) relation is a predicate whose
alphabet is α × β. A variable x : (τ, α) uvar is a lens that views a particular
subregion of type τ in α, which affords a very general state model. We already
have meta-logical functions for variables, in the form of lens equivalence ≈ and
lens independence �� . Moreover, we can construct variable sets using operators
0 which corresponds to ∅, ⊕ which corresponds to ∪, 1 which corresponds to
the whole alphabet, and 	 that can model set membership x ∈ A. Theorem 6
justifies these interpretations. We define several core expression constructs for
literals, variables, and operators, from which most other operators can be built.

Definition 9 (UTP expression constructs)

lit : τ ⇒ τ uexpr var : (τ, α) uvar ⇒ (τ, α) uexpr
lit k � λs. k var x � λs. getx s

uop : (τ ⇒ φ) ⇒ (τ, α) uexpr ⇒ (φ, α) uexpr
uop f v � λs. f (v(s))

bop : (τ ⇒ φ ⇒ ψ) ⇒ (τ, α) uexpr ⇒ (φ, α) uexpr ⇒ (ψ, α) uexpr
bop f u v � λs. f (u(s)) (v(s))

A literal lit lifts a HOL value to an expression via a constant λ-abstraction, so
it yields the same value for any state. A variable expression var takes a lens and
applies the get function on the state space s. Constructs uop and bop lift functions
to unary and binary operators, respectively. These lifting operators enable a
proof tactic for predicate calculus we call pred-tac [16] that uses the transfer
package [22] to compile UTP expressions and predicates to HOL predicates, and
afterwards apply auto or sledgehammer to discharge the resulting conjecture.
Unless otherwise stated, all theorems below are proved in this manner.

The predicate calculus’ boolean connectives and equality are obtained by
lifting the corresponding HOL functions, leading to the following theorem:

Theorem 7 (Boolean Algebra). UTP predicates form a Boolean Algebra

We define the refinement order on predicates P � Q, as usual, as universally
closed reverse implication [Q ⇒ P], and use it to prove the following theorem.

Theorem 8 (Complete Lattice). UTP predicates form a Complete Lattice

This provides suprema (
⊔

), infima (
�

), and fixed points (μ, ν) which allow us to
express recursion. The bottom of the lattice is true, the most non-deterministic
specification, and the top is false, the miraculous program. Next we define the
existential and universal quantifiers using the lens operation put:

306 S. Foster et al.

Definition 10 (Existential and universal quantifiers)

∃x • P � (λs.∃v.P (putx s v)) ∀x • P � (λs.∀v.P (putx s v))

The quantifiers on the right-hand side are HOL quantifiers. Existential quan-
tification (∃x • P) states that there is a valuation for x in state s such that P
holds, specified using put. Universal quantification is defined similarly and sat-
isfies (∀x • P) = (¬∃x • ¬P). We derive universal closure [P] � ∀1 • P , that
quantifies all variables in the alphabet (1). Alphabetised predicates then form a
Cylindric Algebra [18], which axiomatises the quantifiers of first-order logic.

Theorem 9 (Cylindric Algebra). UTP predicates form a Cylindric Algebra;
the following laws are satisfied for well-behaved lenses x, y, and z:

(∃x • false) ⇐⇒ false (C1)
P ⇒ (∃x • P) (C2)

(∃x • (P ∧ (∃x • Q))) ⇐⇒ ((∃x • P) ∧ (∃x • Q)) (C3)
(∃x • ∃y • P) ⇐⇒ (∃y • ∃x • P) (C4)

(x = x) ⇐⇒ true (C5)
(y = z) ⇐⇒ (∃x • y = x ∧ x = z) if x �� y, x �� z (C6)

false ⇐⇒
(

(∃x • x = y ∧ P)∧
(∃x • x = y ∧ ¬P)

)
if x �� y (C7)

Proof. Most proofs are automatic, the one complexity being C4 which we have
to split into cases for (1) x �� y, when x and y are different, and (2) x ≈ y,
when they’re the same. We thus implicitly assume that variables cannot overlap,
though lenses can. C6 and C7 similarly require independence assumptions.

From this algebra, the usual laws of quantification can be derived [18], even
for nameless variables. Since lenses can also represent variable sets, we can also
model quantification over multiple variables such as ∃x, y, z • P , which is repre-
sented as ∃x ⊕ y ⊕ z • P , and then prove the following laws.

Theorem 10 (Existential quantifier laws)

(∃A ⊕ B • P) = (∃A • ∃B • P) (Ex1)
(∃B • ∃A • P) = (∃A • P) if B 	 A (Ex2)

(∃x • P) = (∃y • Q) if x ≈ y (Ex3)

Ex1 shows that quantifying over two disjoint sets or variables equates to quan-
tification over both. Ex2 shows that quantification over a larger lens subsumes a
smaller lens. Finally Ex3 shows that if we quantify over two lenses that identify
the same subregion then those two quantifications are equal.

In addition to quantifiers for UTP variables we also provide quantifiers for
HOL variables in UTP expressions, ∃x • P and ∀x • P , that bind x in a closed
λ-term. These are needed to quantify logical meta-variables, which are often
useful in proof. This completes the specification of the predicate calculus.

Unifying Heterogeneous State-Spaces with Lenses 307

4.2 Meta-logical Operators

We next move onto the meta-logical operators, first considering fresh variables,
which we model by a weaker semantic property known as unrestriction [16,25].

Definition 11 (Unrestriction)

x � P ⇔ (∀s, v • P (putx s v) = P (s))

Intuitively, lens x is unrestricted in P , written x � P , provided that P ’s valuation
does not depend on x. Specifically, the effect of P evaluated under state s is the
same if we change the value of x. It is thus a sufficient notion to formalise the
meta-logical provisos for the laws of programming. Unrestriction can alterna-
tively be characterised as predicates whose satisfy the fixed point P = (∃x • P)
for very well-behaved lens x. We now show some of the key unrestriction laws.

Theorem 11 (Unrestriction laws)

−
U1

0 � P

x 	 y y � P
U2

x � P

x � P y � P x �� y
U3

(x ⊕ y) � P
−

U4
x � true

x � P x � Q
U5

x � P ∧ Q

x � P x � Q
U6

x �(P = Q)
x � P

U7
x �¬P

x �� y
U8

x � y
x ∈ mwb-lens

U9
x �(∃x • P)

x �� y x � P
U10

x �(∃y • P)
−

U11
x �[P]

Laws U1–U3 correspond to unrestriction of multiple variables using the lens
operations; for example U2 states that sublens preserves unrestriction. Laws
U4–U7 show that unrestriction distributes through the logical connectives. Laws
U8–U11 show the behaviour of unrestriction with respect to variables. U8 states
that x is unrestricted in variable expression y if x and y are independent. U9 and
U10 relate to unrestriction over quantifiers; the proviso x ∈ mwb-lens means, for
example, that a law is applicable to variables modelled by maps. Finally U11
states that all variables are unrestricted in a universal closure.

We next introduce substitution P [v/x], which is also encoded semantically
using homogeneous substitution functions σ : α ⇒ α over state space α. We
define functions for application, update, and querying of substitutions:

Definition 12 (Substitution functions)

σ † P � λs.P (σ(s))

σ(x �→s e) � (λs. putx (e(s)) (σ(s))

〈σ〉s x � (λs. getx (σ(s)))

Substitution application σ † P takes the state, applies σ to it, and evaluates
P under this updated state. The simplest substitution, id � λx. x, effectively
maps all variables to their present value. Substitution lookup 〈σ〉s x extracts the
expression associated with variable x from σ. Substitution update σ(x �→s e)

308 S. Foster et al.

assigns the expression e to variable x in σ. It evaluates e under the incoming state
s and then puts the result into the state updated with the original substitution σ
applied. We also introduce the short-hand [x1 �→s e1, · · · , xn �→s en] = id(x1 �→s

e1, · · · , xn �→s en). A substitution P [e1, · · · , en/x1, · · · , xn] of n expressions to
corresponding variables is then expressed as [x1 �→s e1, · · · , xn �→s en] † P .

Theorem 12 (Substitution query laws)

〈σ(x �→s e)〉s x = e (SQ1)
〈σ(y �→s e)〉s x = 〈σ〉s x if x �� y (SQ2)

σ(x �→s e, y �→s f) = σ(y �→s f) if x 	 y (SQ3)
σ(x �→s e, y �→s f) = σ(y �→s f, x �→s e) if x �� y (SQ4)

SQ1 and SQ2 show how substitution lookup is evaluated. SQ3 shows that an
assignment to a larger lens overrides a previous assignment to a small lens and
SQ4 shows that independent lens assignments can commute. We next prove the
laws of substitution application.

Theorem 13 (Substitution application laws)

σ † x = 〈σ〉s x (SA1)
σ(x �→s e) † P = σ † e if x � P (SA2)

σ † uop f v = uop f (σ † v) (SA3)
σ † bop f u v = bop f (σ † u) (σ † v) (SA4)
(∃y • P)[e/x] = (∃y • P [e/x]) if x �� y, y � e (SA5)

These laws effectively subsume the usual syntactic substitution laws, for an arbi-
trary number of variables, many of which simply show how substitution distrib-
utes through expression and predicate operators. SA2 shows that a substitution
of an unrestricted variable has no effect. SA5 captures when a substitution can
pass through a quantifier. The variables x and y must be independent, and fur-
thermore the expression e must not mention y such that no variable capture can
occur. Finally, we will use unrestriction and substitution to prove the one-point
law of predicate calculus [17, Sect. 3.1].

Theorem 14 (One-point)

(∃x • P ∧ x = e) = P [e/x] if x ∈ mwb-lens, x � e

Proof. By predicate calculus with pred-tac.

The one-point law states that a quantification can be eliminated if precisely one
value for the quantified variable is specified. We state the requirement “x does
not appear in e” with unrestriction. Thus we have now constructed a set of meta-
logical operators and laws which can be applied to the laws of programming, all
the while remaining within our algebraic lens framework and mechanised model.
Indeed, all our operators are deeply encoded first-class entities in Isabelle/HOL.

Unifying Heterogeneous State-Spaces with Lenses 309

4.3 Relational Laws of Programming

We now show how lenses can be applied to prove the common laws of program-
ming within the relational calculus, by augmenting the alphabetised predicate
calculus with relational variables and operators. Recall that a relation is simply
a predicate over a product state: (α × β) upred. Input and output variables can
thus be specified as lenses that focus on the before and after state, respectively.

Definition 13 (Relational variables)

�x� = x � fst �x′� = x � snd

A variable x is lifted to a input variable x by composing it with fst, or to an
output variable x′ by composing it with snd. We can then proceed to define the
operators of the relational calculus.

Definition 14 (Relational operators)

P ; Q � ∃v • P [v/1′] ∧ Q[v/1] II � (1′ = 1)

P � b�Q � (b ∧ P) ∨ (¬b ∧ Q) x := v � II [v/x]

The definition of sequential composition is similar to the standard UTP presen-
tation [21], but we use 1 and 1′ to represent the input and output alphabets of
Q and P , respectively. Skip (II) similarly uses 1 to state that the before state is
the same as the after state. We then combine II with substitution to define the
assignment operator. Note that because x is a lens, and v could be a product
expression, this operator can be used to represent multiple assignments. We also
describe the if-then-else conditional operator P � b�Q. Sequential composition
and skip, combined with the already defined predicate operators, provide us with
the facilities for describing point-free while programs [2], which we illustrate by
proving that alphabetised relations form a quantale.

Theorem 15 (Unital quantale). UTP relations form a unital quantale; that
is they form a complete lattice and in addition satisfy the following laws:

(P ; Q) ; R = P ; (Q ; R) P ; II = P = II; P

P ;

(
�

Q∈Q
Q

)

=
�

Q∈Q
(P ; Q)

(
�

P∈P
P

)
; Q =

�

P∈P
(P ; Q)

This is proved in the context of Armstrong’s Regular Algebra library [2], which
also derives a proof that UTP relations form a Kleene algebra. This in turn
allows definition of iteration using while b do P � (b ∧ P)� ∧ (¬b′), where b′

denotes relational converse of b, and thence to prove the usual laws of loops. We
next describe the laws of assignment.

Theorem 16 (Assignment laws)

x := e ; P = P [e/x] (ASN1)

310 S. Foster et al.

x := e ; x := f = x := f if x � f (ASN2)

x := e ; y := f = y := f ; x := e if x �� y, x � f, y � e (ASN3)

x := e ; (P � b�Q) = (x := e ; P)� b[e/x]�

(x := e ; Q) if 1′ � b (ASN4)

We focus on ASN3 that demonstrates when assignments to x and y commute,
and models law LP6 on p. 3. Thus we have illustrated how lenses provide a
general setting in which the laws of programming can be proved, including those
that require meta-logical assumptions.

4.4 Parallel-by-merge

We further illustrate the flexibility of our model by implementing one of the
more complex UTP operators: parallel-by-merge. Parallel-by-merge is a general
schema for parallel composition as described in [21, Chap. 7]. It enables the
expression of sophisticated forms of parallelism that merge the output of two
programs into a single consistent after state. It is illustrated in Fig. 6 for two
programs P and Q acting on variables x and y. The input values are fed into
P and Q, and their output values are fed into predicates U0 and U1. The lat-
ter two rename the variables so that the outputs from both programs can be
distinguished by the merge predicate M . M takes as input the variable values
before P and Q were executed, and the respective outputs. It then implements
a specific mechanism for reconciling these outputs depending on the semantic
model of the target language. For example, if P and Q both yield event traces
as in CSP [7,19], then only those traces that are consistent will be permitted.

Lenses can be used to define the merge predicate and post-state renamings U0
and U1. The merge predicate takes as input three copies of the state: the outputs
from P and Q, and the before state of the entire computation. Thus if the state
has type A then M : ((A × A) × A,A) urel, and similarly U0,U1 : (A, (A × A) ×
A) urel. We thus give syntax to refer to indexed variables n.x, and prior variables
<x, that give the input values, using the following lens compositions:

Definition 15 (Separated and prior variables)

�0.x� = x � fst � fst �1.x� = x � snd � fst �<x� = x � snd

Fig. 6. Pictorial representation of parallel-by-merge P ||M Q

Unifying Heterogeneous State-Spaces with Lenses 311

Lenses 0.x and 1.x focus on the first and second elements of the tuple’s first
element, and <x focusses on the second element. We now define U0 and U1:

Definition 16 (Separating simulations)

U0 � 0.1′ = 1 ∧ <1′ = 1 U1 � 1.1′ = 1 ∧ <1′ = 1

U0 and U1 copy the before value of the whole state into both their respective
indexed variables, and also the prior state. We can now describe parallel-by-
merge, given a suitable basic parallel composition operator || which could, for
example, be plain conjunction or design parallel composition (see [21, Chap. 3]):

Definition 17 (Parallel-by-merge)

P ||M Q � ((P ; U0)||(Q ; U1)) ; M

We also define predicate swapm � 0.x, 1.x := 1.x, 0.x that swaps the left and
right copies, and then prove the following generalised commutativity theorem:

Theorem 17 (Commutativity of parallel-by-merge). If M ;swapm = M
then P ||MQ = Q||MP .

This theorem states that if a merge predicate is symmetric, the resulting parallel
composition is commutative. In the future we will also show the other properties
of parallel composition [21], such as associativity and units. Nevertheless, we
have shown that lenses enable a fully algebraic treatment of parallelism.

5 Conclusions

We have presented an enriched theory of lenses, with algebraic operators and lens
comparators, and shown how it can be applied to generically modelling the state
space of programs in predicative semantic frameworks. We showed how lenses
characterise variables, express meta-logical properties, and enrich and validate
the laws of programming. The theory of lenses is general, and we believe it has
many applications beyond program semantics, such as verifying bidirectional
transformations [12]. We have also defined various other useful lens operations,
such as lens quotient which is dual to composition. Space has not allowed us
to cover this, but we claim this is useful for expressing the contraction of state
spaces. Further study of the algebraic properties of these operators is in progress.

Overall, lenses have proven to be a useful abstraction for reasoning about
state, in terms of properties like independence and combination. We have used
our model to prove several hundred laws of predicate and relational calculus from
the UTP book [21] and other sources [7,17,26]. We have also mechanised the
Hoare calculus and a weakest precondition calculus that support practical pro-
gram verification. Although details were omitted for brevity, lenses enable defini-
tion of operators like alphabet extension and restriction, through the description

312 S. Foster et al.

of alphabet coercion lenses that are used to represent local variables and meth-
ods. We are currently exploring links with Back’s variable calculus [4].

In future work we will to apply lenses to additional theories of programming,
such as hybrid systems [15] and separation logic [28], especially since our lens
algebra resembles a separation algebra. Moreover, we will use our UTP theorem
prover5 to apply our database of programming laws to build practical verifica-
tion tools for a variety of semantically rich languages [26], in particular for the
purpose of analysing heterogeneous Cyber-Physical Systems [15]. We also plan
to integrate our work with the existing Isabelle/Circus [10] library2 to further
improve verification support for concurrent and reactive systems.

Acknowledgements. This work is partly supported by EU H2020 project INTO-
CPS, grant agreement 644047. http://into-cps.au.dk/. We also thank Prof. Burkhart
Wolff for his generous and helpful comments on our work.

References

1. Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.: The
Verisoft approach to systems verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-87873-5 18

2. Armstrong, A., Gomes, V., Struth, G.: Building program construction and veri-
fication tools from algebraic principles. Formal Aspects Comput. 28(2), 265–293
(2015)

3. Armstrong, A., Struth, G., Weber, T.: Program analysis and verification based
on Kleene algebra in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 197–212. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39634-2 16

4. Back, R.-J., Preoteasa, V.: Reasoning about recursive procedures with parameters.
In: Proceedings of the Workshop on Mechanized Reasoning About Languages with
Variable Binding, MERLIN 2003, pp. 1–7. ACM (2003)

5. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in
Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011.
LNCS (LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24364-6 2

6. Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic.
In: LICS, pp. 366–378. IEEE, July 2007

7. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in Unifying Theories
of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004.
LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006). doi:10.1007/11889229 6

8. Dongol, B., Gomes, V.B.F., Struth, G.: A program construction and verification
tool for separation logic. In: Hinze, R., Voigtländer, J. (eds.) MPC 2015. LNCS, vol.
9129, pp. 137–158. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19797-5 7

9. Feliachi, A., Gaudel, M.-C., Wolff, B.: Unifying theories in Isabelle/HOL. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16690-7 9

5 See our repository at github.com/isabelle-utp/utp-main/tree/shallow.2016.

http://into-cps.au.dk/
http://dx.doi.org/10.1007/978-3-540-87873-5_18
http://dx.doi.org/10.1007/978-3-540-87873-5_18
http://dx.doi.org/10.1007/978-3-642-39634-2_16
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/978-3-642-24364-6_2
http://dx.doi.org/10.1007/11889229_6
http://dx.doi.org/10.1007/978-3-319-19797-5_7
http://dx.doi.org/10.1007/978-3-642-16690-7_9
http://github.com/isabelle-utp/utp-main/tree/shallow.2016

Unifying Heterogeneous State-Spaces with Lenses 313

10. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: a process specification and
verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27705-4 20

11. Fischer, S., Hu, Z., Pacheco, H.: A clear picture of lens laws. In: Hinze, R.,
Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 215–223. Springer, Hei-
delberg (2015). doi:10.1007/978-3-319-19797-5 10

12. Foster, J.: Bidirectional programming languages. Ph.D. thesis, University of Penn-
sylvania (2009)

13. Foster, J., Greenwald, M., Moore, J., Pierce, B., Schmitt, A.: Combinators for bidi-
rectional tree transformations: a linguistic approach to the view-update problem.
ACM Trans. Program. Lang. Syst. 29(3), 17 (2007). doi:10.1145/1232420.1232424

14. Foster, S., Struth, G., Weber, T.: Automated engineering of relational and algebraic
methods in Isabelle/HOL. In: Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp.
52–67. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21070-9 5

15. Foster, S., Thiele, B., Cavalcanti, A., Woodcock, J.: Towards a UTP semantics for
Modelica. In Proceedings of the 6th International Symposium on Unifying Theories
of Programming, June 2016. To appear

16. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering
framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-14806-9 2

17. Hehner, E.C.R.: A Practical Theory of Programming. Texts and Monographs in
Computer Science. Springer, New York (1993)

18. Henkin, L., Monk, J., Tarski, A.: Cylindric Algebras, Part I. North-Holland, Ams-
terdam (1971)

19. Hoare, T.: Communicating Sequential Processes. Prentice-Hall, London (1985)
20. Hoare, T., Hayes, I., He, J., Morgan, C., Roscoe, A., Sanders, J., Sørensen, I.,

Spivey, J., Sufrin, B.: The laws of programming. Commun. ACM 30(8), 672–687
(1987)

21. Hoare, T., He, J.: Unifying Theories of Programming. Prentice-Hall, Englewood
Cliffs (1998)

22. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 131–146. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03545-1 9

23. Klein, G., et al.: seL4: Formal verification of an OS kernel. In: Proceedings of the
22nd Symposium on Operating Systems Principles (SOSP), pp. 207–220. ACM
(2009)

24. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

25. Oliveira, M., Cavalcanti, A., Woodcock, J.: Unifying theories in ProofPower-Z. In:
Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 123–140. Springer,
Heidelberg (2006). doi:10.1007/11768173 8

26. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for circus. Formal
Aspects Comput. 21, 3–32 (2009)

27. Schirmer, N., Wenzel, M.: State spaces - the locale way. In: SSV 2009. ENTCS,
vol. 254, pp. 161–179 (2009)

28. Woodcock, J., Foster, S., Butterfield, A.: Heterogeneous semantics and unifying
theories. In: 7th International Symposium on Leveraging Applications of Formal
Methods, Verification, and Validation (ISoLA) (2016). To appear

http://dx.doi.org/10.1007/978-3-642-27705-4_20
http://dx.doi.org/10.1007/978-3-642-27705-4_20
http://dx.doi.org/10.1007/978-3-319-19797-5_10
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1007/978-3-642-21070-9_5
http://dx.doi.org/10.1007/978-3-319-14806-9_2
http://dx.doi.org/10.1007/978-3-319-03545-1_9
http://dx.doi.org/10.1007/11768173_8

314 S. Foster et al.

29. Zeyda, F., Foster, S., Freitas, L.: An axiomatic value model for Isabelle/UTP. In:
Proceedings of the 6th International Symposium on Unifying Theories of Program-
ming (2016). To appear

Ensuring Correctness of Model Transformations
While Remaining Decidable

Jon Haël Brenas1, Rachid Echahed1(B), and Martin Strecker2

1 CNRS and Université de Grenoble Alpes, Grenoble, France
echahed@imag.fr

2 Université de Toulouse / IRIT, Toulouse, France

Abstract. This paper is concerned with the interplay of the expres-
siveness of model and graph transformation languages, of assertion for-
malisms making correctness statements about transformations, and the
decidability of the resulting verification problems. We put a particular
focus on transformations arising in graph-based knowledge bases and
model-driven engineering. We then identify requirements that should be
satisfied by logics dedicated to reasoning about model transformations,
and investigate two promising instances which are decidable fragments
of first-order logic.

Keywords: Graph transformation · Model transformation · Program
verification · Classical logic · Modal logic

1 Introduction

We tackle the problem of model transformations and their correctness, where
transformations are specified with the aid of rules and correctness properties are
stated as logical formulas. By model we intend a graph structure enriched with
logical formulas which label either nodes or edges. In our approach, a rule is
composed of a left-hand side which is a graph annotated with logical formulas,
and a right-hand side which is a sequence of actions. The shape of the graph and
the formulas yield an applicability condition of the rule at a matching subgraph
of the model; the right-hand side transforms this subgraph with actions such as
creation, deletion or cloning of nodes or insertion and deletion of arcs.

Rewrite systems come with a specification in the form of pre- and postcon-
ditions, and we aim at full deductive verification, ascertaining that any model
satisfying the precondition is transformed into a model satisfying the postcon-
dition.

The correctness of model transformations has attracted some attention in the
last years. One prominent approach is model checking, such as implemented by
the Groove tool [13]. The idea is to carry out a symbolic exploration of the state
space, starting from a given model, in order to find out whether certain invariants

This research has been supported by the Climt project (ANR-11-BS02-016).

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 315–332, 2016.
DOI: 10.1007/978-3-319-46750-4 18

316 J.H. Brenas et al.

are maintained or certain states (i.e., model configurations) are reachable. The
Viatra tool has similar model checking capabilities [25] and in addition allows
the verification of elaborate well-formedness constraints imposed on models [23].
Well-formedness is within the realm of our approach (and amounts to checking
the consistency of a formula), but is not the primary goal of this paper which is
on the dynamics of models.

The Alloy analyser [17] uses bounded model checking for exploring rela-
tional designs and transformations (see for example [5] for an application in
graph transformations). Counter-examples are presented in graphical form. All
the aforementioned techniques use powerful SAT- or SMT-solvers, but do not
carry out a complete deductive verification. In our paper, we aim at full-fledged
verification of transformations.

General-purpose program verification with systems such as AutoProof [24]
and Dafny [18] becomes increasingly automated and thus interesting as push-
button technology for model transformations. In this context, fragments of first-
order logic have been proposed that are decidable and are useful for dealing with
pointer structures [16].

The question explored in this paper is: which requirements does a logic have
to fulfill in order to allow for such a verification technique to succeed?

Several different logics have been proposed over the years to tackle the prob-
lem of graph transformation verification. Among the most prominent approaches
figure nested conditions [15,20] that are explicitly created to describe graph prop-
erties. Another widely used logic in graph transformation verification is monadic
second-order logic [10,21] that allows to go beyond first-order definable proper-
ties. [4] introduces a logic closer to modal logic that allows to express both graph
properties and the transformations at the same time.

Nonetheless, these approaches are not flawless. They are all undecidable in
general and thus either cannot be used to prove correctness of graph transfor-
mations in an automated way or only work on limited classes of graphs. Starting
from the other side of the logical spectrum, one could consider using Descrip-
tion Logics to describe graph properties [1,6] that are decidable. Another choice
could be the use of modal logics as they are suited to reason about programs.
Obviously, this comes at a cost in term of expressiveness.

Separation logic [22] is another choice that is worth considering when dealing
with transformations of graphs. It has been developed especially to be able to
talk about pointers in conventional programming languages.

In this paper, we proceed in an orthogonal direction. Instead of introducing
a logic and advising users to tailor their problem so that it is expressible in our
logic and that its models comply with the restrictions so that the verification is
actually possible, we aim at providing a means for the users to decide whether
the logic they have used to represent their problem will actually allow them to
prove their transformations correct or whether they have to use several different
systems in parallel.

We are in particular interested in decidable logics, and so we instantiate our
general framework with two decidable logics: Two-variable logic with counting
(in Sect. 5.1) and logics with exists-forall-prefix (in Sect. 5.2). The fragment of

Ensuring Correctness of Model Transformations While Remaining Decidable 317

effectively propositional logic [19], that is implemented by the Z3 prover [11]
and is closely related to the logical fragment we discuss in Sect. 5.2, has been
known for a long time to be decidable [8]. The use of two-variable logics [14]
for the verification of model transformation is relatively novel even though it
contains all Description Logics without role inclusions. Once more the goal is
not to advocate the use of any logic but to give the user the ability to decide if
the logics that are planned to be used satisfy some minimal conditions so that
the verification can be carried out effectively.

The rest of the paper is structured as follows: we start with an example,
in Sect. 2, motivating our model transformation approach, which we then make
more formal in Sect. 3. In Sect. 4, we propose general principles that a logic
has to fulfill to be usable for verifying model transformations. Then, in Sect. 5,
we illustrate our proposal through the two aforementioned logics. Concluding
remarks are provided in Sect. 6.

2 Motivating Example

In order to better illustrate our purpose, an example modelling a sample of the
information system of a hospital is introduced. Figure 1 is the UML model of
this sample.

Fig. 1. A sample UML model for the hospital example

We consider persons (shortened to PE). Some of them work in the hospital
and form the medical staff (MS) and others are patients (PA). The medical staff
is partitioned into physicians (PH) and nurses (NU). In addition, the hospital
is split into several departments (DE) or services. Documents pertaining to
patients are stored in folders (FO).

318 J.H. Brenas et al.

Each member of the medical staff is assigned (denoted by works in) to a
department. The same way, each patient is hospitalized (hospitalized in) in one
of the departments. There may be several members of the medical staff that
may collaborate to treat (treats) a patient at a given time but one of them
is considered as the referent physician (referent phys), that is to say she is in
charge of the patient. Part of the medical staff can access the folder containing
the documents about (is about) a patient either to read (read access) or to write
(write access) information.

The fact is the hospital is bound to evolve: new patients arrive to be cured
and others leave, new medical staffers are hired and others move out. To illustrate
our purpose, four possible transformations are specified below.

Transformation 1. The first transformation is New Ph(ph1, d1). It creates a
new physician to which is associated an identifier ph1. This physician will be
working in the department identified with d1.

Transformation 2. The second transformation is New Pa(pa1, ph1, fo1). It
adds a new patient. The patient pa1 is created alongside his folder fo1. She is
then assigned ph1 as referent physician.

Transformation 3. The third transformation is Del Pa(pa1). It modifies data
so that patient pa1 is no more hospitalized.

Transformation 4. The last transformation is Del Ph(ph1, ph2). It deletes the
physician ph1 and forwards all his patients to the physician ph2. ph1 and ph2

have to work in the same department.

Despite the transformations, there are some properties of the hospital that
should not be altered. We give a list of six such expected properties in the
following.

Expected property 1. Each member of the medical staff is either a nurse or
a physician but not both.

Expected property 2. All patients and all medical staffers are persons.

Expected property 3. Each person that can write in a folder can also read it.

Expected property 4. Each person that can read a folder about a patient
treats that patient.

Expected property 5. Only medical staffers can treat persons and only
patients can be treated.

Expected property 6. Every patient has exactly one referent physician.

Ensuring Correctness of Model Transformations While Remaining Decidable 319

3 A Model Transformation Framework

In this section, a framework used to describe models as well as their transfor-
mations is introduced. A model is considered hereafter as a graph, labeled by
logical formulae. The logic in which these formulae are expressed is considered
as a parameter, say L, of the proposed framework. Required features of such a
logic are discussed in the next section. Nevertheless, we assume in this section
that the logic L is endowed with a relation |= over its formulae. That is to say,
n |= B (resp. e |= B) should be understood as “formula B is satisfied at node
n (resp. edge e)”.

Definition 1 (Graph). Let L be a logic. A graph G is a tuple (N , E, C, R,
φN , φE, s, t) where N is a set of nodes, E is a set of edges, C is a set of (node)
formulae (of L) or concepts, R is the set of edge formulae (of L) or roles, φN

is the node labeling function, φN : N → P(C), φE is the edge labeling function,
φE : E → R, s is the source function s : E → N and t is the target function
t : E → N .

Labeling a graph with logical formulae is quite usual in Kripke structures. In
this paper, labeling formulae will play a role either in the transformation process
or in the generation of proof obligations for the properties intended to be proved.

Transformations of models are performed by means of graph rewrite systems.
These rewrite systems are extensions of those defined in [12] where graphs are
labeled with formulae. Thus, the left-hand sides of the rules are labeled graphs
as defined in Definition 1, whereas the right-hand sides are defined as sequences
of elementary actions. Elementary actions constitute a set of basic transforma-
tions used in graph transformation processes. They are given in the following
definition.

Definition 2 (Elementary action, action). An elementary action, say a,
has one of the following forms:

– a concept assignment c := i where i is a node and c is an atomic formula (a
unary predicate). It sets the valuation of c such that the only node labeled by
c is i.

– a concept addition c := c + i (resp. concept deletion c := c − i) where i is
a node and c is an atomic formula (a unary predicate). It adds the node i to
(resp. removes the node i from) the valuation of the formula c.

– a role addition r := r + (i, j) (resp. role deletion r := r − (i, j)) where i and j
are nodes and r is an atomic role (a binary predicate). It adds the pair (i, j)
to (resp. removes the pair (i, j) from) the valuation of the role r.

– a node addition new(i) (resp. node deletion delI(i)) where i is a new node
(resp. an existing node). It creates the node i. i has no incoming nor outgoing
edge and there is no atomic formula such that i belongs to its valuation (resp.
it deletes i and all its incoming and outgoing edges).

– a global incoming edge redirection i �in j where i and j are nodes. It redirects
all incoming edges of i towards j.

320 J.H. Brenas et al.

– a global outgoing edge redirection i �out j where i and j are nodes. It rede-
fines the source of all outgoing edges of i as j.

– a node cloning clone(i, i′) where i is a node, i′ is a node that does not exist yet.
It creates a new node i′ that has the same labels as i and the same incoming
and outgoing edges1 (see Fig. 3).

The result of performing the elementary actionα on a graphG = (NG, EG, CG,RG,
φG

N , φG
E , sG, tG) produces the graph G′ = (NG′

, EG′
, CG′

,RG′
, φG′

N , φG′
E sG′

, tG
′
) as

defined in Fig. 2 and write G′ = G[α] or G ⇒α G′. An action, say α, is a sequence
of elementary actions of the form α = a1; a2; . . . ; an. The result of performing α
on a graph G is written G[α]. G[a;α] = (G[a])[α] and G[ε] = G, ε being the empty
sequence.

Definition 3 (Rule, Graph Rewrite Systems). A rule ρ[n] is a pair (lhs,α)
where n is a vector of concept variables. These variables are instantiated by
means of actual concepts when a rule is applied. lhs, called the left-hand side, is
a graph and α, called the right-hand side, is an action. Rules are usually written
ρ[n] : lhs → α. Concept variables ni in n may appear both in lhs and in α. A
graph rewrite system is a set of rules.

Notice that a rule ρ[n] : lhs → α may be considered as a generic rule which
yields an actual rewrite rule for every instance of the variables n. We write ρ[c]
to denote the rule obtained from ρ[n] : lhs → α by replacing every variable
concept ni appearing either in lhs or in α by the actual concept ci. Now let us
define when a rule can be applied to a graph.

Definition 4 (Match). Let ρ[n] : lhs → α be a rule and G be a graph. Let
ρ[c] be an instance of rule ρ[n] and inst be the instance function defined as
inst(ni) = ci for i ∈ {0, . . . , k}. We say that the instance ρ[c] matches the graph
G via the match h = (hN , hE), where hN : N lhs → NG and hE : Elhs → EG if
the following conditions hold:

1. ∀n ∈ N lhs,∀d ∈ φNlhs
(n), hN (n) |= inst(d)

2. ∀e ∈ Elhs,∀r ∈ φElhs
(e), hE(e) |= inst(r)2

3. ∀e ∈ Elhs, sG(hE(e)) = hN (slhs(e))
4. ∀e ∈ Elhs, tG(hE(e)) = hN (tlhs(e))

The third and the fourth conditions are classical and say that the source and
target functions and the match have to agree. The first condition says that for
every node n of the left-hand side, the node to which it is associated, hN (n), in
G has to satisfy every concept that n satisfies. This condition clearly expresses
additional negative and positive conditions which are added to the “structural”
pattern matching. The second condition expresses the same conditions on the
edges.
1 This action has the same effect as the one defined by means of sesquipushout [9].
2 inst(r) (resp. inst(d)) replaces in r (resp. in d) every occurrence of a concept variable

ni by its instance ci. The formal definition of the function inst depends on the
structure of the considered concepts and roles.

Ensuring Correctness of Model Transformations While Remaining Decidable 321

α = c := i α = new(i)

NG′
= NG EG′

= EG CG′
= CG RG′

= RG NG′
= NG ∪ {i} i

φG′
N (n) =

{

φG
N (n) ∪ {c} n = i

φG
N (n)\{c} n �= i

φG′
E = φG

E ,

sG′
= sG tG′

= tG

EG′
= EG CG′

= CG RG′
= RG,

φG′
N (n) =

{ ∅ n = i
φG

N (n′) n �= i

α = c := c + i φG′
E = φG

E sG′
= sG tG′

= tG

NG′
= NG EG′

= EG CG′
= CG RG′

= RG α = del(i)

φG′
E = φG

E φG′
N (n) =

{

φG
N (n) ∪ {c} n = i

φG
N (n) n �= i

NG′
= NG\{i}, CG′

= CG, RG′
= RG,

EG′
= EG\{e|sG(e) = i ∨ tG(e) = i}

sG′
= sG tG′

= tG φG′
N φG

N NG′

α = c := c − i φG′
E φG

E EG′

NG′
= NG EG′

= EG CG′
= CG RG′

= RG sG′
sG EG′

φG′
E = φG

E φG′
N (n) =

{

φG
N (n)\{c} n = i

φG
N (n) n �= i

tG′
tG EG′

If α = i �in j then :

sG′
= sG tG′

= tG NG′
= NG, EG′

= EG, CG′
= CG,

If α = r := r + (i, j) then : RG′
= RG, φG′

N = φG
N φG′

E = φG
E

NG′
= NG, CG′

= CG, RG′
= RG,

EG′
= EG ∪ {e} e

sG′
= sG tG′

(e) =

{

j tG(e) = i
tG(e) tG(e) �= i

φG′
N = φG

N φG′
E (e′) =

{

r e′ = e
φG

E(e′) e′ �= e

α = i �out j

NG′
= NG, EG′

= EG, CG′
= CG,

sG′
(e′) =

{

i e′ = e
sG(e′) e′ �= e

,

tG′
(e′) =

{

j e′ = e
tG(e′) e′ �= e

RG′
= RG, φG′

N = φG
N , φG′

E = φG
E ,

φG′
N = φG

N , tG′
= tG,

sG′
(e) =

{

j sG(e) = i
sG(e) sG(e) �= i

α = r := r − (i, j) α = clone(i, i′)
NG′

= NG CG′
= CG RG′

= RG CG′
= CG RG′

= RG

EG′
= EG\ri,j , NG′

= NG ∪ {i′} EG′
= EG ∪ E′

i

ri,j = {e ∈ EG|sG(e) = i ∧ tG(e) = j ∧ φG
E(e) = r}

φG′
N = φG

N , φG′
E φG

E EG′

sG′
sG EG′

E′
i = Ein

i ∪ Eout
i ∪ Eloop

i

Ein
i = {ein| ∃e ∈ EG, tG(e) = i}

Eout
i = {eout| ∃e ∈ EG, sG(e) = i}

Eloop
i = {eloop|∃e ∈ EG, sG(e) = tG(e) = i}

tG′
tG EG′

φG′
N (n) =

{

φG
N (n) n �= i′

φG
N (i)

φG′
E (e) =

{

φG
E(e) e �∈ E′

i

φG
E(co(e))

tG′
(e) =

⎧

⎨

⎩

tG(e) e �∈ E′
i

tG(co(e)) e ∈ Eout
i

i′ e ∈ Ein
i ∪ Eloop

i

sG′
(e) =

⎧

⎨

⎩

sG(e) e �∈ E′
i

sG(co(e)) e ∈ Ein
i

i′ e ∈ Eout
i ∪ Eloop

i

e′ ∈ E′ co(e′) e
e′

Fig. 2. Summary of the effects of atomic actions

322 J.H. Brenas et al.

i : C i : C i′ : C

Fig. 3. Example of node cloning. The action clone(i, i′) is performed.

Definition 5 (Rule application). We define the applicability condition as:
App(ρ[c], G) iff there exists a match h from the instance ρ[c] to G. A graph G
rewrites to graph G′ using a rule ρ[c] : lhs → α iff App(ρ[c], G) holds and G′ is
obtained from G by performing actions in h(α)3. Formally, G′ = G[h(α)]. We
write G →ρ[c] G′ or G →ρ[c],h G′.

Example 1. Let us consider again the example given in Sect. 2. We provide in
Fig. 4, for every transformation already presented informally, a corresponding
rewrite rule.

i : { 1 DE}1 1

j 1 PH PH j

MS MS j PE PE j

(j, i)

i : { 1 PH} j

1 1 1

k 1 PA PA k

PE PE k

l 1 FO FO l

(i, k)

(i, k)

(l, k)

(i, l)

(i, l)

(k, j)

i : { 1 PA} j (i, j)1

i : { 1 PH} j

k : { 2 PH}
1 2

(i, j);

i �in k; i �out k

Fig. 4. Transformation rules for the sample hospital model

3 h(α) is obtained from α by replacing every node name, n, of lhs by h(n).

Ensuring Correctness of Model Transformations While Remaining Decidable 323

Very often, transforming models by means of rewrite rules necessitates the
use of the notion of strategies. Informally, a strategy acts as a recipe indicating
in which order the rules are applied.

Definition 6 (Strategy). Given a graph rewriting system R, a strategy is a
word of the following language defined by s:

s := ρ[c0, . . . , ck] (Rule application) s∗ (Closure)
s; s (Composition) s ⊕ s (Choice) where ρ[c0, . . . , ck] is an

instance of a rule in R.
We write G ⇒S G′ when G rewrites to G′ following the rules given by the

strategy S.

Informally, the strategy “ρ1; ρ2” means that rule ρ1 should be applied first,
followed by the application of rule ρ2. Notice that the strategies as defined above
allow one to define infinite derivations from a given graph G because we have
included the Kleene star construct s∗ as a constructor of strategies. Handling
the Kleene star does not introduce much more difficulties but requires the use
of the notion of invariants in the verification procedures, as it is the case for
while loops in imperative languages. It also requires us to extend the notion of
applicability from rules to strategies:
App(s∗, G) = true App(s0; s1, G) = App(s0, G)
App(s0 ⊕ s1, G) = App(s0, G) ∨ App(s1, G)

In Fig. 5, we provide the rules that specify how strategies are used to rewrite
a model (graph). Notice that a closure free strategy is always terminating while
a choice free strategy is always confluent.

Fig. 5. Strategy application rules

To end this section we define the notion of a specification which consists in
providing Pre and Post conditions that one may want to ensure for a given
strategy. More precisely, we propose the following definitions.

Definition 7 (Program, Specification). A program is a tuple (R,S) where
R is a graph rewrite system and S is a strategy. A specification SP is a tuple
(Pre, Post, P) where Pre and Post are formulae and P is a program.

324 J.H. Brenas et al.

Notice that Pre and Post are supposed to be formulae of a given logic. We
do not specify such a logic in the above definition. We provide actual examples
in Sect. 5. A specification (Pre, Post, P) asserts that for all models G that
satisfies the formula Pre, all models G′ obtained after rewriting G according to
strategy S of program P = (R,S), (i.e. G ⇒S G′), G′ satisfies formula Post.

4 General Logical Framework

Our aim in this section is to discuss general requirements for a logic, say L, that
might be considered either to specify pre and post conditions of specifications
or to label models.

Let SP = (Pre, Post, P) be a specification. If SP is correct, then if a
model G satisfies Pre (G |= Pre) and G rewrites to model G′ via a strategy S
of a program P = (R,S) (G ⇒S G′), then G′ satisfies Post (G′ |= Post). In
addition to the general requirements for logics L, a Hoare-like calculus dedicated
to prove the correctness of specifications is also discussed in this section.

The first, and most obvious, requirements for a logic, L, is that it can express
the labeling of models with formulae which specify nodes and edges.

Requirement 1. Node formulae (concepts in C) should be adequate to the
notion of nodes. That is to say, nodes might be candidates to interpret node
formulae.

Requirement 2. Edge formulae (roles in R) should be adequate to the notion
of edges. That is to say, edges might be candidates to interpret edge formulae.

The conditions Pre and Post are properties of models. Thus, we have the
following requirement.

Requirement 3. Assertions Pre and Post should be adequate to the notion of
graphs (i.e. models). That is to say, models might be candidates to interpret Pre
and Post assertions.

The main ingredient of the verification calculus consists in computing weakest
preconditions of postconditions (see function wp defined in Fig. 6). The basic
cases of the computations of weakest precondition deal with elementary actions.
For that, to every elementary action is associated a so called substitution. Such
substitutions are the elementary building blocks allowing the verification of a
program.

Definition 8. Let a be an elementary action, as defined in Definition 2. The
substitution [a] associated to the elementary action a is the formula constructor
which associates, to each formula φ of L, the formula φ[a]. Given a model M,
φ[a] is defined such that M |= φ[a] ⇔ for all models M′,M ⇒a M′ implies
M′ |= φ.

A logic L′ is said to be closed under substitutions if for each action a, for
each formula φ of L′, φ[a] is also a formula of L′.

Ensuring Correctness of Model Transformations While Remaining Decidable 325

wp(ρ[c], Q) = App(tag(ρ[c])) ⇒ wp(tag(αρ[c]), Q)
wp(s0; s1, Q) = wp(s0, wp(s1, Q)) wp(s∗) = invs

wp(s0 ⊕ s1, Q) = wp(s0, Q) ∧ wp(s1, Q)

Fig. 6. Weakest preconditions for strategies.

vc(ρ[c], Q) = vc(s0; s1, Q) = vc(s0, wp(s1, Q)) ∧ vc(s1, Q)
vc(s0 ⊕ s1, Q) = vc(s0, Q) ∧ vc(s1, Q)
vc(s∗, Q) = (invs ∧ App(s) ⇒ wp(s, invs)) ∧ (invs ∧ ¬App(s) ⇒ Q)

∧vc(s, invs) ∧ vc(s1, Q)

Fig. 7. Verification conditions for strategies.

Weakest preconditions for actions come in two flavors: for elementary actions
a, we have wp(a,Q) = Q[a], and for composite actions, wp(a;α, Q) =
wp(a, wp(α, Q)). On this basis, weakest preconditions for strategies can be
easily computed as depicted in Fig. 6. These preconditions follow the principles
of Hoare Logic calculi except for the one dedicated to rules, viz. wp(ρ[c], Q). This
latter corresponds essentially to an “if-then” structure in imperative programs.
Put it simply, it checks three properties that are required for the application of a
rule to be correct. Up to now, App depended on G. However, correctness proofs
should hold for all possible models (graphs). That is way we modify App to be
dependent only on the rules and strategies. First, App is a function which applies
to a rule ρ[c] and returns a formula of L stating that there exists a match from the
left-hand side of ρ[c] to a potential graph. If the formula App(ρ[c]) is satisfied, the
rule can be performed. Second, whenever the formula App(ρ[c]) ⇒ wp(αρ[c], Q)
is valid, then if there exists a match, the conditions, viz. wp(αρ[c], Q), which
ensure the postcondition to be satisfied, are satisfied too. This corresponds to
the usual weakest-precondition in Hoare Logic.

There is one additional issue which deserves to be handled carefully. Actually,
one same rule can be fired several times during the execution of a program. It is
thus mandatory to keep track of where each occurence of the rule is applied. To
be more precise, App introduces a condition that uses the names of the nodes in
the left-hand sides of rules. As these names uniquely define nodes and edges, if a
same rule were used several times with the same names of nodes and edges, the
rule would be applied to the exact same nodes and edges. This issue is solved by
renaming the individuals (i.e., nodes and edges) each time the rule is fired. This
is done through the function tag. That is why wp(ρ[c], Q) = App(tag(ρ[c])) ⇒
wp(tag(αρ[c]), Q).

Finally, the closure of a strategy, s∗, which is close to while structures in
imperative programs, needs the definition of an invariant, invs, and the intro-
duction of verification conditions, vc(s∗, Q), shown in Fig. 7. Basically, the idea is

326 J.H. Brenas et al.

that a closure is considered as a subprogram whose correctness is proven on the
side. The verification condition checks that the specification of this subprogram
whose pre and post conditions are the invariant.

From the discussion above, we come to a new requirement about the logic L,
regarding the use of substitutions within weakest preconditions.

Requirement 4. L must be closed under substitutions.

If this last requirement is not satisfied, the computation of weakest precondi-
tions may lead to formulas not expressible in L. In this case, the verification of
the correctness of specifications would need new proof procedures different from
those of L.

In addition, App(ρ[c]) must be definable in L. Obviously, this depends mainly
on the rules one wants to use. It is thus possible, for a given problem, to use
one logic that may not be powerful enough for other problems. Nonetheless,
one of the requirements this entails on L is that it must allow some kind of
existential quantification so that the graph can be traversed to look for a match.
Obviously, the ∃-quantifier of first-order logic is a prime candidate but some
other mechanisms like individual assertions a : C in Description Logics [3] or the
@ operator of hybrid logic [2] can be used.

Requirement 5. L must be able to express App(ρ[c]) for all rules ρ[c] of the
graph rewrite system under study.

Theorem 1 (Soundness). Let L be a logic satisfying requirements 1 to 5.
Let SP = (Pre, Post, (R,S)) be a specification. If (Pre ⇒ wp(S, Post)) ∧
vc(S, Post) is valid in L, then for all graphs G, G′ such that G ⇒S G′, G |= Pre
implies G′ |= Post.

Proof (Sketch). The proof of this theorem is quite straightforward. One just has
to check for every atomic strategy s that if Pre ⇒ wp(s, Post) and G |= Pre
then G′ |= Post. We give the proof for the rule application which is the most
complex.

Assume S = ρ[c] where ρ[c] is a rule of R. Let us assume Pre ⇒ wp(ρ[c], Post)
is valid. Because wp(ρ[c], Post) = App(tag(ρ[c])) ⇒ wp(tag(αρ[c]), Post), also
(Pre ∧ App(tag(ρ[c]))) ⇒ wp(tag(αρ[c]), Post) is valid. Let G be a graph. If G |=
App(ρ[c]), there is a match h. Let G′ be such that G ⇒ρ[c],h G′. By definition of the
substitutions,G ⇒ρ[c],h G′ andG |= wp(tag(αρ[c]), Post) impliesG′ |= Post.On
the other hand, if G�|= App(ρ[c]), there does not exist any G′ such that G ⇒ρ[c] G′

and thus the program fails. Thus G |= Pre implies that G′ |= Post �.

After performing the calculus, one gets a formula vc(S, Post) ∧ (Pre ⇒
wp(S, Post)). Obviously, in order to be able to decide whether or not a pro-
gram is correct, one has to prove that the obtained formula is valid. Hence the
following requirement.

Requirement 6. The validity problem for L is decidable.

Nevertheless, this last requirement could be optional if interactive theorem
provers are preferred.

Ensuring Correctness of Model Transformations While Remaining Decidable 327

5 Instances of the Example

Hereafter, we illustrate the general logical framework proposed in the previous
section through the Hospital example by providing logics which fulfill the six
proposed requirements. In [7] another instance is proposed using an extension of
propositional dynamic logic is proposed.

First, let us observe that all of the invariants that we defined can be expressed
in first-order logic (Formulae on the right).

Property 1:
MS = NU PH � ∀x. MS(x) ⇔ (NU(x) ∧ ¬ PH(x))∨

(¬NU(x)∧ PH(x))
Property 2:
PA ∪ MS ⊆ PE � ∀x.PA(x)∨MS(x) ⇒ PE(x)
Property 3:
write access ⊆ read access � ∀x, y.write access(x, y) ⇒

read access(x, y)
Property 4:
read access ◦ is about⊆ treats � ∀x, y, z.read access(x, y)∧is about(y, z)

⇒ treats(x, z)
Property 5:
treats ⊆ MS× PA � ∀x, y.treats(x, y) ⇒ MS(x)∧ PA(y)
Property 6:
PA⇒ ∃=1 referent phys � ∀x.PA(x) ⇒ (∃y. referent phys(x, y)∧

∀z.referent phys(x, z) ⇒ z = y)
First-order logic is not decidable though, and thus one may want to use a

different logic in order to be able to decide the correctness of the considered
properties. In the following, we use the 2-variable fragment of first-order logic
with counting (C2) [14] and ∃∗∀∗ , the fragment of first-order logic whose formula
in prenex form are of the form ∃i0, . . . , ik.∀j0, . . . , jl.A(i0, . . . , ik, j0, . . . , jl).

In order to be able to distinguish between nodes of a model (active
nodes) and those which are not part of a given model, we add to the sig-
nature of the logic a unary predicate Active which ranges over nodes and
edges. Creating a new node becomes adding it to the Active nodes. This also
requires to add that ∀x, y.¬Active(x) ⇒ (

∧
ψ an atomic unary predicate ¬ψ(x) ∧∧

r an atomic binary predicate ¬r(x, y) ∧ ¬r(y, x)). I.e., non active nodes are not
assumed to satisfy any property.

Let SPH be the specification (Pre, Post,P) associated to the hospital exam-
ple. Assume the strategy is S = New Ph[nph,neonat];Del Pa[opa] while the
considered rewrite system R is the one from Fig. 4. This program P creates a
new physician nph and lets the patient opa leave the hospital. Let inv denote
the conjunction of the expected properties. Let the precondition Pre be inv ∧
∃x.(neonat(x)∧DE(x))∧∃x.(opa(x)∧PA(x))∧∀x.¬nph(x). Let the postcondi-
tion Post be inv∧∃x, y.(nph(x)∧PH(x)∧works in(x, y)∧neonat(y)∧DE(y)).
Proving the correctness of SPH amounts to proving that Pre ⇒ wp(S, Post) is
valid. This is a formula in first-order logic. In the following two subsections, this
specification is proven to be correct using two different decidable logics that are
able to express parts of Pre and Post.

328 J.H. Brenas et al.

5.1 Two-Variable Logic with Counting : C2

C2 is the two-variable fragment of first-order logic with counting. Its formulas
are those of first-order logic than can be expressed with only two variables and
using the counting quantifier constructor ∃<nx.P expressing that there are less
than n values x that satisfy P . In our case, this constructor will mostly be used
to express that there exist less than n different r-successors of a given node.

Definition 9. Let U be a set of unary predicates, u ∈ U , B be a set of binary
predicates, b ∈ B, n an integer. A formula φ of C2 is defined as:
φ := � | φ ∧ φ | ¬φ | ∃<nx.φx | ∃<ny.φy

φx := φ | u(x) | b(x, x) | φx ∧ φx | ¬φx | ∃<nx.φx | ∃<ny.φx,y

φy := φ | u(y) | b(y, y) | φy ∧ φy | ¬φy | ∃<ny.φy | ∃<nx.φx,y

φx,y := φx | φy | b(x, y) | b(y, x) | φx,y ∧ φx,y | ¬φx,y | ∃<nx.φx,y | ∃<ny.φx,y

As usual, ⊥ means ¬�, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ,
∃≥nv.φ means ¬∃<nv.φ, ∃v.φ means ∃≥1v.φ, ∀v.φ means ¬∃v.¬φ.

Definition 10. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We define the val-
uation of formulae as follows:
�I = true
(φ ∧ ψ)I = φI and ψI

(¬φ)I = not φI

(∃<nx.φx)I =

⎧
⎨

⎩

true if there does not exist n nodes m1, . . . ,mn,
mi �= mj for 0 < i < j ≤ n such that mi |= φx

false otherwise
(∃<ny.φy)I is defined the same as (∃<nx.φx)I but replacing x’s with y’s
Let us now focus on m |= φx:
m |= φ iff φI

m |= u(x) iff u ∈ φN (m)
m |= b(x, x) iff there exists e ∈ E.s(e) = m, t(e) = m and b = φE(e)
m |= (φx ∧ ψx) iff m |= φx and m |= ψx

m |= ¬φx iff m � |= φx

m |= ∃<nx.φx iff there does not exist n nodes m′
1, . . . ,m

′
n,

mi �= mj for 0 < i < j ≤ n such that m′
i |= φx

m |= ∃<ny.φx,y iff there does not exist n nodes w1, . . . , wn,
wi �= wj for 0 < i < j ≤ n such that (m,wi) |= φx,y

m |= φy is defined the same way but swapping the x’s and the y’s. Let us
now focus on (m,m′) |= φx,y:

(m, m′) |= φx iff m |= φx

(m, m′) |= φy iff m′ |= φy

(m, m′) |= b(x, y) iff there exists e ∈ E.s(e) = m, t(e) = m′ and b = φE(e)
(m, m′) |= b(y, x) iff there exists e ∈ E.s(e) = m′, t(e) = m and b = φE(e)
(m, m′) |= (φx,y ∧ ψx,y) iff (m, m′) |= φx,y and (m, m′) |= ψx,y

(m, m′) |= ¬φx,y iff (m, m′) � |= φx,y

(m, m′) |= ∃<nx.φx,y iff there does not exist n nodes m1, . . . , mn,mi �= mj

for all 0 < i < j ≤ n such that (mi, m
′) |= φx,y

(m, m′) |= ∃<ny.φx,y iff there does not exist n nodes m′
1, . . . , m′

n, m′
i �= m′

j

for all 0 < i < j ≤ n such that (m, m′
i) |= φx,y

Ensuring Correctness of Model Transformations While Remaining Decidable 329

Theorem 2 ([14]). The validity problem of C2 is decidable.

Let us now check the six requirements of the previous section. C2 contains
unary predicates that are interpreted on nodes and binary predicates that are
interpreted on edges. Pre and Post are interpreted on graphs.

Theorem 3. C2 is closed under substitutions.

The proof relies on the fact that first-order logic is closed under substitution.
The proof provides a system of rewrite rules that removes substitutions. As it
does not introduce new variables, it also works for C2. We give three example
rules to understand better how does it work:

– (φ ∧ ψ)[σ] � φ[σ] ∧ ψ[σ] as if φ ∧ ψ is satisfied after performing σ, so must be
φ and ψ and the other way round.

– r(x, y)[r := r + (i, j)] � r(x, y) ∨ (i(x) ∧ j(y)) as rI′
is rI ∪ (iI , jI).

– r(x, y)[clone(i, i′)] � r(x, y) ∨ (i′(x) ∧ ∃x.(i(x) ∧ r(x, y))) ∨ (i′(y) ∧ ∃y.(i(y) ∧
r(x, y))) ∨ (i′(x) ∧ i′(y) ∧ ∃x.(i(x) ∧ r(x, x))).

Example 2. C2 can express all the predicates App(ρ) for the rules of the consid-
ered example (see Fig. 4):

– App(New Ph[ph1,d1]) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x) ∧ ph1(x))
– App(New Pa[pa1,ph1, fo1]) = ∃x, y.(ph1(x)∧PH(x) ∧ works in(x, y)) ∧

∃x.(¬Active(x) ∧ pa1(x)) ∧ ∃x.(¬Active(x) ∧ fo1(x))
– App(Del Pa[pa1]) = ∃x, y.(pa1(x)∧PA(x) ∧ hospitalized in(x, y))
– App(Del Ph[ph1,ph2]) = ∃x, y.(ph1(x)∧PH(x)∧works in(x, y)∧∃x.(ph2(x)∧

PH(x) ∧ works in(x, y)))

One should also be interested in the ability of the logic to express the prop-
erties to be verified.

Example 3. C2 is not able to express Property 4: read access◦ is about⊆ treatsas
one would need to keep track of three variables at a time. On the other hand,
Property 6: ∀x.PA(x) ⇒ ∃=1referent phys.� is a formula of C2.

5.2 Exist-Forall-Prefix

The logic ∃∗∀∗ is the fragment of first-order logic such that its prefix in prenex
normal form is composed of a sequence of existential quantifiers and then a
sequence of universal quantifiers.

Definition 11. Let U be a set of unary predicates, u ∈ U and B a set of binary
predicates, b ∈ B. Let x1, . . . , xk, a1, . . . , al be variables and v, w denote two of
them. A formula φ of ∃∗∀∗ is defined as:
φ := ∃x0, . . . , xk,∀a0, . . . , al.ψ(x1, . . . , xk, a1, . . . , al)
ψ := � | ψ ∧ ψ | ¬φ | u(v) | b(v, w)

As usual, ⊥ means ¬�, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ.

330 J.H. Brenas et al.

Definition 12. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We defined the
valuation of formulae: (∃x1, . . . , xk,∀a1, . . . , al.ψ(x0, . . . , xk, a0, . . . , al))I = N
iff there exist k nodes (x1, . . . , xk) such that for all choices of l nodes (a1, . . . , al),
(x1, . . . , xk, a1, . . . , al) |= ψ. Let us define (x1, . . . , xk, a1, . . . , al) |= ψ:
(x1, . . . , al) |= �
(x1, . . . , al) |= (φ ∧ ψ) iff (x1, . . . , al) |= φ and (x1, . . . , al) |= ψ
(x1, . . . , al) |= (¬φ) iff (x1, . . . , al) � |= φ
(x1, . . . , al) |= u(v) iff u ∈ φN (v)
(x1, . . . , al) |= b(v, w) iff there exists e ∈ E. s(e) = v, t(e) = w and b = φE(e)

Theorem 4. The validity problem of ∃∗∀∗ is decidable.

This is a well-known result ([8], Chap. 6).
The six requirements of the previous section clearly hold for this logic. ∃∗∀∗

contains unary predicates that are interpreted on nodes and binary predicates
that are interpreted on edges.

Theorem 5. ∃∗∀∗ is closed under substitutions.

The proof is exactly the same as the one for C2 and FO. One needs to be
careful though as additional quantifiers are introduced. They are always of the
form ∃x.(i(x) ∧ c(x)) or ∃x.(i(x) ∧ r(x, y)) that can be rewritten as ∀x.(¬i(x) ∨
c(x)) or ∀x.(¬i(x)∨r(x, y)). Thus one can consider that only universal quantifiers
are introduced.

Example 4. ∃∗∀∗ can express all the predicates App(ρ) for the rules of the con-
sidered example (see Fig. 4):

– App(New Ph[ph1,d1]) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x) ∧ ph1(x))
– App(New Pa[pa1,ph1, fo1]) = ∃x, y.(ph1(x)∧PH(x) ∧ works in(x, y)) ∧

∃x.(¬Active(x) ∧ pa1(x)) ∧ ∃x.(¬Active(x) ∧ fo1(x))
– App(Del Pa[pa1]) = ∃x, y.(pa1(x)∧PA(x) ∧ hospitalized in(x, y))
– App(Del Ph[ph1,ph2]) = ∃x, y, z.(ph1(x)∧PH(x) ∧ works in(x, y) ∧ ph2(z)∧

PH(z) ∧ works in(z, y))

It is worth noting that the definition of App(ρ) introduces new existential
quantifiers as it checks for the existence of a match. This could seem to lead to a
problem as the formula no longer is in ∃∗∀∗. Actually, as the existentially quan-
tified variables do not depend on the previously defined universally quantified
variables, it is possible to move them at the beginning thus yielding a formula
in ∃∗∀∗.

Once more one has to check whether all properties can be expressed in the
chosen logic.

Example 5. ∃∗∀∗ is not able to express Property 6: PA⇒ ∃=1 referent physas
it needs an existential quantifier after the universal ones to express the exis-
tence of an edge labeled with referent phys. On the other hand, Property 4:
∀x, y, z.read access(x, y) ∧ is about(y, z) ⇒ treats(x, z) is part of ∃∗∀∗.

Ensuring Correctness of Model Transformations While Remaining Decidable 331

6 Conclusions

We considered the verification problem of model/graph transformations. We
introduced a notion of specification consisting of pre- and postcondition which
specify the correctness of the run of rewrite rules performed according to a given
rewrite strategy.

Deciding the correctness of a given specification is not an easy and decidable
task in general. We proposed some criteria which may be helpful to choose
the most appropriate logics one can use to express proof obligations related to
the correctness problem. We illustrated our proposal by considering a running
example for which two decidable logics have been used to prove its correctness.

Even in the relatively simple considered example, none of the investigated
logics is expressive enough to be able to deal with all the discussed properties.
This is a deliberate choice. Our point is that one has to select for each problem
one or several logics that are relevant and we proposed some criteria that help
to select such logics.

References

1. Ahmetaj, S., Calvanese, D., Ortiz, M., Simkus, M.: Managing change in graph-
structured data using description logics. In: Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, Québec City, Québec, Canada, 27–31
July 2014, pp. 966–973 (2014)

2. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation
and complexity. J. Symb. Log. 66(3), 977–1010 (2001)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

4. Balbiani, P., Echahed, R., Herzig, A.: A dynamic logic for termgraph rewriting. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 59–74. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15928-2 5

5. Baresi, L., Spoletini, P.: On the use of alloy to analyze graph transformation sys-
tems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 306–320. Springer, Heidelberg (2006). doi:10.
1007/11841883 22

6. Brenas, J.H., Echahed, R., Strecker, M.: On the closure of description logics under
substitutions. In: Proceedings of the 29th International Workshop on Description
Logics, Cape Town, South Africa, 22–25 April 2016

7. Brenas, J.H., Echahed, R., Strecker, M.: Proving correctness of logically decorated
graph rewriting systems. In: 1st International Conference on Formal Structures for
Computation and Deduction, FSCD 2016, Porto, Portugal, 22–26 June 2016, pp.
14:1–14:15 (2016)

8. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer,
New York (2000)

9. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.)
ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). doi:10.1007/
11841883 4

http://dx.doi.org/10.1007/978-3-642-15928-2_5
http://dx.doi.org/10.1007/11841883_22
http://dx.doi.org/10.1007/11841883_22
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/11841883_4

332 J.H. Brenas et al.

10. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

12. Echahed, R.: Inductively sequential term-graph rewrite systems. In: Ehrig, H.,
Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp.
84–98. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87405-8 7

13. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

14. Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In:
Proceedings of 12th IEEE Symposium on Logic in Computer Science, LICS 1997,
Warschau (1997)

15. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rela-
tive to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

16. Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-
propositional reasoning about reachability in linked data structures. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 756–772. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39799-8 53

17. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2011)
18. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.

In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

19. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic
using DPLL and substitution sets. J. Autom. Reason. 44(4), 401–424 (2010)

20. Poskitt, C.M., Plump, D.: A Hoare calculus for graph programs. In: Ehrig, H.,
Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp.
139–154. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15928-2 10

21. Poskitt, C.M., Plump, D.: Verifying monadic second-order properties of graph pro-
grams. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 33–48.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-09108-2 3

22. Reynolds, J.C.: An overview of separation logic. In: Meyer, B., Woodcock, J. (eds.)
VSTTE 2005. LNCS, vol. 4171, pp. 460–469. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-69149-5 49

23. Semeráth, O., Barta, Á., Szatmári, Z., Horváth, Á., Varró, D.: Formal validation of
domain-specific languages with derived features and well-formedness constraints.
Int. J. Softw. Syst. Model., July 2015

24. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46681-0 53

25. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Softw. Syst. Model. 3(2), 85–113 (2004)

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-87405-8_7
http://dx.doi.org/10.1007/978-3-642-39799-8_53
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-15928-2_10
http://dx.doi.org/10.1007/978-3-319-09108-2_3
http://dx.doi.org/10.1007/978-3-540-69149-5_49
http://dx.doi.org/10.1007/978-3-540-69149-5_49
http://dx.doi.org/10.1007/978-3-662-46681-0_53
http://dx.doi.org/10.1007/978-3-662-46681-0_53

ProofScript: Proof Scripting for the Masses

Steven Obua(B), Phil Scott, and Jacques Fleuriot

School of Informatics, Edinburgh University,
10 Crichton Street, Edinburgh EH8 9AB, Scotland, UK

steven.obua@gmail.com

http://www.proofpeer.net

Abstract. The goal of the ProofPeer project is to make collaborative
theorem proving a reality. An important part of our plan to make this
happen is ProofScript, a language designed to be the main user inter-
face of ProofPeer. Of foremost importance in the design of ProofScript
is its fit within a collaborative theorem proving environment. By this
we mean that it needs to fit into an environment where peers who are
not necessarily part of the current theorem proving and programming
language communities work independently from but collaboratively with
each other to produce formal definitions and proofs. All aspects of Proof-
Script are shaped by this design principle. In this paper we will discuss
ProofScript’s most important aspect of being an integrated language
both for interactive proof and for proof scripting.

1 Introduction

Interactive theorem proving (ITP) has come a long way since its inception in
the seventies. We have argued elsewhere [2] that collaborative theorem proving
(CTP) represents its natural evolution, where we defined CTP as the social
machine of ITP. The goal of the ProofPeer [1] project is to make CTP a reality
both by developing CTP fundamentals and by building a practical CTP system.

An important component of ProofPeer is the language that peers use to for-
mulate theorems and proofs, which we call ProofScript. In many respects our
role model and arguably the state of the art for a structured proof language
is Isabelle/Isar [6]. The Isabelle/Isar system consists of a complicated stack in
which the programming language Standard ML powers the Isabelle kernel and
its programmatic extensions. Isar is the most important of these extensions.
That means that in order to add automation and scripting to Isar, one needs
to be familiar with the low-level ML fundamentals on which Isar itself is built.
In acknowledgment of this, limited capabilities for proof automation called Eis-
bach have recently been added to Isar so that proof methods can be formulated
within the Isar language itself [9]. Apart from the fact that this only makes pos-
sible proof automation of limited scope, we think that the general situation has
become even more complex by this addition, as depicted in Fig. 1.

Some say that complexity crushes the human mind, others say that one
should design things as simple as possible, but not simpler. Not wanting to ignore
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 333–348, 2016.
DOI: 10.1007/978-3-319-46750-4 19

334 S. Obua et al.

Standard ML

Isabelle

Isar

Eisbach

?

ProofScript

?

Isabelle/Isar Stack ProofPeer Stack

Fig. 1. Surface complexity of Isabelle/Isar vs. ProofPeer

any of these truths, with ProofScript we are trying to condense the capabilities,
ideas, and experience embodied by the Isabelle/Isar stack into a single language
which serves us as a fresh starting point for exploring collaborative theorem
proving. This is not unsimilar to how ITP started out, when ML was designed
as a language to explore the design space of ITP [10] before extension pyramids
like Isabelle/Isar were built on top of it.

Our goal is to minimize the surface complexity the user of our system per-
ceives, thus opening up the system to a wide audience of mathematicians,
engineers, basically anyone in need of designing correct virtual or physical arti-
facts. We do not expect proofpeers to be familiar with type theory or to possess
other knowledge usually common only in the programming language community.
ProofScript provides us with a unified layer of abstraction which we hope is easy
to learn and become productive in. Picking up ProofScript should not be harder
than, for example, learning Javascript. Having this abstraction layer also stabi-
lizes ProofPeer as an environment, as changes to how theories are stored, how
they are interpreted/compiled, how their execution is distributed in our cloud
computing environment etc. can to a large extent happen under the hood.

In this paper we describe the current state of the ProofScript language.
Although capability wise we are nowhere near yet what the whole Isabelle/Isar
stack can do, we have made important steps towards this goal and we think that
the promise of our approach is now apparent.

We will first give an overview of the programming language aspects of Proof-
Script in Sect. 2. After describing the logical foundations of ProofScript in Sect. 3,
we describe in Sect. 4 how we integrated them with the programming language
into an approach we call structured proof scripting. We conclude in Sect. 5.

For further information about ProofScript, and to experiment with our cur-
rent implementation, please consult the ProofScript documentation [3].

http://proofpeer.net/topics/proofscript

ProofScript: Proof Scripting for the Masses 335

2 The Programming Language

In this section we give an overview of the ProofScript programming language,
with a focus on why we designed the language as we did.

2.1 Theories and Namespaces

ProofScript is written in units called theories. All theories except the root the-
ory [8] have one or more parent theories which they extend, thus forming a
directed, acyclic and connected theory extension graph. Before a theory is exe-
cuted, all of its parents must have been executed. The result of executing a theory
is basically a binding of names to computed values, which is usually persisted
after execution.

Each theory has its own unique namespace. Like Java packages, namespaces
are organized as a directory-like structure. We use them to limit both name
conflicts in theories and user access privileges to those theories. The namespace
tree is orthogonal to the extension graph, and thus one way for peers to col-
laborate with each other is by extending each other’s theories. Within a theory,
namespace aliases can be defined.

2.2 Types and Patterns

ProofScript is dynamically typed. This means types are checked during the exe-
cution of a theory, and not statically, i.e. at some time between the writing
and the execution of the theory. This choice is somewhat unorthodox, given
that we have drawn earlier parallels with Standard ML, which is famous for the
invention of static type checking via the Hindley-Milner type system. The main
reason for our choice is that a static type system that approximates the flexibil-
ity of dynamical typing would need to include advanced concepts like functors,
type classes, and so on. This would presume a depth of programming knowledge
which is simply not realistic for our intended target audience of proofpeers. To
further strengthen our argument, languages like Python and Julia have shown
that dynamic typing is well-received in the scientific community.

Another more subtle reason is that ProofScript’s logic is based on set theory,
which in some sense is closer to dynamic typing than static typing. Of course
there is no technical reason why there should be any affinity between scripting
language and logic, but from an anthropological point of view there seems to be
an advantage in fostering these affinities.

Unlike set theory though, being a vehicle for theorem proving, ProofScript
has strong types. In particular this means that values of type Theorem can only be
created by truth preserving operations sanctioned by the logical kernel. Similarly,
any other value obeys the invariants established by its type.

There are four built-in logic related types: Context, Theorem, Term and Type.
These are covered in Sect. 3. Furthermore, there are currently eight built-in non-
logical types, shown in Fig. 2.

336 S. Obua et al.

Fig. 2. Built-in non-logical types of ProofScript

ProofScript has pattern matching. The matching for logical terms is treated
in Sect. 4. Examples for other patterns are shown in Fig. 3. As shown in the
examples, patterns can be used to perform simple type checks.

Fig. 3. Examples of non-logical patterns

It is possible in ProofScript to define custom datatypes. An example is shown
in Fig. 4 (left hand side) where the custom type Option is defined, together
with two constructors None and Some. Some takes an argument and None does
not. An example for an expression yielding a value of type Option is Some (1,
None). Examples for using pattern matching with this custom type are shown
in Fig. 3. Note that type and constructor names must start with an uppercase
letter. Mostly this is just a convention we like to enforce, but for constructor
names it also makes it easier to distinguish in patterns between constructors
and variables.

Fig. 4. Custom types Option and List

ProofScript: Proof Scripting for the Masses 337

The argument of a datatype constructor can be constrained by an arbitrary
pattern. A datatype modelling heterogeneous lists could therefore be defined as
shown in Fig. 4 (right hand side). While expressions like Cons(1, Cons(2, Cons
(3, Nil))) would evaluate successfully to a value of type List, an expression
like Cons(1, 2) would lead to a runtime error.

2.3 Purely Functional Structured Programming

ProofScript is a purely functional programming language with strict evaluation.
By this we mean that functions are first-class, there are no side-effects, and
arguments are evaluated before they are passed to a function. This makes it
possible for peers to write concise, expressive, modular, yet predictable code.

The absence of side-effects, besides its other obvious advantages, also
immensely simplifies the semantics and economy of how theories are managed and
shared. Imagine theory A being extended by n theories T1, . . . , Tn. In ProofPeer,
after executing a theory, its resulting state is persisted and reused, immediately
or at a later time. In our example, that would mean that after executing all of the
aforementioned theories, n+1 theory states would have been persisted. If instead
Awere to contain a function which depended on and mutated some state, then call-
ing this function from Ti could lead to a changed state of A which then would need
separate persisting. Assuming none of the Ti extend each other, after executing all
theories, up to 2n + 1 theory states would have been persisted. Now assume that
the Ti contained mutable state themselves and depended on each other, say Tj also
extends Ti for all i < j. In the worst possible case, that would lead to (n+1)(n+2)

2
persisted theory states. Our intention is to develop technologies for collaborative
theorem proving which scale, so avoiding such quadratic growth by enforcing the
absence of side-effects is an obvious thing to do.

Despite its advantages, purely functional programming is not mainstream.
Imperative programming is a much more popular style to program in. A major
reason for this is that structured programming, which is one of the pillars on
which imperative programming rests, is just much more readable to most people
than a program written by composing higher-order functions.

We want the advantages of purely functional programming, but we also want
to appeal to the mainstream. Fortunately, purely functional programming and
structured programming are not at odds with each other at all, but can eas-
ily be combined in an approach called purely functional structured program-
ming [11]. We have adopted this approach for ProofScript, and therefore it is
possible to program in ProofScript both by composing functions and by writing
block-structured code, including for-loops, while-loops, etc.

As a simple example, consider computing the greatest common divisor of
two integers in ProofScript as shown in Fig. 5. On the left hand side, typical
functional code for computing the gcd is presented. The right hand side displays
an alternative formulation of gcd using structured programming. Both styles
fit within the paradigm of purely functional structured programming, and both
versions of gcd are side-effect free.

338 S. Obua et al.

Fig. 5. Greatest common divisor in ProofScript

2.4 Layout-Sensitive Syntax

Rules that endow indentation and layout with meaning have been adopted by a
diverse range of computer languages, from programming languages like Python,
Haskell or Scala to markup languages like Markdown. It seems that having
explicit rules for layout is especially helpful for novices [12] by removing clutter
in the form of curly braces, semicolons, and the like, making errors more obvious
by making intended, indented and actual structure synonymous.

That is why we have created ProofScript from the start as a language where
indentation and layout is meaningful. ProofScript’s syntax is defined by a context-
free grammar with added explicit annotations which constrain the possible shapes
of parsed text. The technical details of this have been developed over the past
three years and are actually still evolving. It was our hope from the beginning
that semantic layout would not only make it easier directly for the users them-
selves to read and write code, but also that the error recovery mechanisms of the
parser would profit from it – this is important for the interactive experience we are
striving for. As it turns out, this is indeed the case, and has lead us to the discov-
ery of a general way of combining lexing and parsing which we call local lexing [4]
and which will be described in a forthcoming separate paper.

The main use of indentation in ProofScript is to delineate the block structure
of code, making it an ideal companion of our paradigm of purely functional
structured programming. An example is the use of indentation to resolve the
dangling else conflict, as might already be apparent from Fig. 5.

It is often argued that while semantic layout might be beneficial for novices, in
a professional setting meaningful layout is detrimental to productivity. A simple
example is that usually text editors can be configured to equate a tab character
with a fixed number of space characters, often this number is 2 or 4. Differing
editor configurations can thus lead to differing meanings of the same program
code, which is clearly undesirable. Our solution to this particular problem is to
simply disallow the tab character in legal ProofScript. Additionally, we hope to
avoid this problem entirely by letting peers interact with ProofPeer in a web
environment under our control.

Another example is that of the naive use of Landin’s offside rule [13] to
associate indentation with meaning, which leads to code that might easily break
or change its meaning when common automatic refactorings like changing the
name of an identifier are applied to it. The offside rule states that “The southeast

http://proofpeer.net/topics/locallexing

ProofScript: Proof Scripting for the Masses 339

Fig. 6. Instabilities in Landin’s offside rule under refactorings

Fig. 7. Corrected versions of the invalid code in Fig. 6

quadrant that just contains the phrase’s first symbol must contain the entire
phrase [...].” If we apply this rule to the hypothetical code snippets in Fig. 6,
then it would make sense for the left hand side to evaluate to [(11, 10000)]
and for the right hand side to yield [(10000, [101])] (the do* control flow
statement evaluates all expressions in its argument block and returns them as a
tuple). But the right hand side is just a refactoring of the left hand side where
we replaced f with somefunction! To combat this problem, neither of the two
code snippets shown in Fig. 6 are valid ProofScript. We achieve this by only
using layout rules which only compare distances made up entirely of spaces, as
opposed to comparing the lengths of texts made up of arbitrary characters. For
example, we cannot compare the length (in pixels or centimeters) of the text “def
f x = do*” which consists of 13 characters with the length of 13 spaces. This
also solves related problems, such as the fact that a different variable-width font
could possibly change the meaning of a program. The legal ProofScript versions
of the code shown in Fig. 6 are presented in Fig. 7. Clearly, their meaning is stable
under the refactorings f �→ somefunction and somefunction �→ f, respectively.

3 Logical Foundations

Most people who use math do not work in a formal setting. They have been
taught a naive form of set theory, and usually they know that more rigorous
and (hopefully) paradox-free versions exist which are very similar to naive set
theory, like Zermelo Fraenkel set theory (ZF).

To accommodate all of these people, ProofScript’s logic is based on Zermelo
Fraenkel set theory. Isabelle/ZF [14,15] has pioneered how to embed Zermelo
Fraenkel set theory with choice (ZFC) in intuitionistic higher-order logic. Our

340 S. Obua et al.

approach differs from the Isabelle/ZF approach in that we embed ZF in classical
higher-order logic. We call this logic ZFH [17] (the H stands both for higher-
order logic and Hilbert choice). The reason for this is that we want to be able
to draw on the wealth of experience and tools which have been developed in the
realm of classical higher-order logic (HOL).

ZFH is almost identical to the logic of HOL-ST [7] and Isabelle/HOLZF [16],
which embed ZFC within HOL via a special type representing the universe of
ZF sets that comes with the constants and axioms which make up ZF (note that
the axiom of choice is implied by the properties of the Hilbert choice operator
in HOL). A dilemma that comes up in both HOL-ST and Isabelle/HOLZF is
that it is often not clear how to choose between ZF and HOL. Natural numbers
for example could be formalised as a ZF set, but they could also be defined as
a type in HOL. We resolve this dilemma in ZFH by not having any facilities
for defining new HOL types, and by disallowing type variables in terms. This
restriction makes it clear that HOL is to be used as the “meta logic”, whereas
ZF is the logic where all the real work gets done. Because ZFH is a restricted
version of HOL-ST and Isabelle/HOLZF, it is consistent if they are.

In the following we will explain the various parts that constitute ZFH and
how ProofScript’s logical kernel manages them.

3.1 Types and Terms

A type τ is either the universal type of ZF sets U , the propositional/boolean
type P, or a function type τ1 → τ2:

τ ::= U |P |τ1 → τ2.

A term t is either a constant c, a polymorphic constant p[τ], a higher-order
function x : τ1 �→ t, a bound variable x or a higher-order application t1 t2:

t ::= c | p[τ] | x : τ �→ t | x | t1 t2.

We have chosen the notation x : τ �→ t over the notation λx : τ. t because
the former is more familiar to a wider audience than the latter.

There are only three polymorphic constants p: equality =, universal quan-
tification ∀ and existential quantification ∃. All other constants are monomor-
phic constants c; this means in particular that all user-defined constants are
monomorphic.

Terms on their own do not have any type because we do not know the types
of the monomorphic constants c which appear in a term. The type of a term can
only be determined relative to a context C. Contexts are the topic of Sect. 3.3.
For our purposes here we can simply view a context C as a partial function from
constants c to types C(c). We can then define the type ΓC(t) of a term t relative
to a context C as shown in Fig. 8. ΓC is a partial function, and we call t valid (in
C) if ΓC is defined at t, i.e. if ΓC(t) = τ for some type τ . Note that a valid term
has no free variables: in valid ZFH terms, all variables appearing in the term
must be bound to the argument of an enclosing higher-order function.

ProofScript: Proof Scripting for the Masses 341

Fig. 8. The type ΓC(t) of a term t relative to a context C

Because a term without a context is usually useless, the kernel only operates
on certified terms, which are basically pairs (C, t) of a context C and a term t
such that t is valid in C.

3.2 Type Inference

Of course when actually writing down concrete terms in ProofScript, most of
the time there is no need to explicitly provide the type τ in the terms p[τ] and
x : τ �→ t as ProofScript performs fully automatic type inference in the spirit of
Hindley-Milner. This can be done by allowing type variables for the purposes of
the internal type inference algorithm only. There is a caveat though: given that
there are no type variables in ZFH terms, what do we do if the result of the type
inference still contains type variables?

A simple solution to this problem is to replace all type variables simply by U ,
the universe of ZF sets. This makes sense as our focus is on set theory anyway,
so among the infinitely many possible instantiations this is the most likely one.

This is almost the solution we chose; our actual solution is slightly more
involved but allows the overloading of syntactic function application with both
higher-order function application and set theoretic function application. This is
described in detail in [17]. The resulting type inference can be described as being
basically Hindley-Milner, but preferring set-theoretic function application over
higher-order function application and the type U over all other types.

3.3 Contexts and Theorems

We have already pointed out that in ProofScript terms only make sense relative
to a context C. The context is responsible for maintaining a record of which
constants have been defined or introduced so far, and which axioms have been
assumed. Contexts in ProofScript are not derived constructs but axiomatic and
built-in, and the kernel is responsible for their creation and maintenance. The
specification for the concrete syntax of terms is also associated with contexts
but not maintained by the kernel.

342 S. Obua et al.

A context can be thought of as unifying two concepts which in other HOL
systems are separate: that of the global logical state of the kernel (or theory
context in a system that supports theories), and that of the local logical context.

At the start of a theory, a new context is created based on the contexts of
all theories that the theory extends. From then on, there are basically four ker-
nel operations to construct new contexts from existing ones: Introduce, Assume,
Define and Choose. Each of them creates a new context of the kind indicated by
the operation, and each of these new contexts maintains a backpointer to the
context it was created from, its parent context. During the execution of a Proof-
Script theory, a tree of contexts is created, the root being the context created at
the start of the theory.

Theorems are basically certified terms (C, t) such that ΓC(t) = P and such
that t has been proven to represent a true proposition in context C. There are
three different ways to create theorems: (1) Theorems can be created via built-in
functions. Examples are reflexive, which returns theorems of the form (C, t =
t), or the function instantiate, which allows the instantiation of (some of)
the universally quantified variables of an existing theorem. (2) Theorems can be
created by lifting them between contexts. This is described later. (3) Theorems
are created as byproducts of constructing new contexts. This is described in the
following where we discuss the four basic kernel operations for constructing new
contexts.

All of the following kernel operations are being applied to an existing context
C. The newly created context D has C as its parent; the context D also stores
which operation using what parameters created it. Here are the operations:

Introduce(n, τ) takes a name n and a type τ and creates a new context D from
C with an additional constant d with name n and of type τ in D. The name
n is not allowed to belong to any constant c in C.

Assume(t) takes a certified term t of type P and autolifts it into context C (see
Sect. 3.5), resulting in the certified term (C, t′). It then creates a new context
D from C and returns the theorem (D, t′).

Define(n, t) takes a name n and a certified term t. The name n is not allowed
to belong to any constant in C. It first autolifts t into context C, resulting
in the certified term (C, t′). After creating a new context D from C with an
additional constant d with name n and of type ΓC(t′), it returns the theorem
(D, d = t′).

Choose(n, t) takes a name n and a theorem t. The name n is not allowed to
belong to any constant in C, and the theorem must have the form

(C,∀x1 : τ1. . . . ∀xk : τk.∃y : τ. t′) for some k ≥ 0.

We assume that all xi are different from each other (otherwise we would
enforce this via automatic α-conversion).

The operation first creates the context D from C with an additional constant
d with name n and of type τ1 → . . . → τk → τ and then returns the theorem

(D,∀x1 : τ1. . . . ∀xk : τk. t
′[d x1 . . . xk/y]).

ProofScript: Proof Scripting for the Masses 343

3.4 Theories and Namespaces

When a theory has been executed, one of the leaves of its context tree becomes
the completed context of that theory. In principle, it would be possible to select
any of the leaves after the creation of the complete context tree, but instead we
have chosen that during the creation of the context tree of a theory it is always
clear which one of the current leaves of the tree is the one which will lead to
the completed context. The sequence of these designated leaves forms the main
context thread of the theory, which at the end of execution will be the same
as the path from the context at the start of the theory to the final completed
context. The kernel manages the thread by maintaining for each executing theory
a pointer to the current leaf of the main context thread; each time a new context
is created whose parent is on the main context thread (the only exception is
SpawnThread, introduced below), it asks the kernel to put it on the main context
thread as well. The kernel will oblige if the pointer it maintains points to the
parent of the new context, and will adjust it to point now to the new context
instead; otherwise the creation of the new context will fail. Figure 9 illustrates
the main context thread. Note that there are two additional kinds of contexts
for managing the main context thread:

Complete() demands that context C is on the main context thread and creates a
new context D on it which has all unqualified constants removed from it and
which is not allowed to have any children.

SpawnThread() demands that context C is on the main context thread and cre-
ates a new context D which is not on the main context thread.

Start of Theory

Complete

SpawnThread

SpawnThread

Main Context Thread

Fig. 9. Context tree and main context thread

344 S. Obua et al.

The names of logical constants may include a namespace qualification. Only
constants which are introduced on the main context thread may be qualified;
the namespace they are qualified with is of course the namespace of the theory
the main context thread belongs to. Unqualified constants are treated as private
constants which cannot be referred to by extending theories. This is reflected in
how the context at the start of the theory is formed: it contains all and only
the constants of the completed contexts of the theories it extends – and these
constants are all qualified.

Note that it is not allowed to have an Assume context on the main context
thread of any theory except theory root which introduces all axioms of ZFH.
This means that all theories are conservative extensions of the root theory.

3.5 Lifting Between Contexts

We will consider in this section how the kernel lifts theorems and certified terms
between contexts.

Let us first introduce some shorthand notation. For two theories A and B,
let us write B � A if B directly or transitively extends A. Furthermore, for any
context C let us write theory(C) for the theory that C belongs to. Finally, for two
contexts C and D we write D � C if theory(C) = theory(D) and C is a direct or
transitive parent of D.

Consider a theorem or certified term (D, t) which we wish to lift into context
C. In practice, there are only two relevant situations, and the kernel only supports
these: we have either theory(C) � theory(D) or theory(C) = theory(D).

We will first consider the situation where theory(C) = theory(D). If C = D
or C � D then there is nothing to do and the result of the lift is simply the
theorem / certified term (C, t) – an exception arises when C is the completed
context, in which case t may only contain qualified constants. We will defer the
case D � C until later. If none of these cases hold, we find the unique context
C′ in the context tree of the theory such that both D � C′ and C � C′, and such
that for any other C′′ with D � C′′ and C � C′′ we have C′ � C′′. We can now
perform the lift by first lifting (D, t) to (C′, t′) and then lifting (C′, t′) to (C, t′).

Secondly, assume we find ourselves in the situation theory(C)�theory(D). We
then find the completed context D′ of theory(D) and lift (D, t) to (D′, t′). If t′

would contain unqualified constants, which are considered private in theory(D),
the lifting to D′ fails. Otherwise the full lifting yields (C, t′).

Note that for lifting to work as described it is crucial that a name introduced
via a context is different from all names in the parent context so that no “constant
capture” can occur when lifting downwards the context tree.

Lifting Upwards. We will now consider the deferred case D � C. In particular
we consider only the special case where C is the direct parent of D – the general
case is derived from this by lifting along a successive sequence of parents leading
from D to C. We furthermore distinguish by the kind of the context D and
whether we are lifting a theorem or a certified term, and whether the lifting is
done in a canonical or a structure preserving way. Even without the cases for

ProofScript: Proof Scripting for the Masses 345

the context kinds SpawnThread and Complete (which are trivial) this leaves us
with a total of 16 cases. Therefore we treat here only the cases for Introduce.

So assume that we want to lift a theorem (D, t) from an Introduce(n, τ)
context to its parent in a structure preserving way to obtain a theorem (C, t′).
Let c be the constant with name n that has been introduced by the context.
Then we set t′ = ∀x : τ. t[x/c] where x is a fresh variable not occuring as a
bound variable anywhere in t. If instead we lift the canonical way, we arrive at
the same t′ if c actually appears in t; otherwise we just set t′ = t.

Lifting a certified term (D, t) works similarly. When lifting in a structure
preserving way we set t′ = x : τ �→ t[x/c], when lifting canonically we simply set
t′ = t if c does not occur in t and t′ = x : τ �→ t[x/c] otherwise.

Auto Lifting. We have previously used the phrase of autolifting a certified
term (D, t) to context C. By this we simply mean that we lift (D, t) to (C, t′) the
canonical way; but in addition the autolift only succeeds if t and t′ are identical.

Correctness. Introducing contexts as a first-class concept into the kernel and
providing axiomatic lifting between contexts is an interesting and we think
promising new approach to building HOL systems. Contexts correspond closely
to how mathematicians actually reason and it seems to be clear that they are
reducible to ordinary logic; therefore we believe that our implementation of them
is correct. Obviously it would be better to have a formal proof for this which
we do not have yet. But then again, there are only very few theorem proving
systems around where the kernel has actually been proven to be correct.

4 Structured Proof Scripting

Structured proof and purely functional structured programming are such a good
fit, one might almost think that one was made for the other. Both are side-effect
free, and both use a block structure notation which can be nested. Contexts as
introduced in Sect. 3.3 make it easy to marry the two as we will outline in this
section.

To turn purely functional structured programming into structured proof
scripting, we augment the program state with two additional components, the
current context, and the literal context. Literal context and current context are
the same, except during the execution of a function call: then the literal context
is the same as the literal context at the point of the function definition. The
reason for this is that we need both a dynamically scoped context, which is the
current context, and a lexically scoped one, which is the literal context.

There are several built-in statements which manipulate the current context.
One of them is the let-statement which introduces either an Introduce or a Define
context, depending on its argument which is a term literal. For example,

let 'x'

takes the current context, applies Introduce(x,U) to it, and makes the result
the new current context, whereas

346 S. Obua et al.

Fig. 10. A simple theorem

let x_def: 'x = d'

makes the new current context D and binds x def to the theorem
.

Another logical statement is the theorem-statement. Assume the statement
shown in Fig. 10 (left hand side) is issued in the current context C. What is
happening here is that the block starting at let is evaluated to yield the theorem

where D results from C by first applying to it SpawnThread (if C is on
the main context thread) and then Define(p,P) and . The theorem

is lifted back into context C both in a canonical and in a structure
preserving way, and the results are compared with ; if at
least one of them is equal (modulo α/β/η-conversion), and in this case both are,
the lifted theorem is bound to the identifier t (after a possible α/β/η-conversion
to match the theorem statement).

Logical statements and non-logical statements can be freely mixed as shown
in the example in Fig. 10 (right hand side), which proves the same theorem as
the previous example. Note how the current context is dynamically passed along
during the function call prf().

In general it is not a good idea to introduce a logical constant with a fixed
name p within a function because that name might already have been taken
within the context that the function is called with. A more general way to write
prf which avoids name clashes is shown on the left hand side of Fig. 11. The
expression fresh "p" returns a constant name similar to p which has not been
used yet within the current context. This new name is then inserted into the
term literal argument of let via the quote . As a syntactic convenience, this
can be written simply as displayed on the right hand side of Fig. 11.

Fig. 11. Avoiding name clashes with fresh

ProofScript: Proof Scripting for the Masses 347

Quotes are useful not only in the above situation, but whenever one wishes
to insert a string or a term into a term literal. Furthermore, quotes are used
within term literal patterns to designate the holes inside the term literal pattern
which are expected to be filled by the pattern match. For example here is how
one would define a function which takes apart an implication into premise and
conclusion and which fails if the argument term is not an implication:

The allowed term patterns are those of the higher-order pattern fragment
identified by Dale Miller [18,19].

To conclude this outline of structured proof scripting, let us return to the
issue of current and literal context. Our examples so far have shown how the
current context is used and evolved. But what is the literal context good for?
The answer is that the literal context is used for parsing term literals. Imagine
for example you had implemented a theory Geometry in which you define the
logical constant sin. You also provide a helper function which determines if a
term represents the sin function as shown in Fig. 12. Now imagine that another
theory A also shown in Figure 12 extends theory Geometry and defines its own
sin constant. What would you expect the show-statement to print, true or
false? It will print false, as the term literal in theory Geometry refers to
the logical constant \Geometry\sin, and in theory A refers to \A\sin instead.
To implement this behaviour, term literals are parsed by the literal context, and
not by the current context. Note however that quotes within term literals are
evaluated still within the current context, not the literal one.

Fig. 12. Theories Geometry and A

5 Conclusion

We have presented ProofScript, a language for structured proof scripting. We
believe that this language can become a firm and simple foundation of ProofPeer,
our system in the making for collaborative theorem proving. ProofScript today
still needs to grow as a language and as an environment. Many features are still
being developed, among them: extensible syntax, theories with assumptions,
execution of/code generation for functions defined in logic, automation, and an
actual interactive user interface. Yet, it is already a functioning theorem proving
system with promise – we have bootstrapped the system to a point where it can
convert certificates from an automated theorem prover for first-order logic into
valid ProofScript proofs, which is described in a forthcoming paper [5].

348 S. Obua et al.

References

1. ProofPeer. http://www.proofpeer.net
2. Obua, S., Fleuriot, J., Scott, P., Aspinall, D.: ProofPeer: Collaborative Theorem

Proving. arXiv: 1404.6186 (2013)
3. ProofScript. http://proofpeer.net/topics/proofscript
4. Obua, S., Scott, P., Fleuriot, J.: Local Lexing. http://proofpeer.net/papers/

locallexing
5. Scott, P., Obua, S., Fleuriot, J.: Bootstrapping LCF Declarative Proofs. http://

proofpeer.net/papers/bootstrapping
6. Wenzel, M.: Isar — a generic interpretative approach to readable formal proof

documents. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). doi:10.
1007/3-540-48256-3 12

7. Agerholm, S., Gordon, M.: Experiments with ZF set theory in HOL and Isabelle.
In: Thomas Schubert, E., Windley, P.J., Alves-Foss, J. (eds.) TPHOLs 1995. LNCS,
vol. 971, pp. 32–45. Springer, Heidelberg (1995). doi:10.1007/3-540-60275-5 55

8. ProofPeer Root Theory. http://proofpeer.net/repository?root.thy
9. Matichuk, D., Wenzel, M., Murray, T.: An Isabelle proof method language. In:

Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 390–405. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-08970-6 25

10. Gordon, M., Milner, A., Wadsworth, C.: Edinburgh LCF. LNCS, vol. 78. Springer,
Heidelberg (1979). doi:10.1007/3-540-09724-4

11. Obua, S.: Purely Functional Structured Programming. arXiv:1007.3023 (2010)
12. Okasaki, C.: In praise of mandatory indentation for novice programmers, February

2008. http://okasaki.blogspot.co.uk/2008/02/in-praise-of-mandatory-indentation-
for.html

13. Landin, P.: The Next 700 Programming Languages (1966). doi:10.1145/365230.
365257

14. Paulson, L.: Set theory for verification: I. From foundations to functions. J. Autom.
Reason. 11(3), 353–389 (1993). doi:10.1007/BF00881873

15. Paulson, L.: Set theory for verification: II. Induction and recursion. J. Autom.
Reason. 15, 167–215 (1995). doi:10.1007/BF00881916

16. Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 272–286. Springer, Heidelberg
(2006). doi:10.1007/11921240 19

17. Obua, S., Fleuriot, J., Scott, P., Aspinall, D.: Type inference for ZFH. In:
Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS (LNAI), vol. 9150, pp. 87–101. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-20615-8 6

18. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS, vol.
475, pp. 253–281. Springer, Heidelberg (1991). doi:10.1007/BFb0038698

19. Nipkow, T.: Functional Unification of Higher-Order Patterns (1993). doi:10.1109/
LICS.1993.287599

http://www.proofpeer.net
http://arxiv.org/abs/1404.6186
http://arXiv.org/abs/1404.6186
http://proofpeer.net/topics/proofscript
http://proofpeer.net/papers/locallexing
http://proofpeer.net/papers/locallexing
http://proofpeer.net/papers/bootstrapping
http://proofpeer.net/papers/bootstrapping
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/3-540-48256-3_12
http://dx.doi.org/10.1007/3-540-60275-5_55
http://proofpeer.net/repository?root.thy
http://dx.doi.org/10.1007/978-3-319-08970-6_25
http://dx.doi.org/10.1007/3-540-09724-4
http://arxiv.org/abs/1007.3023
http://arXiv.org/abs/1007.3023
http://okasaki.blogspot.co.uk/2008/02/in-praise-of-mandatory-indentation-for.html
http://okasaki.blogspot.co.uk/2008/02/in-praise-of-mandatory-indentation-for.html
http://dx.doi.org/10.1145/365230.365257
http://dx.doi.org/10.1145/365230.365257
http://dx.doi.org/10.1007/BF00881873
http://dx.doi.org/10.1007/BF00881916
http://dx.doi.org/10.1007/11921240_19
http://dx.doi.org/10.1007/978-3-319-20615-8_6
http://dx.doi.org/10.1007/978-3-319-20615-8_6
http://dx.doi.org/10.1007/BFb0038698
http://dx.doi.org/10.1109/LICS.1993.287599
http://dx.doi.org/10.1109/LICS.1993.287599

Automata

Derived-Term Automata for Extended
Weighted Rational Expressions

Akim Demaille(B)

EPITA Research and Development Laboratory (LRDE),
14-16, rue Voltaire, 94276 Le Kremlin-Bicêtre, France

akim@lrde.epita.fr

Abstract. We present an algorithm to build an automaton from a ratio-
nal expression. This approach introduces support for extended weighted
expressions. Inspired by derived-term based algorithms, its core relies
on a different construct, rational expansions. We introduce an induc-
tive algorithm to compute the expansion of an expression from which
the automaton follows. This algorithm is independent of the size of the
alphabet, and actually even supports infinite alphabets. It can easily
be accommodated to generate deterministic (weighted) automata. These
constructs are implemented in Vcsn, a free-software platform dedicated
to weighted automata and rational expressions.

1 Introduction

Foundational to Automata Theory, the Kleene Theorem (and its weighted
extension, the Kleene–Schützenberger Theorem) states the equivalence of
recognizability—the property of being accepted by an automaton—and
rationality—the property of being defined by a rational, or regular, expression.
Numerous constructive proofs (read algorithms) have been proposed to go from
rational expressions to automata, and vice versa. This paper focuses on building
an automaton from an expression.

In 1961 Glushkov [12] provides an algorithm to build a nondeterministic
automaton (without spontaneous transitions) now often called the standard (or
position, or Glushkov) automaton. Earlier (1960), McNaughton and Yamada [15]
proposed the same construct for extended rational expressions (i.e., including
intersection and complement operators), but performed the now usual subset-
automaton construction on-the-fly, thus yielding a deterministic automaton.
A key ingredient of these algorithms is that they build an automaton whose
states represent positions in the rational expression, and computations on these
automata actually represent “executions” of the rational expression.

In 1964 Brzozowski [4] shows that extended expressions can be used directly
as acceptors: following a transition corresponds to computing the left-quotient
of the current expression by the current letter. With a proper equivalence rela-
tion between expressions (namely ACI: associativity, commutativity, and idem-
potence of the addition), Brzozowski shows that there is a finite number of

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 351–369, 2016.
DOI: 10.1007/978-3-319-46750-4 20

352 A. Demaille

equivalence classes of such quotients, called derivatives. This leads to a very
natural construction of a deterministic automaton whose states are these deriv-
atives. A rather discreet sentence [4, last line of p. 484] introduces the concept
of expansion, which is not further developed.

In 1996 Antimirov [3] introduces a novel idea: do not apply ACI equivalence
globally; rather, when computing the derivative of an expression which is a sum,
split it in a set of partial derivatives (or derived terms) — which amounts to
limiting ACI to the sums that are at the very upper level of the expression. A
key feature of the built automaton is that it is non-deterministic; as a result the
worst-case size of the resulting automaton (i.e., its number of states) is linear in
the size of the expression, instead of exponential with Brzozowski’s construct.
Antimirov also suggests not to rely on derivation in implementations, but on
so called linear forms, which are closely related to Brzozowski’s expansions;
derivation is used to prove correctness.

In 2005 Lombardy and Sakarovitch [14] generalize the computation of the
derivation and derived-term automaton to support weights. Since, as is well-
known, not all weighted non-deterministic automata can be determinized, their
construction relies on a generalization of Antimirov’s derived-term that gener-
ates a non-deterministic automaton. In their formalization, Antimirov’s sets of
derived terms naturally turn into weighted sets—each term is associated with
a weight—that they name polynomials (of expressions). However, linear forms
completely disappear, and the construction of the derived-term automaton relies
on derivatives. Independently Rutten [18] proposes a similar construction.

In 2011, Caron et al. [5] complete Antimirov’s construct to support extended
expressions. This is at the price of a new definition of derivatives: sets of sets of
expressions, interpreted as disjunctions of conjunctions of expressions.

The contributions of this paper are threefold. Firstly, we introduce expan-
sions, which generalize Brzozowski’s expansions and Antimirov’s linear forms
to support weighted expressions; they bind together the derivatives, the con-
stant terms and the firsts of an expression (letters with which words of the
language/series start). They make the computation of the derived-term automa-
ton independent of the size of the alphabet, and actually completely eliminate
the need for the alphabet to be finite. Secondly, we provide support for extended
weighted rational expressions, which generalizes both Lombardy and Sakarovitch
[14] and Caron et al. [5]. And thirdly, we introduce a variation of this algorithm
to build deterministic (weighted) automata.

We first settle the notations in Sect. 2, provide an algorithm to compute the
expansion of an expression in Sect. 3, which is used in Sect. 4 to propose an
alternative construction of the derived-term automaton. In Sect. 5 we expose
related work and conclude in Sect. 6.

The concepts introduced here are implemented in Vcsn. Vcsn is a free-software
platform dedicated to weighted automata and rational expressions [10]. It sup-

Derived-Term Automata for Extended Weighted Rational Expressions 353

ports both derivations and expansions, as exposed in this paper, and the corre-
sponding constructions of the derived-term automaton1.

2 Notations

Our purpose is to define, compute, and use rational expansions. They intend
to be to the differentiation (derivation) of rational expressions what differential
forms are to the differentiation of functions. Defining expansions requires several
concepts, defined bottom-up in this section. The following figure should help
understanding these different entities, how they relate to each other, and where
we are heading to: given a weighted rational expression E1 = 〈5〉 1 + 〈2〉 ace +
〈6〉 bce + 〈4〉 ade + 〈3〉 bde (weights are written in angle brackets), compute its
expansion:

Weight︷︸︸︷
〈5〉

︸︷︷︸
Constant term

⊕
Letter︷︸︸︷

a

︸︷︷︸
First

�
[
〈2〉 �

Expression (Sect. 2.2)︷︸︸︷
ce

︸︷︷︸
Derived term

⊕
Monomial︷ ︸︸ ︷
〈4〉 � de

]
⊕ b �

[Polynomial (Sect. 2.3)︷ ︸︸ ︷
〈6〉 � ce ⊕ 〈3〉 � de

]

︸ ︷︷ ︸
Proper part of the expansion︸ ︷︷ ︸
Expansion (Sect. 2.4)

It is helpful to think of expansions as a normal form for expressions.

2.1 Rational Series

Series are to weighted automata what languages are to Boolean automata. Not
all languages are rational (denoted by an expression), and similarly, not all series
are rational (denoted by a weighted expression). We follow Sakarovitch [19].

Let A be a (finite) alphabet, and 〈K,+, ·, 0K, 1K〉 a semiring whose (pos-
sibly non commutative) multiplication will be denoted by implicit concatena-
tion. A (formal power) series over A∗ with weights (or multiplicities) in K

is any map from A∗ to K. The weight of a word m in a series s is denoted
s(m). The support of a series s is the language of words that have a non-zero
weight in s. The empty series, m �→ 0K, is denoted 0; for any word u (includ-
ing ε), u denotes the series m �→ 1K if m = u, 0K otherwise. Equipped with
the pointwise addition (s + t := m �→ s(m) + t(m)) and the Cauchy product
(s · t := m �→ ∑

u,v∈A∗|u·v=m s(u) · t(v)) as multiplication, the set of these series
forms a semiring denoted

〈
K〈〈A∗〉〉,+, ·, 0, ε

〉
.

The constant term of a series s, denoted sε, is s(ε), the weight of the empty
word. A series s is proper if sε = 0K. The proper part of s, denoted sp, is the
proper series which coincides with s on non empty words: s = sε + sp.

1 See the interactive environment, http://vcsn-sandbox.lrde.epita.fr, or http://vcsn.
lrde.epita.fr/dload/2.3/notebooks/expression.derived term.html, its documentation,
or this paper’s companion notebook, http://vcsn.lrde.epita.fr/dload/2.3/notebooks/
ICTAC-2016.html.

http://vcsn-sandbox.lrde.epita.fr
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/expression.derived_term.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/expression.derived_term.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/ICTAC-2016.html
http://vcsn.lrde.epita.fr/dload/2.3/notebooks/ICTAC-2016.html

354 A. Demaille

A weight k ∈ K is starrable if its star, k∗ :=
∑

n∈N
kn, is defined. To

ensure semantic soundness, we suppose that K is a topological semiring, i.e., it is
equipped with a topology, and both addition and multiplication are continuous.
Besides, it is supposed to be strong, i.e., the product of two summable families
is summable. This ensures that K〈〈A∗〉〉, equipped with the product topology
derived from the topology on K, is also a strong topological semiring. The star
of a series is an infinite sum: s∗ :=

∑
n∈N

sn.

Proposition 1. Let K be a strong topological semiring. Let s ∈ K〈〈A∗〉〉, s∗ is
defined iff s∗

ε is defined and then s∗ = s∗
ε + s∗

εsps
∗.

Proof. By [19, Proposition 2.6, p. 396] s∗ is defined iff s∗
ε is defined and then

s∗ = (s∗
εsp)∗s∗

ε = s∗
ε(sps

∗
ε)

∗. The result then follows directly from s∗ = ε + ss∗:
s∗ = s∗

ε(sps
∗
ε)

∗ = s∗
ε(ε + (sps

∗
ε)(sps

∗
ε)

∗) = s∗
ε + s∗

εsp(s∗
ε(sps

∗
ε)

∗) = s∗
ε + s∗

εsps
∗. ��

Rational languages are closed under intersection. When the semiring is com-
mutative, series support a natural generalization of intersection, the Hadamard
product, which we name conjunction and denote &. The conjunction of series s
and t is defined as s & t := m �→ s(m) · t(m).

Rational languages are also closed under complement, but there is no unique
consensus for a generalization for series. In the sequel, we will rely on the follow-
ing definition: “sc is the characteristic series of the complement of the support
of s.” More precisely, sc(m) := s(m)c where ∀k ∈ K, kc := 1K if k = 0K, 0K
otherwise.

Proposition 2. For series s, s′, t, t′, sa, ta ∈ K〈〈A∗〉〉 with a ∈ A, for S, T ⊆ A,
and weights k, h, sε, tε ∈ K:

(s + s′) & t = s & t + s′ & t s & (t + t′) = s & t + s & t′ (1)

(ks) & (ht) = (kh)(s & t) when K is commutative (2)
(
sε +

∑

a∈S

a · sa

)
&

(
tε +

∑

a∈T

a · ta

)
= sεtε +

∑

a∈S∩T

a · (sa & ta) (3)

(
sε +

∑

a∈S

a · sa

)c

= sc
ε +

∑

a∈S

a · sc
a +

∑

a∈A\S

a · 0c (4)

From now on, when conjunction is used, we implicitly assume that the semi-
ring is commutative.

2.2 Extended Weighted Rational Expressions

Several definitions of the weighted rational expressions compete, for instance (i)
depending where the weights are expressions by themselves [8], or only appear
as left- and right-exterior products [1,14], and (ii) on the representation of the
empty word: as a special expression “1” [14], or as a simple label “ε” belonging
to Σ∪{ε} [13, Sect. 3.1], or finally, as a simple instance of a weight-as-expression
for 1K [8]. We follow Sakarovitch [19, Definition III.2.3 p. 399].

Derived-Term Automata for Extended Weighted Rational Expressions 355

Definition 1 (Extended Weighted Rational Expression). A rational (or
regular) expression E is a term built from the following grammar, where a ∈ A
is a letter, and k ∈ K a weight: E ::= 0 | 1 | a | E + E | 〈k〉E | E 〈k〉 | E · E | E∗ |
E & E | Ec.

Since the product of K does not need to be commutative (unless conjunction
is used) there are two exterior products: 〈k〉E and E 〈k〉. The size (aka length) of
an expression E, |E|, is its number of symbols, excluding parentheses; its width
(aka literal length), ‖E‖, is the number of occurrences of letters.

Rational expressions are syntactic objects; they provide a finite notation for
(some) series, which are semantic objects.

Definition 2 (Series Denoted by an Expression). Let E be an expression.
The series denoted by E, noted �E�, is defined by induction on E:

�0� := 0 �1� := ε �a� := a

�E + F� := �E� + �F�
�〈k〉E�

:= k�E�
�
E 〈k〉� := �E�k

�E · F� := �E� · �F� �E∗� := �E�
∗

�E & F� := �E� & �F� �Ec� := �E�
c

An expression is valid if it denotes a series. More specifically, this requires that
�F�

∗ is well defined for each subexpression of the form F∗, i.e., that the constant
term of �F� is starrable in K (Proposition 1). So for instance, 1∗

K
and (a∗)∗ are

valid in B, but invalid in Q. This definition of validity, which involves series
(semantics) to define a property of expressions (syntax), will be made effec-
tive (syntactic) with the appropriate definition of the constant term c(E) of an
expression E (Definition 8).

Two expressions E and F are equivalent iff �E� = �F�. Some expressions
are “trivially equivalent”; any candidate expression will be rewritten via the
following trivial identities. Any subexpression of a form listed to the left of a
‘⇒’ is rewritten as indicated on the right.

E + 0 ⇒ E 0 + E ⇒ E

〈0K〉E ⇒ 0 〈1K〉E ⇒ E 〈k〉 0 ⇒ 0 〈k〉 〈h〉E ⇒ 〈kh〉E
E 〈0K〉 ⇒ 0 E 〈1K〉 ⇒ E 0 〈k〉 ⇒ 0 E 〈k〉 〈h〉 ⇒ E 〈kh〉

(〈k〉E) 〈h〉 ⇒ 〈k〉 (E 〈h〉) � 〈k〉 ⇒ 〈k〉 �

E · 0 ⇒ 0 0 · E ⇒ 0

(〈k〉? 1) · E ⇒ 〈k〉E E · (〈k〉? 1) ⇒ E 〈k〉
0� ⇒ 1

E & 0 ⇒ 0 0 & E ⇒ 0 E & 0c ⇒ E 0c & E ⇒ E

〈k〉? � & 〈h〉? � ⇒ 〈kh〉 � 〈k〉? � & 〈h〉? �′ ⇒ 0

(〈k〉E)c ⇒ Ec (E 〈k〉)c ⇒ Ec

where E stands for a rational expression, a ∈ A is a letter, �, �′ ∈ A ∪ {1} denote
two different labels, k, h ∈ K are weights, and 〈k〉? � denotes either 〈k〉 �, or � in

356 A. Demaille

which case k = 1K in the right-hand side of ⇒. The choice of these identities
is beyond the scope of this paper (see Lombardy and Sakarovitch [14, p. 149]),
however note that, with the exception of the last line, they are limited to trivial
properties; in particular linearity (“weighted ACI”: associativity, commutativity,
and 〈k〉E+ 〈h〉E ⇒ 〈k + h〉E) is not enforced — polynomials will take care of it
(Sect. 2.3). In practice, additional identities help reducing the number of derived
terms [17], hence the final automaton size. The last two rules, about complement,
will be discussed in Sect. 4.3; they are disabled when K has zero divisors for cases
such as (〈x〉 (a + 〈y〉 b))c with xy = 0K.

Example 1. Conjunction and complement can be combined to define new oper-
ators which are convenient syntactic sugar. For instance, E <+ F := E + (Ec & F)
allows to define a left-biased + operator: �E <+ F� (u) = �E� (u) if �E� (u) �= 0K,
�F� (u) otherwise. The following example mocks Lex-like scanners: identifiers are
non-empty sequences of letters of {a, b} that are not reserved keywords. The
expression E3 := 〈2〉 ab <+ 〈3〉 (a + b)+, with weights in Z, maps the “keyword”
ab to 2, and “identifiers” to 3. Once desugared and simplified by the trivial
identities, we have E3 = 〈2〉 ab + ((ab)c & 〈3〉 ((a + b)(a + b)∗)).

2.3 Rational Polynomials

At the core of the idea of “partial derivatives” introduced by Antimirov [3],
is that of sets of rational expressions, later generalized in weighted sets by
Lombardy and Sakarovitch [14], i.e., functions (partial, with finite domain) from
the set of rational expressions into K \ {0K}. It proves useful to view such struc-
tures as “polynomials of rational expressions”. In essence, they capture the lin-
earity of addition.

Definition 3 (Rational Polynomial). A polynomial (of rational expressions)
is a finite (left) linear combination of rational expressions. Syntactically it is
represented by a term built from the grammar P ::= 0 | 〈k1〉�E1 ⊕· · ·⊕〈kn〉�En

where ki ∈ K\{0K} denote non-null weights, and Ei denote non-null expressions.
Expressions may not appear more than once in a polynomial. A monomial is a
pair 〈ki〉 � Ei. The terms of P is the set exprs (P) := {E1, . . . ,En}.

We use specific symbols (� and ⊕) to clearly separate the outer poly-
nomial layer from the inner expression layer. A polynomial P of expressions
can be “projected” as a rational expression expr (P) by mapping its sum and
left-multiplication by a weight onto the corresponding operators on rational
expressions. This operation is performed on a canonical form of the polyno-
mial (expressions are sorted in a well defined order). Polynomials denote series:
�P� :=

�
expr (P)

�
.

Example 2. Let E1 := 〈5〉 1+ 〈2〉 ace+ 〈6〉 bce+ 〈4〉 ade+ 〈3〉 bde. The polynomial
‘P1a := 〈2〉�ce⊕〈4〉�de’ has two monomials: ‘〈2〉�ce’ and ‘〈4〉�de’. It denotes
the (left) quotient of �E1� by a, and ‘P1b := 〈6〉� ce⊕〈3〉�de’ the quotient by b.

Let P = 〈k1〉 � E1 ⊕ · · · ⊕ 〈kn〉 � En be a polynomial, k a weight (possibly
null) and F an expression (possibly null), we introduce the following operations:

Derived-Term Automata for Extended Weighted Rational Expressions 357

P · F := 〈k1〉 � (E1 · F) ⊕ · · · ⊕ 〈kn〉 � (En · F)
〈k〉P := 〈kk1〉 � E1 ⊕ · · · ⊕ 〈kkn〉 � En

P 〈k〉 := 〈k1〉 � (E1 〈k〉) ⊕ · · · ⊕ 〈kn〉 � (En 〈k〉)
P1 & P2 :=

⊕

〈k1〉	E1∈P1
〈k2〉	E2∈P2

〈k1k2〉 � (E1 & E2) Pc := 〈1K〉 � expr (P)c (5)

Trivial identities might simplify the result, e.g., (〈1K〉 � a) & (〈1K〉 � b) =
〈1K〉 � (a & b) = 0. Note the asymmetry between left and right exterior prod-
ucts. The addition of polynomials is commutative, multiplication by zero (be
it an expression or a weight) evaluates to the null polynomial, and the left-
multiplication by a weight is distributive.

Lemma 1. �P · F� = �P� · �F�
�〈k〉P�

= 〈k〉 �P�
�
P 〈k〉� = �P� 〈k〉

�P1 & P2� = �P1� & �P2� �Pc� = �P�
c.

Proof. The first three are trivial. The case of & follows from (1) and (2). Com-
plement follows from its definition: �Pc� =

�〈1K〉 � expr (P)c� =
�
expr (P)c� =

�
expr (P)

�c = �P�
c. ��

2.4 Rational Expansions

Expansions group together a distinguished weight, and, for each letter, its asso-
ciated polynomial. Let [n] denote {1, . . . , n}.

Definition 4 (Rational Expansion). A rational expansion X is a term built
from the grammar X ::= 〈k〉 ⊕ a1 � [P1] ⊕ · · · ⊕ an � [Pn] where k ∈ K is a
weight (possibly null), ai ∈ A letters (occurring at most once), and Pi non-null
polynomials. The constant term is k, the proper part is a1 � [P1] ⊕ · · · ⊕ an �
[Pn], the firsts is {a1, . . . , an} (possibly empty), and the terms are exprs (X) :=⋃

i∈[n] exprs (Pi).

To ease reading, polynomials are written in square brackets. Contrary to expres-
sions and polynomials, there is no specific term for the empty expansion: it is
represented by 〈0K〉, the null weight. Except for this case, null constant terms are
left implicit. Besides their support for weights, expansions differ from Antimirov’s
linear forms in that they integrate the constant term, which gives them a flavor
of series. Given an expansion X, we denote by Xε (or X(ε)) its constant term,
by f(X) its firsts, by Xp its proper part, and by Xa (or X(a)) the polynomial
corresponding to a in X, or the null polynomial if a �∈ f(X). Expansions will thus
be written: X = 〈Xε〉 ⊕ ⊕

a∈f(X) a � [Xa].
An expansion whose polynomials are monomials is said to be deterministic.

An expansion X can be “projected” as a rational expression expr (X) by map-
ping weights, letters and polynomials to their corresponding rational expressions,
and ⊕/� to the sum/concatenation of rational expressions. Again, this is per-
formed on a canonical form of the expansion: letters and polynomials are sorted.
Expansions also denote series: �X� :=

�
expr (X)

�
. An expansion X is said to be

equivalent to an expression E iff �X� = �E�.

358 A. Demaille

Example 3 (Example 2 continued). Expansion X1 := 〈5〉⊕a� [P1a]⊕b� [P1b] has
X1(ε) = 〈5〉 as constant term, and maps the letter a (resp. b) to the polynomial
X1(a) = P1a (resp. X1(b) = P1b). X1 can be proved to be equivalent to E1.

Let X,Y be expansions, k a weight, and E an expression (all possibly null):

X ⊕ Y := 〈Xε + Yε〉 ⊕
⊕

a∈f(X)∪f(Y)

a � [Xa ⊕ Ya] (6)

〈k〉X := 〈kXε〉 ⊕
⊕

a∈f(X)

a � [〈k〉Xa] X 〈k〉 := 〈Xεk〉 ⊕
⊕

a∈f(X)

a � [Xa 〈k〉] (7)

X · E :=
⊕

a∈f(X)

a � [Xa · E] with X proper: Xε = 0K (8)

X & Y := 〈XεYε〉 ⊕
⊕

a∈f(X)∩f(Y)

a � [Xa & Ya] (9)

Xc := 〈Xc
ε〉 ⊕

⊕

a∈f(X)

a � [Xc
a] ⊕

⊕

a∈A\f(X)

a � [0c] (10)

Since by definition expansions never map to null polynomials, some firsts might
be smaller sets than suggested by these equations. For instance in Z the sum of
〈1〉⊕a�[〈1〉�b] and 〈1〉⊕a�[〈−1〉�b] is 〈2〉, and

(
a � [〈1〉 � b]

)
&

(
a � [〈1〉 � c]

)

is 〈0〉 since b & c ⇒ 0. Note that Xc is a deterministic expansion.
The following lemma is simple to establish: lift semantic equivalences, such

as those of Proposition 2, to syntax, using Lemma 1.

Lemma 2. �X ⊕ Y� = �X� + �Y�
�〈k〉X�

= 〈k〉 �X�
�
X 〈k〉� = �X� 〈k〉

�X · E� = �X� · �E� �X & Y� = �X� & �Y� �Xc� = �X�
c.

2.5 Weighted Automata

Definition 5 (Automaton). A weighted automaton A is a tuple 〈A,K, Q,E, I, T 〉
where:

– A (the set of labels) is an alphabet (usually finite), K (the set of weights) is a
semiring,

– Q is a set of states, I and T are the initial and final functions from Q into K,
– E is a (partial) function from Q × A × Q into K \ {0K};

its domain represents the transitions: (source, label , destination).

An automaton is locally finite if each state has a finite number of outgo-
ing transitions (∀s ∈ Q, {s} × A × Q ∩ E is finite). A finite automaton has
a finite number of states. A path p in an automaton is a sequence of tran-
sitions (q0, a0, q1)(q1, a1, q2) · · · (qn, an, qn+1) where the source of each is the
destination of the previous one; its label is the word a0a1 · · · an, its weight is
I(q0) ⊗ E(q0, a0, q1) ⊗ · · · ⊗ E(qn, an, qn+1) ⊗ T (qn+1). The evaluation of word

Derived-Term Automata for Extended Weighted Rational Expressions 359

u by a locally finite automaton A, A(u), is the (finite) sum of the weights of all
the paths labeled by u, or 0K if there are no such path. The behavior of such an
automaton A is the series �A� := u �→ A(u). A state q is initial if I(q) �= 0K. A
state q is accessible if there is a path from an initial state to q. The accessible
part of an automaton A is the subautomaton whose states are the accessible
states of A. The size of a finite automaton, |A|, is its number of states.

Definition 6 (Semantics of a State). Given a weighted automaton A =
〈A,K, Q,E, I, T 〉, inductively2 define a semantic mapping �−� : Q → K〈〈A∗〉〉 as
follows:

– For all q ∈ Q, �q� (ε) := T (q).
– For all q ∈ Q, a ∈ A, and u ∈ A∗, �q� (au) :=

∑
q′∈Q E(q, a, q′)

(�
q′� (u)

)
.

It follows by a simple inductive proof from this definition, that for all u =
a1 . . . an,

�q� (u) =
∑

q1∈Q

· · ·
∑

qn+1∈Q

E(q, a0, q1) · · · E(qn, an, qn+1)T (qn+1)

and from here it follows directly from the definition of �A� that:

�A� (u) =
∑

q∈Q

I(q)
(
�q� (u)

)
(11)

We are interested, given an expression E, in an algorithm to compute an
automaton AE such that �AE� = �E� (Sect. 4). To this end, we first introduce a
simple recursive procedure to compute the expansion of an expression.

3 Computing Expansions of Expressions

3.1 Expansion of a Rational Expression

Definition 7 (Expansion of a Rational Expression). The expansion of
a rational expression E, written d(E), is the expansion defined inductively as
follows:

d(0) := 〈0K〉 d(1) := 〈1K〉 d(a) := a � [〈1K〉 � 1] (12)

d(E + F) := d(E) ⊕ d(F) d(〈k〉E) := 〈k〉 d(E) d(E 〈k〉) := d(E) 〈k〉 (13)

d(E · F) := dp(E) · F ⊕ 〈
dε(E)

〉
d(F) (14)

d(E∗) :=
〈
dε(E)∗〉 ⊕ 〈

dε(E)∗〉 dp(E) · E∗ (15)

d(E & F) := d(E) & d(F) (16)

d(Ec) := d(E)c (17)

where dε(E) := d(E)ε, dp(E) := d(E)p are the constant term/proper part of d(E).
2 The induction is on the length of the word u in �q� (u), which is defined for all q and

all words of the given length simultaneously.

360 A. Demaille

The right-hand sides are indeed expansions. The computation trivially termi-
nates: induction is performed on strictly smaller subexpressions. These formulas
are enough to compute the expansion of an expression; there is no secondary
process for the firsts — indeed d(a) := a � [〈1K〉 � 1] suffices and every other
case simply propagates or assembles the firsts — or the constant terms. In an
implementation a single recursive call to d(E) is performed for (14) and (15),
from which dε(E) and dp(E) are obtained. So for instance (15) should rather be
written: d(E∗) := let X = d(E) in 〈X∗

ε〉 ⊕ 〈X∗
ε〉Xp · E∗. Besides, existing expres-

sions should be referenced to, not duplicated: in the previous piece of code, E∗

is not built again, the input argument is reused.

Lemma 3. For any expression E,
�
d(E)

�
= �E�.

Proof. Proved by induction over E. The proof is straightforward for (12), (13),
(16) and (17), using Lemma 2. The case of multiplication, (14), follows from:

�
d(E · F)

�
=

�
dp(E) · F ⊕ 〈

dε(E)
〉 · d(F)

�
=

�
dp(E)

� · �F� +
〈
dε(E)

〉 · �
d(F)

�

=
�
dp(E)

� · �F� +
〈
dε(E)

〉 · �F� (by inductive hypothesis)

=
(�〈dε(E)〉� +

�
dp(E)

�)
· �F� =

�〈
dε(E)

〉
+ dp(E)

�
· �F�

=
�
d(E)

� · �F� = �E� · �F� (by inductive hypothesis) = �E · F�

It might seem more natural to exchange the two terms (i.e.,
〈
dε(E)

〉 · d(F) ⊕
dp(E) · F), but an implementation first computes d(E) and then computes d(F)
only if dε(E) �= 0K. The case of Kleene star, (15), follows from Proposition 1. ��

By Lemma 3, given an expression E and its expansion d(E) = 〈k〉⊕a1� [P1]⊕
· · · ⊕ an � [Pn], we have �E� =

�〈k〉 ⊕ a1 � [P1] ⊕ · · · ⊕ an � [Pn]
�

and thus, by
the definition of the semantics of an expansion we have: �E� = k + a1 · �P1� +
. . . + an · �Pn�. Now, the following facts on the constant term and left quotients
of �E� immediately follow:

�E�ε = k ai
−1 �E� = �Pi� for 1 ≤ i ≤ n (18)

3.2 Connection with Derivatives

We reproduce here the definition of constant terms and derivatives from
Lombardy et al. [14, p. 148 and Definition 2], with our notations and cover-
ing extended expressions. To facilitate reading, weights such as the constant
term are written in angle brackets, although so far this was reserved to syntactic
constructs.

Definition 8 (Constant Term and Derivative).

c(0) := 〈0K〉 , c(1) := 〈1K〉 , ∂a0 := 0, ∂a1 := 0, (19)
c(a) := 〈0K〉 ,∀a ∈ A, ∂ab := 1 if b = a, 0 otherwise, (20)

Derived-Term Automata for Extended Weighted Rational Expressions 361

c(E + F) := c(E) + c(F), ∂a(E + F) := ∂aE ⊕ ∂aF, (21)
c(〈k〉E) := 〈k〉 c(E), ∂a(〈k〉E) := 〈k〉 (∂aE), (22)
c(E 〈k〉) := c(E) 〈k〉 , ∂a(E 〈k〉) := (∂aE) 〈k〉 , (23)

c(E · F) := c(E) · c(F), ∂a(E · F) := (∂aE) · F ⊕ 〈
c(E)

〉
∂aF, (24)

c(E∗) := c(E)∗, ∂aE
∗ :=

〈
c(E)∗〉 (∂aE) · E∗ (25)

c(E & F) := c(E) · c(F), ∂a(E & F) := ∂aE & ∂aF, (26)
c(Ec) := c(E)c, ∂aE

c := (∂aE)c (27)

where (25) applies iff c(E)∗ is defined in K.

The reader is invited to compare Definitions 7 and 8, which does not include
the computation of the firsts.

The following lemma is a syntactic version of (18).

Lemma 4. For any expression E, d(E)(ε) = c(E), and d(E)(a) = ∂aE.

Proof. A straightforward induction on E. The cases of constants and letters are
immediate consequences of (19) and (20) on the one hand, and (12) on the
other hand. Equation (13) matches (21) to (23). Multiplication (concatenation)
is again barely a change of notation between (14) and (24), and likewise for the
Kleene star ((15) and (25)). Conjunction, (26), follows from (9) and (16), and
complement, (27), from (17) and (10). ��

Lemma 4 states that expansions, like Antimirov’s linear forms, offer a dif-
ferent means to compute the expression derivatives. However expansions seem
to better capture the essence of the process, where the computations of con-
stant terms are tightly coupled with that of the derivations. The formulas are
more concise. Expansions are also “more complete” than derivations, viz., the
expansion of an expression can be seen as a normal-form of this expression:
E ≡ expr

(
d(E)

)
and d(E) = d(expr

(
d(E)

)
). Expansions are more efficient to

perform effective calculations, such as building an automaton (Sect. 4.4).

4 Expansion-Based Derived-Term Automaton

Definition 9 (Derived-Term Automaton). The derived-term automaton of
an expression E is the accessible part of the automaton AE := 〈A,K, Q,E, I, T 〉
defined as follows:

– Q is the set of rational expressions on alphabet A with weights in K,
– E(F, a,F′) = k iff a ∈ f(d(F)) and 〈k〉F′ ∈ d(F)(a),
– I = E �→ 1K, T (F) = k iff 〈k〉 = d(F)(ε).

The resulting automaton is locally finite, and not necessarily deterministic.

362 A. Demaille

Input : E, a rational expression
Output : 〈E, I, T 〉 an automaton (simplified notation)

I(E) := 1K ; // Unique initial state

Q := Queue(E) ; // A work list (queue) loaded with E
while Q is not empty do

E := pop(Q) ; // A new state/expression to complete

X := d(E) ; // The expansion of E
T (E) := X(ε) ; // Final weight: the constant term

foreach a � [Pa] ∈ X do // For each first/polynomial in X
foreach 〈k〉 � F ∈ Pa do // For each monomial of Pa = X(a)

E(E, a,F) := k ; // New transition

if F �∈ Q then
push(Q, F) ; // F is a new state, to complete later

end

end

end

end
Algorithm 1. Building the derived-term automaton. The set of states is
implicitly grown when transitions are added.

Example 4 (Examples 2 and 3 continued). We have d(E1) = X1. AE1 is:

E1 = 〈5〉1 + 〈2〉ace + 〈6〉bce + 〈4〉ade + 〈3〉bde
〈5〉
ce

de

e 1

〈2〉a, 〈6〉b

〈4〉a, 〈3〉b

c

d

e

It is straightforward to extract an algorithm from Definition 9, using a work-
list of states whose outgoing transitions to compute (see Algorithm 1). This
approach admits a natural lazy implementation: the whole automaton is not
computed at once, but rather, states and transitions are computed on-the-fly,
on demand, for instance when evaluating a word.

Theorem 1. Any (valid) expression E and its expansion-based derived-term
automaton AE denote the same series, i.e., �AE� = �E�.

This theorem is a straightforward consequence of the following lemma. To
make sure we do not get confused between, on the one hand, the semantics �E� of
expressions, and on the other hand the (as above defined) semantics of states in
the derived term-automaton (which are also given by expressions), let the state
associated with an expression E be denoted by qE. Thus, the semantics of the
state corresponding to E in the derived term automaton is written as �qE�.

Lemma 5. For all rational expressions E, �E� = �qE�.

Proof. We show by induction on the length of words u, that for all expressions
E and all words u, �E� (u) = �qE� (u), from which the desired result follows.

Derived-Term Automata for Extended Weighted Rational Expressions 363

Base case. Say we are given an expression E, with d(E) = 〈k〉⊕ a1 � [P1]⊕ · · ·⊕
an � [Pn]. We have �E� (ε) = k by (18); similarly, by the definition of semantics
of a state in an automaton and the definition of the derived term automaton,
we have �qE� (ε) = T (qE) = k, as k = d(E)(ε).

Inductive case. Assume the statement holds for all words u with |u| < n and
all expressions E. Now let v = au be a word with |v| = n, and say, we have an
expression E, again with d(E) = 〈k〉 ⊕ a1 � [P1] ⊕ · · · ⊕ an � [Pn].

If a = ai for some i with 1 ≤ i ≤ n, we then have �E� (au) = (a−1 �E�)(u) =
�Pi� (u). Now let Pi be of the form

Pi = 〈k1〉 � F1 ⊕ . . . ⊕ 〈km〉 � Fm, (28)

giving:

�E� (au) = �Pi� (u)

=
�〈k1〉 � F1 ⊕ . . . ⊕ 〈km〉 � Fm

�
(u) (def. of Pi, (28))

=
(
k1 �F1� + . . . + km �Fm�

)
(u) (def. of expr)

= k1 �F1� (u) + . . . + km �Fm� (u) (general fact about power series)

= k1 �qF1� (u) + . . . + km �qFm� (u) (inductive hypothesis)

We also have (again assuming that a = ai, and thus that a ∈ f(d(E)))

�qE� (au) =
∑

q′∈Q

E(qE, a, q′)
(

�
q′� (u)

)
(Definition 6)

and, by the definition of E in the derived term automaton, we have E(qE, a, qF) =
k iff 〈k〉F ∈ d(E)(a) = Pi. This gives (using our expansion (28) of Pi)

�qE� (au) = k1 �qF1� (u) + . . . + km �qFm
� (u)

and completes the inductive case whenever a = ai for some i.
Finally, if a �= ai for all i, it is easy to see that �E� (au) = 0 = �qE� (au), and

the inductive step is now complete. ��
Proof (Theorem 1). Follows from Lemma 5, and the fact, resulting from the
definition of I in Definition 9 in combination with (11), that �AE� = �qE�. ��

4.1 Derived-Term Automaton Size

The smallness of the derived-term automaton for basic operators (|AE| ≤ ‖E‖+1)
[14, Theorem 2]) no longer applies with extended operators. Let m and n be
coprime integers, E := (am)∗ & (an)∗ has width ‖E‖ = m + n; it is easy to see
that |AE| = mn. It is also a classical result that the minimal (trim) automaton
to recognize the language of Fn := (a + b)∗a(a + b)n has 2n+1 states; so ‖Fc

n‖ =
2n + 3, but |AFc

n
| = 2n+1 + 1 (the additional state is the sink state needed

to get a complete deterministic automaton before complement). Actually, when
complement is used on an infinite semiring, it is not even guaranteed that the
automaton is finite (see Sect. 4.3).

364 A. Demaille

Theorem 2. If K is finite, or if E has no complement, then AE is finite.

Proof. The proof goes in several steps. First introduce the proper derived terms
of E, a set of expressions noted PD(E), and the derived terms of E, D(E) :=
PD(E) ∪ {E}. PD(E) is defined inductively as in [14, Definition 3], to which we
add

PD(E & F) := {Ei & Fj | Ei ∈ PD(E),Fj ∈ PD(F)}
PD(Ec) := {(〈k1〉E1 + · · · + 〈kn〉En)c | k1, . . . , kn ∈ K,E1, . . . ,En ∈ PD(E)}

Second, verify that PD(E) is finite (under the proper assumptions). Third, prove
that D(E) is “stable by expansion”, i.e., ∀F ∈ D(E), exprs

(
d(F)

) ⊆ D(E). Finally,
observe that the states of AE are therefore members of D(E), which is finite. ��

4.2 Deterministic Automata

The exposed approach can be used to generate deterministic automata by deter-
minizing the expansions: det(X) :=

⊕
a∈f(X) 〈1K〉 � expr (Xa). The expr opera-

tor “consolidates” a polynomial into an expression that ensures this determin-
ism. For instance the expansion a � [〈1K〉 � b ⊕ 〈1K〉 � c], which would yield
two transitions labeled by a (one to b and the other to c) is determinized into
a � [〈1K〉 � (b + c)], yielding a single transition (to b + c).

It is well known that some nondeterministic weighted automata have no deter-
ministic equivalent, in which case determinization loops. Our construct is subject
to the same condition. The expression E := a∗ + (〈2〉 a)∗ on the alphabet {a}
admits an infinite number of derivatives: ∂an(E) = a∗ ⊕ 〈2n〉 (〈2〉 a)∗. Therefore
our construction of deterministic automata would not terminate: the automaton
is locally finite but infinite (and there is no finite deterministic automaton equiv-
alent to E). However, a lazy implementation as available in Vcsn (see footnote 1)
would uncover the automaton on demand, for instance when evaluating a word.

a∗ + (〈2〉a)∗

〈2〉
a∗ + 〈2〉(〈2〉a)∗

〈3〉
a∗ + 〈4〉(〈2〉a)∗

〈5〉
a∗ + 〈8〉(〈2〉a)∗

〈9〉

a a a

To improve determinizability, when K features a left-division \, we apply the
usual technique used in the weighted determinization of automata: normalize
the results to keep a unique representative of colinear polynomials. Concretely,
when determinizing expansions, polynomials are first normalized: det(X) :=⊕

a∈f(X)

〈|Xa|〉 � expr
(|Xa| \ Xa

)
where, for a polynomial P =

⊕
i∈I 〈ki〉 � Ei,

and a weight k, k \ P :=
⊕

i∈I

〈
k \ ki

〉 � Ei, and the weight |P| denotes some
“norm” of (the coefficients of) P. For instance |P| can be the GCD of the ki (so
that the coefficients are coprime), or, in the case of a field, the first non null ki

(so that the first non null coefficient is 1K), or the sum of the ki provided it’s
not null (so that the sum of the coefficients is 1K), etc.

Example 5 (Examples 2 to 4 cont.). The deterministic derived-term automaton
of E1 using GCD-normalization is:

Derived-Term Automata for Extended Weighted Rational Expressions 365

E1 = 〈5〉1 + 〈2〉ace + 〈6〉bce + 〈4〉ade + 〈3〉bde
〈5〉

ce + 〈2〉de

〈2〉ce + de

e 1

〈2〉a

〈3〉b

c, 〈2〉d

〈2〉c, d

e

4.3 The Case of Complement

The classical algorithm to complement an (unweighted) automaton, by comple-
mentation of the set of the final states, requires a deterministic and complete
automaton (which can lead to an exponential number of states). In our case
“local” determinism (i.e., restricted to complemented subexpressions) is ensured
by expr in the definition of the complement of an expansion in (5) and (10).

In the case of weighted expressions, we hit the same problems—and apply the
same techniques—as in Sect. 4.2: not all expressions generate finite automata.
A strict (non-lazy) implementation would not terminate on

(
a∗ + (〈2〉 a)∗)c;

a lazy implementation would uncover finite portions of the automaton, on
demand. However, although F := (〈2〉 a)∗ + (〈4〉 aa)∗ admits an infinite num-
ber of derivatives, Fc features only two:

(〈2〉 (〈2〉 a)∗ + 〈4〉 (a(〈4〉 aa)∗)
)c ⇒(

(〈2〉 a)∗ + 〈2〉 (a(〈4〉 aa)∗)
)c and itself. It is the trivial identity (〈k〉E)c ⇒ Ec

that eliminates the common factor.

Example 6 (Example 1 continued). We have:

d(E3) = a � [〈2〉 � b ⊕ 〈3〉 � (
bc & (a + b)∗)] ⊕ b � [〈3〉 � (a + b)∗]

The lower part of AE3 is characteristic of the complement of a complete deter-
ministic automaton:

〈2〉 (a b) + (a b)c & 〈3〉 (a + b) (a + b)∗)

b

bc & (a + b)∗ 1c & (a + b)∗

(a + b)∗

1〈2〉 a

〈3〉 a

〈3〉 b

b

a

b

a, b

a, b

4.4 Complexity and Performances

We focus on basic expressions. Obviously, ‖E‖ ≤ |E|, and we know |AE| ≤ ‖E‖+1.
The complexity of Antimirov’s algorithm is O(‖E‖3|E|2) [7]: for each of

the |AE| states, we may generate at most |AE| partial derivatives, each one to
compare to the |AE| derived-terms. That’s O(|AE|3) comparisons to perform on
objects of size O(|E|2).

366 A. Demaille

However, hash tables allow us to avoid these costly comparisons. For each of
the |AE| states, we may generate at most |AE| partial derivatives and number
them via a hash table. Computing an expansion builds an object of size O(|E|2),
however using references instead of deep copies allows to stay linear, so the
complexity is O(‖E‖2|E|).

To build the derived-term automaton using derivation, one loops over the
alphabet for each derived term. This incurs a performance penalty with large
alphabets. Let ai, bi, for i ∈ [m], be distinct letters. The following table reports
the duration of the process, in milliseconds, for Em

n :=
∑m

i=1(ai + bi)∗ai(ai + bi)n

(right associative) by Vcsn3. The parameter m controls the alphabet size: 2, 128,
and 254 (Vcsn reserves two chars) corresponding to m = 1, 64, and 127. The
parameter n makes the expression arbitrarily long.

n

m 1 10 50 100 500 1000

derivation 1 0.07 0.16 0.93 2.7 48.4 199

64 17.1 84.0 548 1,471 23,608 87,137

127 64.4 319 2,041 5,407 85,611 323,652

expansion 1 0.04 0.11 0.48 1.3 17.8 76

64 1.82 6.40 39.19 100 1,368 4,951

127 3.62 12.92 75.70 205 2,741 10,045

The expansion-based algorithm always performs better than the derivation-
based one, dramatically on large alphabets on this benchmark.

One can optimize the derivation-based algorithm by computing the firsts
globally [17] or locally, on-the-fly, and then derivating on this set. However, on
sums such as a1 + · · · + an (where ai are distinct letters) the expansion requires
a single traversal (O(n)) whereas one still needs n derivations, an O(n2) process.

Besides, the derivation-based algorithm computes the constant term of an
expression several times: to check whether the current state is final, to compute
the derivation of products and stars, and to compute the firsts of products. To
fix this issue, these repeated computations can be cached.

Addressing both concerns (iteration over the alphabet, repeated computation
of the constant term) for the derivation-based algorithm requires three tightly
entangled algorithms (constant term, derivation, first). Expansions, on the other
hand, keep them together, in a single construct, computed in a single traversal
of the expression.

3 Vcsn 2.2 as of 2016-05-16, compiled with Clang 3.6 with options -O3 -DNDEBUG, and
run on a Mac OS X 10.11.4, Intel Core i7 2.9GHz, 8GB of RAM. Best run out of
five.

Derived-Term Automata for Extended Weighted Rational Expressions 367

5 Related Work

Compared to Brzozowski [4] we introduced weighted expansions, and their direct
computation, making them the core computation of the algorithm. This was
partly done for basic Boolean expressions by Antimirov [3] as “linear forms.”

Our work is deeply influenced by Lombardy and Sakarovitch [14] and shares
many similarities. However, by carefully avoiding the derivatives with respect
to words, we get simpler proofs for Theorems 1 and 2. Besides, these proofs
free us from the requirement of a yielding a finite automaton, which is needed
to establish the correctness of Vcsn’s on-the-fly computation of infinite derived-
term automata. We also introduced the construction of deterministic (weighted)
derived-term automata. Fischer et al. [11] also make profit from laziness to
address non rational languages (such as anbncn); however their approach is quite
different: their core construction is the Glushkov automaton, and they use named
rational expressions to build “infinite rational expressions”, gracefully handled
thanks to Haskell’s laziness.

There is a striking similarity between (non-weighted) expansions, and aux-
iliary tools used by Mirkin to define a “prebase” of an expression [16]. See for
instance the proof of Proposition 1 as reproduced by Champarnaud and Ziadi [6].

Aside from our support for weighted expressions, our approach of extended
operators is comparable to that of Caron et al. [5], but, we believe, using a simpler
framework. Basically, their sets of sets of expressions correspond to polynomials
of conjunctions: their {{E,F}, {G,H}} is our E & F ⊕ G & H. Using our frame-
work, the automaton of Fig. 3 [5] has one state less, since {E,F} and {E ∩ F}
both are E & F. Actually, the main point of sets of sets of expressions is cap-
tured by our distributive definition of the conjunction of polynomials, (5), which
matches that of their ∩ operator; indeed what they call the “natural extension”
[5, Sect. 3.1] would correspond to P1 & P2 := expr (P1) & expr (P2). Additional
properties of & (e.g., associativity), can be enabled via new trivial identities. Like
us, their ¬ operator ensures that complemented expressions generate determin-
istic automata.

For basic (weighted) expressions, completely different approaches build
the derived-term automaton with a quadratic complexity [1,8]. However, the
expansion-based algorithm features some unique properties. It supports a sim-
ple and natural on-the-fly implementation. It provides insight on the built
automata by labeling states with the language/series they denote (e.g., Vcsn
renders derived-term automata as in Examples 4 to 6). It is a flexible framework
in which new operators can be easily supported (e.g., the shuffle and infiltration
operators in Vcsn), and even multitape rational expressions to generate trans-
ducers [9]. It supports the direct construction of deterministic automata. And
it copes easily with alternative derivation schemes, such as the “broken derived-
terms” [2].

368 A. Demaille

6 Conclusion

The construction of the derived-term automaton from a weighted rational expres-
sion is a powerful technique: states have a natural interpretation (they are iden-
tified by their future: the series they compute), extended rational expressions
are easily supported, determinism can be requested, and it even offers a natural
lazy, on-the-fly, implementation to handle infinite automata.

To build the derived-term automaton, we generalized Brzozowski’s expan-
sions to weighted expressions, and an inductive algorithm to compute the expan-
sion of a rational expression. The formulas on which this algorithm is built
reunite as a unique entity three facets that were kept separated in previous works:
constant term, firsts, and derivatives. This results in a simpler set of equations,
a proof that does not require the resulting automaton to be finite, and an imple-
mentation whose complexity is independent of the size of the alphabet and even
applies when it is infinite (e.g., when labels are strings, integers, etc.). Build-
ing the derived-term automaton using expansions is straightforward, even when
required to be deterministic. We have also shown that using proper techniques,
the complexity of the algorithm is much better that previously reported.

The computation of expansions and derivations are implemented in Vcsn
(see footnote 1), together with their automaton construction procedures (pos-
sibly lazy, possibly deterministic). Our implementation actually supports for
additional operators on rational expressions (e.g., shuffle and infiltration).

Acknowledgments. Interactions with A. Duret-Lutz, S. Lombardy, L. Saiu and
J. Sakarovitch resulted in this work. Anonymous reviewers made very helpful com-
ments. In particular, an anonymous reviewer of ICALP 2016 contributed the proof of
Theorem 1, much simpler than the original one (which was still based on derivatives),
and proposed the benchmark of Sect. 4.4.

References

1. Allauzen, C., Mohri, M.: A unified construction of the Glushkov, follow, and
Antimirov automata. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 110–121. Springer, Heidelberg (2006). doi:10.1007/11821069 10

2. Angrand, P.-Y., Lombardy, S., Sakarovitch, J.: On the number of broken derived
terms of a rational expression. J. Automata Lang. Comb. 15(1/2), 27–51 (2010)

3. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. TCS 155(2), 291–319 (1996)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended

regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21254-3 13

6. Champarnaud, J.-M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word par-
tial derivatives. Fundam. Inf. 45(3), 195–205 (2001)

7. Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. TCS 289(1), 137–163 (2002)

http://dx.doi.org/10.1007/11821069_10
http://dx.doi.org/10.1007/978-3-642-21254-3_13
http://dx.doi.org/10.1007/978-3-642-21254-3_13

Derived-Term Automata for Extended Weighted Rational Expressions 369

8. Champarnaud, J.-M., Ouardi, F., Ziadi, D.: An efficient computation of the equa-
tion K-automaton of a regular K-expression. In: Harju, T., Karhumäki, J., Lepistö,
A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 145–156. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-73208-2 16

9. Demaille, A.: Derived-term automata of multitape rational expressions. In: Han,
Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 51–63. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-40946-7 5

10. Demaille, A., Duret-Lutz, A., Lombardy, S., Sakarovitch, J.: Implementation con-
cepts in Vaucanson 2. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982,
pp. 122–133. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39274-0 12

11. Fischer, S., Huch, F., Wilke, T.: A play on regular expressions: functional pearl. In:
Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2010, pp. 357–368. ACM (2010)

12. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53
(1961)

13. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Comput.
Linguist. 20(3), 331–378 (1994)

14. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
TCS 332(1–3), 141–177 (2005)

15. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Trans. Electron. Comput. 9, 39–47 (1960)

16. Mirkin, B.G.: An algorithm for constructing a base in a language of regular expres-
sions. Eng. Cybern. 5, 110–116 (1966)

17. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

18. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. TCS 308(1–3), 1–53 (2003)

19. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009).
Corrected English translation of Éléments de théorie des automates, Vuibert, 2003

http://dx.doi.org/10.1007/978-3-540-73208-2_16
http://dx.doi.org/10.1007/978-3-319-40946-7_5
http://dx.doi.org/10.1007/978-3-642-39274-0_12

Weighted Register Automata and Weighted
Logic on Data Words

Parvaneh Babari(B), Manfred Droste, and Vitaly Perevoshchikov

Institut für Informatik, Universität Leipzig, 04109 Leipzig, Germany
{babari,droste,perev}@informatik.uni-leipzig.de

Abstract. In this paper, we investigate automata models for quanti-
tative aspects of systems with infinite data domains, e.g., the costs of
storing data on a remote server or the consumption of resources (e.g.,
memory, energy, time) during a data analysis. We introduce weighted
register automata on data words and investigate their closure properties.
In our main result, we give a logical characterization of weighted register
automata by means of weighted existential monadic second-order logic;
for the proof we employ a new class of determinizable visibly register
automata.

1 Introduction

In the areas of static analysis of databases and software verification, there is much
interest in processing information taken from an infinite domain. The notion of
data words is a well-known concept for the modelling of these situations. A data
word can be considered as a sequence of pairs where the first element is taken from
a finite alphabet (as in classical words) and the second element is taken from an
infinite data domain. Register automata introduced by Kaminski and Francez [18]
provide a widely studied model for reasoning on data words. These automata can
be considered as classical nondeterministic finite automata equipped with a finite
set of registers which are used to store data in order to compare it with some data
in the future. This enables them to handle parameters like user names, passwords,
identifiers of connections, etc., in a fashion similar to, and slightly more expressive
than, the class of data-independent systems. This model served as a basis for the
study of various automata models and logics on data words and trees [6,9,16,17,
19]. Classical timed automata of Alur and Dill [2] for real-time systems are another
example of automata on data (timed) words.

For many Computer Science applications, quantitative properties of systems
such as costs, probabilities, vagueness and uncertainty of a statement, consump-
tion of memory and energy are of significant importance. Weighted automata
(cf. [13] for surveys) form a well-known model for quantitative aspects which has
been extended to various different settings (cf., e.g., weighted timed automata
[5,20] for the quantitative analysis of real-time systems). In this paper, we intro-
duce weighted register automata for quantitative reasoning on data words. Moti-
vated by the seminal Büchi-Elgot-Trakhtenbrot theorem [11] about the expressive

P. Babari—Supported by DFG Graduiertenkolleg 1763 (QuantLA).

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 370–384, 2016.
DOI: 10.1007/978-3-319-46750-4 21

Weighted Register Automata and Weighted Logic on Data Words 371

equivalence of finite automata and monadic second-order (MSO) logic and by the
weighted MSO logic of Droste and Gastin [12], we introduce weighted MSO logic
on data words and give a logical characterization of weighted register automata.

To the best of our knowledge, quantitative extensions of register automata
have not been studied yet. However, there is a plenty of quantitative models
which are quite natural in the context of register automata. We give several
examples. For instance, since register automata process data taken from an infi-
nite domain, there arises a natural question about the efficiency of the processing
of big data which can invoke big costs for data storing and data comparison. As
another example, one may ask about the maximal size of data which will be
stored in registers along a computation of a register automaton. Thus, our goal
is to develop a model which will reflect this kind of data-dependent costs. Now
we give a summary of our results.

We introduce weighted register automata over commutative data semirings
equipped with a collection of binary data functions in the spirit of the classical
theory of weighted automata [13]. Whereas in the models of register automata
known from the literature data are usually compared with respect to equality or
a linear order, here we allow data comparison by means of an arbitrary collec-
tion of binary data relations. This approach permits easily to incorporate timed
automata [2] and weighted timed automata [5,20] into our framework. More-
over, this approach gives rise to the further investigations of the models for data
processing, e.g., data comparison with an approximation error.

We introduce semiring-weighted existential MSO logic on data words
equipped with binary data functions. Recall that weighted MSO logic on classical
words is introduced and investigated in [12]. In order to model data compari-
son, we use the data predicates in the spirit of relative distance predicates of
Wilke [21]. Our goal is to prove the expressive equivalence of this new logic with
weighted register automata. To reach this goal, we faced the following difficulties.

– The unrestricted use of binary data functions and weighted universal quanti-
fiers goes beyond recognizability even for very simple formulas.

– Register automata are neither determinizable nor closed under complement.

In order to overcome these problems, we obtain the suitable fragment of our
weighted existential MSO logic by restricting the use of the weighted universal
quantifier to formulas without weighted quantifiers and by restricting the use of
data functions to an intuitively defined logical operator. In our main result, we
state that this restricted weighted EMSO-logic is equivalent to weighted register
automata. The existing proof techniques and ideas for weighted logic cannot be
applied in our setting, since register automata are not closed under complement
and we need a new construction to deal with binary data functions. For this
purpose, we introduce a determinizable class of unweighted register automata,
called visibly register automata. In visibly register automata, the transition label
determines which registers will be updated when taking a transition. This deter-
minizable class of register automata could be also of independent interest. More-
over, we introduce a new normalization technique for the binary data functions,
in order to provide a translation of formulas with weighted universal quantifiers

372 P. Babari et al.

into weighted register automata. With this, we achieve our goal; moreover, our
construction of weighted register automata equivalent to a given weighted MSO
formula is effective.

2 Register Automata

Register automata are nondeterministic finite state automata on data words
equipped with a finite set of registers for storing data (from an infinite data
domain) and comparison of new data instances with the already stored data.
Whereas in the original definition of register automata [18] it is only possible to
check the equality of data, the later models augment a data domain with a linear
order and allow to compare data with respect to this linear order. However, more
complicated situations of data comparison are reasonable as well (cf., e.g., timed
automata [2] or Example 2.2). In this paper, we consider the model of register
automata where we augment a data domain with some arbitrary binary relations
which will be used for data comparison. Notice that our register automata also
incorporate timed automata [2].

For a set X, let P(X) = {Y | Y ⊆ X}, the powerset of X. A data structure is a
pair D = 〈D,R〉 where D is an arbitrary set called a data domain and R is a set of
binary relations on D called data relations. For the convenience of presentation,
we assume throughout all of this paper that D contains a designated initial data
value ⊥ ∈ D which will be the initial data value of all registers. An alphabet is
a non-empty finite set. Let Σ be an alphabet and D = 〈D,R〉 a data structure.
A data word over Σ and D is a finite sequence w = (a1, d1)...(an, dn) where
a1, ..., an ∈ Σ and d1, ..., dn ∈ D. Let DΣ+ = (Σ × D)+ stand for the set of all
data words over Σ and D. Any subset L ⊆ DΣ+ is called a data language.

Let Reg be a finite set of registers which take values from the data domain
D of the data structure D. A register valuation over Reg and D is any mapping
ϑ : Reg → D. Let Val(Reg, D) denote the collection of all register valuations over
Reg and D. For a register valuation ϑ ∈ Val(Reg, D), a subset Λ ⊆ Reg and a
data value d ∈ D, the update ϑ[Λ := d] is the register valuation in Val(Reg, D)
defined for all registers r by ϑ[Λ := d](r) = d if r ∈ Λ and ϑ[Λ := d](r) = ϑ(r)
otherwise. The set Guard(Reg, D) of register guards over Reg and D is defined by
the grammar

φ ::= True | Rr | φ ∧ φ | ¬φ

where r ∈ Reg and R is a data relation in D. Given a register valuation ϑ ∈
Val(Reg, D), a data value d ∈ D and a register guard φ ∈ Guard(Reg, D), the
satisfaction relation (ϑ, d) |= φ is defined inductively on the structure of φ as fol-
lows: (ϑ, d) |= True always holds; (ϑ, d) |= Rr iff (ϑ(r), d) ∈ R; (ϑ, d) |= φ1 ∧ φ2

iff (ϑ, d) |= φ1 and (ϑ, d) |= φ2; (ϑ, d) |= ¬φ iff (ϑ, d) |= φ does not hold.

Definition 2.1. Let Σ be an alphabet and D a data structure. A register
automaton over Σ and D is a tuple A = (Q,Reg, I,T ,F) where Q is a finite
set of states, Reg is a finite set of registers, I,F ⊆ Q are sets of initial resp. final
states, and T ⊆ Q × Σ × Guard(Reg, D) × 2Reg × Q is a finite set of transitions.

Weighted Register Automata and Weighted Logic on Data Words 373

We denote a transition t = (q, a,φ,Λ, q′) ∈ T by q
a−−→

φ,Λ
q′. Let label(t) =

a ∈ Σ, the label of t. A configuration of A is a pair c = 〈q,ϑ〉 consisting of a
state q ∈ Q and a register valuation ϑ ∈ Val(Reg, D). We say that c is initial
if q ∈ I and ϑ(r) = ⊥ for all r ∈ Reg. We call c final if q ∈ F . Let c = 〈q,ϑ〉
and c′ = 〈q′,ϑ′〉 be configurations of A, t ∈ T a transition of the form p

a−−→
φ,Λ

p′,

and d ∈ D a data value. We say that c 	t,d c′ is a switch from c to c′ via the
transition t and the data value d if p = q, p′ = q′, (ϑ, d) |= φ and ϑ′ = ϑ[Λ := d].
Note that c′ is uniquely determined by c, t and d. A run ρ of A is a non-empty
sequence of switches between configurations starting in an initial configuration
and ending in a final configuration. Formally, ρ is a sequence of the form c0 	t1,d1

c1 	t2,d2 ... 	tn,dn
cn where n ≥ 1, c0 is an initial configuration, c1, ..., cn−1 are

configurations, cn is a final configuration, t1, ..., tn ∈ T and d1, ..., dn ∈ D. Let
label(ρ) = (label(t1), d1)...(label(tn), dn) ∈ DΣ+ be the label of ρ. For any data
word w ∈ DΣ+, let RunA(w) denote the set of all runs of A with label w. Let
L(A) = {w ∈ DΣ+ | RunA(w) �= ∅}, the data language recognized by A.

Example 2.2. Now we give some examples of data structures for register
automata. For any data domain D, let (=D) ⊆ D × D denote the data rela-
tion {(d, d) | d ∈ D}.

(a) Let D be any non-empty set. Then, D = (D, {=D}) is a data structure
which corresponds to the original model of register automata [18]. Note that
the register automata of [18] are also equipped with an initial vector of data
values. In order to model this feature in our setting, we can extend the set of
data relations of D with the set {Rd | d ∈ D} where Rd = {(d′, d) | d′ ∈ D}
for all d ∈ D.

(b) Let (D,<D) be a linear order with a non-empty set D. Then, (D, {=D,<D})
is a data structure for the register automata considered in [17].

(c) In various situations, exact data values are not known and we deal with their
approximated values, e.g., obtained from some experiments. Therefore, it can
be reasonable to compare data values with respect to a given approximation
error. For instance, let the data domain D be the set of all rational numbers.
For any nonnegative rational number ε, let Rε = {(q, q′) | q, q′ ∈ D and |q−q′|
≤ ε}. Note that R0 is equal to =D. Then, (D, {Rε | ε ≥ 0}) is a data structure
for register automata with approximated values.

(d) In this example we show that timed automata [2] are also included in our
model. The idea is that instead of clock resets and clock constraints of the
form x �	 k (where x is a clock, �	 ∈ {<, =,>} and k ∈ N) we can record
instants when the clock x is reset in a register rx and replace x �	 k by
the constraint t − rx �	 k where t is the current time moment. Let D be
the set of non-negative real numbers. For �	 ∈ {<, =,>} and k ∈ N, let
R��k = {(t, t′) | t, t′ ∈ D and t′ − t �	 k}. Note that R=0 is equal to =D.
Then, D

Timed =
(
D, {R��k | �	 ∈ {<, =,>} and k ∈ N}) is a data structure

for timed automata; here we take ⊥ = 0 as the initial data value. Note
that register automata over D

Timed can accept non-monotonic data sequences
(which do not correspond to timed words). These difficulties can be avoided if

374 P. Babari et al.

we add a special register r̃ which will control the monotonicity of a data word.
The register r̃ is updated after taking every transition and the constraint
(R≥0)r̃ is added to every transition.

3 Weighted Register Automata

In this section, we introduce weighted register automata as a quantitative model
for reasoning about data words. They extend the qualitative register automata
of the previous section with weights and reflect the following quantitative infor-
mation:

– As in classical weighted automata [13], transitions of our model also carry
weights which do not depend on data.

– As opposed to weighted automata, weighted register automata must be able
to process data taken from an infinite data domain. Therefore, the size of data
can be very large and processing of such data can be expensive. Our weighted
model takes into account the costs of data processing.

Note that our weighted register automata model is different from the cost register
automata model of Alur et al. [1], because cost register automata run on words
over a finite alphabet and the registers are used to compute the weight of a run
and can be updated depending on the previous register values. In contrast, in
our model we deal with data words over an infinite alphabet and the registers
can be updated only depending on the current input data value.

In order to be able to reflect various quantitative settings, we will consider a
general structure for weighted register automata. For this purpose, we adopt the
structure of semirings (as in the classical weighted automata [13]) to our new
setting of data words.

For any sets X,Y , let Y X denote the collection of all mappings f : X → Y .
For y ∈ Y , let yX denote the mapping yX : X → {y}. A data semiring over
a data structure D = 〈D,R〉 is a pair S =

〈S,F〉
where S = (S, +, ·, 0, 1) is a

semiring and F ⊆ SD×D such that 1D×D ∈ F . We call S commutative if S is a
commutative semiring, i.e., s · s′ = s′ · s for all s, s′ ∈ S.

Definition 3.1. Let Σ be an alphabet, D a data structure and S = 〈(S, +, ·,
0, 1),F〉 a data semiring over D. A weighted register automaton (WRA) over Σ,
D and S is a tuple A = (Q,Reg, I,T ,F ,wt) where (Q,Reg, I,T ,F) is a register
automaton over Σ and D, and wt = 〈wttrans,wtdata〉 is a pair of weight functions
such that wttrans : T → S and wtdata : (T × Reg) → F .

Note that wttrans : T → S can be considered as a weight function of the classical
weighted automata [13] and describes data-independent costs for transitions.
The weight function wtdata assigns to every transition t ∈ T , every register
r ∈ Reg, every data value d stored in r and every new data value d′ ∈ D the cost
wtdata(t, r)(d, d′) ∈ S of data processing in the register r which includes the cost
of comparison d with d′ and, if necessary, the cost of storing d′ in the register r.

Weighted Register Automata and Weighted Logic on Data Words 375

Let c = 〈q,ϑ〉 and c′ = 〈q′,ϑ′〉 be configurations of A and c 	t,d c′ a switch
between them. Then, its weight is defined as the product of the costs of data
processing in the registers (defined by wtdata) and the transition cost of wttrans(t).
Formally, we let wt(c 	t,d c′) =

∏
r∈Reg wtdata(t, r)(ϑ(r), d) · wttrans(t). Now let

ρ =
(
c0 	t1,d1 c1 	t2,d2 ... 	tn,dn

cn

)
be a run of A. Then, the weight of ρ

is defined as the product of the weights of all switches of ρ. Formally, we let
wt(ρ) =

∏n
i=1 wt(ci−1 	ti,di

ci). Then, the behavior of A is the mapping [[A]] :
DΣ+ → S defined for all w ∈ DΣ+ by [[A]](w) =

∑(
wt(ρ) | ρ ∈ RunA(w)

)
.

We will call any mapping L : DΣ+ → S a data series over Σ, D and S. Let
S〈〈DΣ+〉〉 denote the collection of all data series over Σ, D and S. We say that
L ∈ S〈〈DΣ+〉〉 is recognizable if there exists a WRA A over Σ, D and S such that
[[A]] = L.

Example 3.2.

(a) Consider the arctic semiring Arc = (N ∪ {−∞},max,+,−∞, 0) of natural
numbers. Let D = 〈D,R〉 be a data structure augmented with a size function
size : D → N (e.g., length of a data string or number of bits of an integer).
Let F1 be the collection of functions fc : D × D → N with c ∈ N and
fc(d, d′) = c · size(d′) for all d, d′ ∈ D. The collection F1 can be useful, e.g.,
for the cases where we need to estimate the costs of checking the equality of
data or to update a register. Then 〈Arc,F1〉 is a data semiring. Alternatively,
we can consider the collection F2 of functions gk,l : D×D → N with k, l ∈ N

and gk,l(d, d′) = k · size(d)+ l · size(d′) for all d, d′ ∈ D. The collection F2 can
be useful, e.g., for the cases where we need to estimate the costs of finding
a pattern in a data string (e.g., using the well-known Knuth-Morris-Pratt
algorithm). Then 〈Arc,F2〉 is a data semiring.

(b) A semiring weighted timed automata (WTA) model of [5] was investigated
in [20]. We show that WTA can be simulated by our WRA model. Let
S = (S, +, ·, 0, 1) be an arbitrary semiring. As discussed in Example 2.2(d),
we take the data structure D

Timed and use a designated register r̃ which will
be updated after taking every transition. Note that WTA of [5] have location
weight functions from a family G ⊆ SR≥0 . In the case of WRA, we can
simulate a unary function g ∈ G by, e.g., the binary function fg ∈ SR≥0×R≥0

such that, for all t, t′ ∈ R≥0, fg(t, t′) = g(t′ − t) if t ≤ t′ and fg(t, t′) = 1
otherwise. Note that S = 〈S, {fg | g ∈ G}〉 is a data semiring. Then, the
location weight functions g can be reflected as wtdata(t, r̃) = fg where t is a
transition of a WRA over Timed and S.

Example 3.3. Consider the data structure 〈D, {=D}〉 of Example 2.2 (a) and the
alphabet Σ = {a}. For w ∈ DΣ+ and d ∈ D, let |w|d ∈ N be the number of d’s in
w. Let L : DΣ+ → N be a data series defined by L(w) = maxd∈D |w|d. Consider
the data semiring S = 〈Arc, {1D×D}〉 and the WRA A, with a single register r,
over Σ, D and S depicted in Fig. 1. Moreover, for all transitions t of A, we put
wtdata(t, r) = 1D×D. Then [[A]] = L. Note that in Fig. 1 we omit the transition
label a, register guard True and the empty register update; upd(r) means that
the register r is updated.

376 P. Babari et al.

1 2

upd(r)
wttrans = 1 ?(¬(=Dr))

wttrans = 0

?(=Dr)
wttrans = 1wttrans = 0

Fig. 1. The WRA A of Example 3.3

We establish some basic closure properties for the class of recognizable data
series. We will apply them in the proof of our logical characterization result.
Note that the class of timed series recognizable by weighted timed automata of
[20] is not stable under the Hadamard product even in the case of commutative
semirings (cf. Example 5 of [20]). Interestingly, our model of WRA extends
weighted timed automata and the class of recognizable data languages is closed
under the Hadamard product in the case of commutative semiring. This is due
to the fact that in WRA we assign a data-dependent weight to every register.

Let Σ be an alphabet, D = 〈D,R〉 a data structure and S = 〈(S, +, ·, 0, 1),F〉
a commutative data semiring over D. Let L1, L2 ∈ S〈〈DΣ+〉〉 be data series. The
sum L1 + L2 ∈ S〈〈DΣ+〉〉 and the Hadamard product L1 � L2 ∈ S〈〈DΣ+〉〉 are
defined by (L1 + L2)(w) = L1(w) + L2(w) respectively (L1 � L2)(w) = L1(w) ·
L2(w) for all w ∈ DΣ+. Let Γ be an alphabet and h : Γ → Σ a mapping called
henceforth a renaming. For a data word u = (a1, d1)...(an, dn) ∈ DΓ+, let h(u) =
(h(a1), d1)...(h(an), dn) ∈ DΣ+. For a data series L ∈ S〈〈DΓ+〉〉, the renaming
h(L) ∈ S〈〈DΣ+〉〉 is defined for all w ∈ DΣ+ by h(L)(w) =

∑(
L(u) | u ∈

DΓ+ and h(u) = w
)
. For a data series L ∈ S〈〈DΣ+〉〉, the inverse renaming

h−1(L) ∈ S〈〈DΓ+〉〉 is defined for all u ∈ DΓ+ → S by h−1(L)(u) = L(h(u)).

Lemma 3.4. The class of data series recognizable over Σ, D and S is closed
under the sum, Hadamard product, renaming and inverse renaming.

4 Weighted Existential MSO Logic for Data Words

In this section we introduce weighted existential monadic second-order (wEMSO)
logic over data semirings for data words augmented with binary data func-
tions. Then we show that a suitable fragment of our weighted logic and our
weighted register automata model are expressively equivalent. As in [8], in order
to describe easily boolean properties, we introduce two levels of formulas: boolean
and weighted. We operate with the boolean formulas as in the usual logic. On
the weighted level, we add weights and binary functions from a data semiring
and extend the logical operations by computations in the data semiring.

4.1 Weighted Existential MSO Logic

Let V1 and V2 be countable pairwise disjoint sets of first-order and second-order
variables. Let V = V1 ∪ V2. Let Σ be an alphabet, D = (D,R) a data structure
with the initial data value ⊥ ∈ D and S = 〈(S, +, ·, 0, 1),F〉 a data semiring

Weighted Register Automata and Weighted Logic on Data Words 377

over D. Weighted first-order logic wFO(Σ, D, S) over Σ, D and S is defined by
the grammar

β ::= Pa(x) | x ≤ y | x ∈ X | R(X,x) | β ∨ β | ¬β | ∃x.β
ϕ ::= β | s | f(x, y) | f(⊥, y) | ϕ ⊕ ϕ | ϕ ⊗ ϕ | ⊕

x.ϕ | ⊗
x.ϕ

where a ∈ Σ, x, y ∈ V1, X ∈ V2, R ∈ R, s ∈ S and f ∈ F . The formulas β
are called boolean over Σ and D. Let Bool(Σ, D) denote the set of all boolean
formulas. Note that a formula R(X,x) relates to a relative distance formula
of Wilke [21] and reflects the performance of a register r: here the second-order
variable X keeps track of positions where r is updated; moreover, at the position
x the register guard Rr is checked. Using boolean formulas, we define the boolean
formulas x < y, x = y, x /∈ X, β1 ∧ β2, ∀x.β, β1 → β2 and β1 ↔ β2 as usual.

Weighted existential MSO logic wEMSO(Σ, D, S) over Σ, D and S is defined
to be the set of all formulas of the form

⊕
X1...

⊕
Xn.ϕ where n ≥ 0,

X1, ...,Xn are second-order variables and ϕ ∈ wFO(Σ, D, S). Given a formula
ψ ∈ wEMSO(Σ, D, S), the set Free(ψ) ⊆ V of free variables of ψ is defined as
usual. We say that ψ is a sentence if Free(ψ) = ∅.

Let w = (a1, d1)...(an, dn) ∈ DΣ+ be a data word. Let dom(w) = {1, ...,n},
the domain of w. A w-assignment is a mapping σ : V → dom(w) ∪ P(dom(w))
which maps first-order variables to elements in dom(w) and second-order vari-
ables to subsets of dom(w). For a first-order variable x and a position i ∈ dom(w),
the w-assignment σ[x/i] is defined on V \ {x} as σ, and we let σ[x/i](x) = i. We
also let σ[x/i] �V \{x}= σ �V \{x}. For a second-order variable X and I ⊆ dom(w),
the w-assignment σ[X/I] is defined similarly. Given a formula β ∈ Bool(Σ, D)
and a w-assignment σ, the satisfaction relation (w,σ) |= β is defined by
induction on the structure of β as usual where, for new formulas of the form
R(X,x), we let (w,σ) |= R(X,x) iff, letting d0 = ⊥, for the greatest position
i ∈ σ(X) ∪ {0} with i < σ(x) we have (di, dσ(x)) ∈ R. Since the satisfaction
relation depends only on values of free variables, we will abuse notation and also
write (w,σ|U) |= β for any U ⊆ V with Free(β) ⊆ U .

Let DΣ+
V denote the set of all pairs (w,σ) where w ∈ DΣ+ and σ is

a w-assignment. Given a formula ψ ∈ wEMSO(Σ, D, S), the semantics of ψ
is the mapping [[ψ]]V : DΣ+

V → S defined for all (w,σ) ∈ DΣ+
V with w =

(a1, d1)...(an, dn) as shown in Table 1. If ψ is a sentence, then we can ignore
the w-assignments in the definition of the semantics and consider it as the data
series [[ψ]] : DΣ+ → S.

Table 1. The semantics of wEMSO-formulas

[[β]](w, σ) =
1, if (w,σ) |= β,

0, otherwise
[[s]](w, σ) = s
[[f(x, y)]](w,σ) = f(dσ(x), dσ(y))
[[f(⊥, y)]](w,σ) = f(⊥, dσ(y))

[[ϕ1 ⊕ ϕ2]](w, σ) = [[ϕ1]](w, σ) + [[ϕ2]](w, σ)
[[ϕ1 ⊗ ϕ2]](w, σ) = [[ϕ1]](w, σ) · [[ϕ2]](w, σ)
[[x.ϕ]](w,σ) = i∈dom(w)[[ϕ]](w, σ[x/i])

[[x.ϕ]](w,σ) = i∈dom(w)[[ϕ]](w, σ[x/i])

[[X.ϕ]](w, σ) = I⊆dom(w)[[ϕ]](w, σ[X/I])

378 P. Babari et al.

Example 4.1. Consider the data series L of Example 3.3. Note that L is definable
by the wEMSO(Σ, D, S)-sentence

⊕
X.

⊕
x.[(X = {x}) ⊗ ⊗

(y > x).([R(X, y) ⊗
1] ⊕ ¬R(X, y))] where X = {x} is an abbreviation for the formula ∀z.(z ∈ X ↔
z = x),

⊗
(y > x).ϕ abbreviates the formula

⊗
y.([(y > x) ⊗ ϕ] ⊕ [y ≤ x]), and

R = (=D).

4.2 Restricted wEMSO

Our goal is to study the connection between weighted register automata and our
new weighted logic on data words. Similarly to the result of [12], the unrestricted
use of formulas of the form

⊗
x.ϕ leads to unrecognizable data series. Below we give

a further example of unrecognizability which is specific for wEMSO on data words.

Example 4.2. Let Σ = {a} be a singleton alphabet and D be a data structure
with the data domain N. Consider the data semiring S = 〈Arc,F〉 where Arc
is the arctic semiring of Example 3.2 (a) and F = {0N×N, f} where f : N ×
N → N is defined by f(n,n′) = n for all n,n′ ∈ N. Consider the sentence
ϕ ∈ wEMSO(Σ, D, S) defined by ϕ =

⊕
x.

⊕
y.f(x, y). Note that, for every n ∈ N

and the data word wn = (a,n) ∈ DΣ+ of length 1, we have [[ϕ]](wn) = n. Now
suppose that there exists a WRA A over Σ, D and S with [[A]] = [[ϕ]]. Then there
exists a constant M ∈ N such that [[A]](wn) ≤ M for all n ∈ N. A contradiction.

Now we investigate a fragment of wEMSO which is expressively equivalent
to WRA. We follow the approach of Wilke [21] for a logical characterization
of timed automata where the use of every expressive time distance predicate
dist(x, y) �	 k with x, y ∈ V1, �	 ∈ {<, =,>} was restricted to relative time
distance predicates dist(X, y) �	 k with X ∈ V2 (note that the relative time
distance predicates correspond to the formulas R(X, y) in our logic Bool(Σ, D)).
We replace the formulas f(x, y) by the formulas f(X, y) whose semantics is
defined in a similar manner as for R(X, y) as follows. For f ∈ F , a first-order
variable x and a second-order variable X, let f(X,x) denote the wFO(Σ, S, D)-
formula

⊕
y.(β(X,x, y) ⊗ f(y,x)) ⊕ (β′(X,x) ⊗ f(⊥,x)) where β(X,x, y) is the

boolean formula y ∈ X ∧ y < x ∧ ∀z.([y < z ∧ z < x] → z /∈ X) and β′(X,x) is
the boolean formula ∀y.(y < x → y /∈ X). Then, for all (w,σ) ∈ DΣ+ with w =
(a1, d1)...(an, dn), we have [[f(X,x)]](w,σ) = f(di, dσ(x)) where i ∈ σ(X) ∪ {0}
is the greatest position with i < σ(x) and d0 = ⊥.

The following example shows that the use of our new logical operator f(X,x)
in the scope of a weighted quantifier

⊗
y with y �= x also goes beyond recogniz-

ability by WRA.

Example 4.3. Let Σ = {a} be an alphabet and D be a data structure with
the data domain N. Consider the data semiring S = 〈Arc,F〉 with F =
{0N×N, f} where f is defined for all n,n′ ∈ N by f(n,n′) = n′. Con-
sider the sentence ϕ ∈ wEMSO(Σ, D, S) defined by ϕ =

⊕
X.

⊕
x.(β(X,x) ⊗⊗

y.f(X,x)) where y �= x and the boolean formula β(X,x) is defined as
∀y.y ≤ x ∧ ∀y.(y ∈ X ↔ ∀z.y ≤ z). Note that β(X,x) describes that x is the

Weighted Register Automata and Weighted Logic on Data Words 379

last position of a data word and X is the set containing only the first position of
a data word. For any n ≥ 2 and the data word wn = (a, 0)n−1(a,n) ∈ DΣ+, we
have [[ϕ]](wn) = n2. Suppose that there exists a WRA A over Σ, D and S with
[[A]] = [[ϕ]]. Then, there exists a constant M ∈ N such that [[A]](wn) ≤ M · n for
all n ≥ 2. A contradiction.

Now, based on the explanations above, we will define the desired fragment of
wEMSO for WRA. Similarly to [12], we must restrict the use of

⊗
x to simplified

formulas without weighted quantifiers. Let x be a first-order variable. We say
that a formula γ ∈ wFO(Σ, D, S) is almost boolean over x if it is derived by the
grammar

γ ::= β | s | f(X,x) | γ ⊕ γ | γ ⊗ γ

where β ∈ Bool(Σ, D), s ∈ S, f ∈ F and X is a second-order variable. Let
aBool[x](Σ, D, S) denote the set of all almost boolean formulas over x. Then,
restricted weighted first-order logic wFOres(Σ, D, S) ⊆ wFO(Σ, D, S) is defined by
the grammar

ϕ ::= β | s | f(X,x) | ϕ ⊕ ϕ | ϕ ⊗ ϕ | ⊕
x.ϕ | ⊗

x.γ

where β ∈ Bool(Σ, D), s ∈ S, f ∈ F , x is a first-order variable, X is a second-
order variable and γ ∈ aBool[x](Σ, D, S). Restricted weighted existential MSO
logic wEMSOres(Σ, D, S) ⊆ wEMSO(Σ, D, S) is defined to be the set of all formu-
las of the form

⊕
X1...

⊕
Xn.ϕ where n ≥ 0, X1, ...,Xn are second-order variables

and ϕ ∈ wFOres(Σ, D, S).
We say that a fragment Frag ⊆ wEMSO(Σ, D, S) is expressively equivalent to

WRA if, for every data series L : DΣ+ → S, L is recognizable by a WRA over
Σ, D and S iff L is definable by a sentence in Frag.

Theorem 4.4. Let Σ be an alphabet, D a data structure, and S a commuta-
tive data semiring over D. Then wEMSOres(Σ, D, S) is expressively equivalent to
WRA.

In the following two sections we will represent the results which are the main
ingredients to prove Theorem 4.4.

5 Determinizable Class of Register Automata

Two of the main difficulties of the proof of Theorem4.4 are that register
automata are neither determinizable nor closed under complement. The goal
of this section is to investigate a subclass of register automata which can be
applied in the proof of our logical characterization result. Our determinizable
subclass could be also of independent interest.

The idea is to make the register updates visible in transition labels. Note
that a similar idea was applied in event-clock automata [3] and visibly push-
down automata [4]. However, the class of languages recognizable by event-clock

380 P. Babari et al.

automata is not closed under renamings of input symbols [3], and thus, this
model is not suitable for the translation of logical formulas. Recall that in event-
clock automata, the input alphabet is arbitrary and with every letter a clock is
associated. In contrast, in our model we take an arbitrary set of registers and an
input alphabet is defined depending on this set of registers.

Throughout all of this section, we fix an alphabet Σ, a data structure D =
(D,R) and a finite set of registers Reg. Let Σ〈Reg〉 denote the alphabet Σ ×
{0, 1}Reg. A visibly register automaton over Σ, D and Reg is a register automaton
A over Σ〈Reg〉 and D with the set of registers Reg such that, for every transition

q
(a,θ)−−−→
φ,Λ

q′ of A where q, q′ are states, a ∈ Σ, θ ∈ {0, 1}Reg, Λ ⊆ Reg and φ is

a register guard, we have Λ = {r ∈ Reg | θ(r) = 1}. Note that A recognizes
the language L(A) ⊆ D

(
Σ〈Reg〉)+. Note also that visibly register automata form

a subclass of register automata. We say that a register automaton A over Σ
and D is deterministic if it has a single initial state and whenever p

a−−→
φ,Λ

q

and p
a−−−→

φ′,Λ′
q′ are two distinct transitions of A, then φ and φ′ are mutually

exclusive, i.e., for all registers valuations ϑ and all data values d ∈ D, we have
(ϑ, d) � φ ∧ φ′. We call A complete if for all states p of A, all letters a ∈ Σ, all
register valuations ϑ and all data values d ∈ D, there exists a transition p

a−−→
φ,Λ

q

of A with (ϑ, d) |= φ.

Theorem 5.1. Let A be a visibly register automaton over Σ, D and Reg. Then,
there exists a deterministic and complete visibly register automaton A′ over Σ,
D and Reg such that L(A) = L(A′).

Proof (Sketch). The proof follows a similar idea as the proof of Theorem 1 of
[3] about determinization of event-clock automata. Let A = (Q,Reg, I,T ,F) be
a visibly register automaton over the alphabet Σ recognizing the data language
L(A). From A we construct a visibly register automaton A′ = (Q′,Reg, I ′,T ′,F ′)
with L(A′) = L(A), where Q′ = P(Q), I ′ = {I}, F ′ = {U ⊆ Q | U ∩ F �=
∅}. T ′ is defined as follows. Suppose that U ∈ P(Q) and (a, θ) ∈ Σ〈Reg〉. Let
(ti)i∈{1,...,m} be an enumeration of the set of all transitions in T with label (a, θ)

starting in a state from U . For each i ∈ {1, ...,m} let ti =
(
pi

(a,θ)−−−→
φi,Λ

qi

)
with

Λ = {r ∈ Reg | θ(r) = 1}. For any subset J ⊆ {1, ...,m}, we add to T ′ the tran-

sition t′ =
(
U

(a,θ)−−−→
φJ ,Λ

U ′) where U ′ = {qi | i ∈ J} with φJ =
∧

i∈J φi ∧ ∧
i/∈J ¬φi.

With this construction, we can show that A′ is deterministic and complete and
L(A′) = L(A).

Let Γ ,Δ be alphabets and h : Γ → Δ a renaming. We say that a mapping
h : D

(
Γ 〈Reg〉)+ → D

(
Δ〈Reg〉)+ is a Reg-independent renaming if it is induced

by a mapping h̃ : Γ → Δ. Then, for data languages L ⊆ D
(
Γ 〈Reg〉)+ and

L′ ⊆ D
(
Δ〈Reg〉)+, the Reg-independent renaming h(L) ⊆ D

(
Δ〈Reg〉)+ and Reg-

independent inverse renaming h−1(L) ⊆ D
(
Γ 〈Reg〉)+ are defined as usual. Using

Weighted Register Automata and Weighted Logic on Data Words 381

Theorem 5.1 for the complement, it is not difficult to verify the closure properties
for visibly register automata stated in the next lemma.

Lemma 5.2. The class of data languages recognizable by visibly register
automata over an arbitrary alphabet, D and Reg is closed under union, intersec-
tion and complement, Reg-independent renaming and Reg-independent inverse
renaming.

Now let β ∈ Bool(Σ, D) be a formula and Reg the set of all second-order vari-
ables X occurring in a subformula of β of the form R(X,x). Using the standard
encoding of free variables, we encode the set of all pairs (w,σ|Free(β)) such that
(w,σ) ∈ DΣ+ and (w,σ) |= β as the data language L(ϕ) ⊆ D

(
Γ 〈Reg〉)+ where

Γ = Σ × {0, 1}Free(β)\Reg. Using Lemma 5.2 and Theorem 5.1, one can show by
induction the following theorem.

Theorem 5.3. Let β ∈ Bool(Σ, D) be a formula and Reg the set of all second-
order variables X occurring in a subformula of β of the form R(X,x). Then,
there exists a deterministic visibly register automaton A over Γ , D and Reg such
that L(A) = L(ϕ).

6 Definability Equals Recognizability

The proof of the fact that recognizability implies definability relies on a similar
construction as the proof of Theorem 29 of [20]:

Theorem 6.1. Let A be a WRA over Σ, D and S. Then there exists a sentence
ϕ ∈ wEMSOres(Σ, D, S) such that [[ϕ]] = [[A]].

Now we turn to the converse direction of Theorem 4.4. Our proof will fol-
low a similar strategy as the proof of the corresponding theorem in [12], i.e.,
we proceed by induction on the structure of the formula, encode the values of
variables as letters of an extended alphabet and apply closure properties stated
in Lemma 3.4 of our paper. A crucial problem occurs with the

⊗
x-quantifiers

and this case requires a new proof technique, since unweighted register automata
are not determinizable and our almost boolean formulas contain functions of the
form f(X,x) where f is taken from F which is not necessarily closed under +
and ·. We solve this problem by translating a wEMSOres-sentence into a sentence
where

⊗
x-quantifiers are applied to formulas of the simplified form. Then, using

our Theorem 5.3, we can construct a WRA for
⊗

x-formulas.
For simplicity, we denote the triple (Σ, D, S) by Υ . Let x ∈ V1 be a first-order

variable. We say that a formula κ ∈ wFO(Υ) is a semi-granular weight formula
over Υ and x if it is of the form s ⊗ f1(X1,x) ⊗ ... ⊗ fr(Xr,x) where s ∈ S,
r ≥ 0, f1, ..., fr ∈ F and X1, ...,Xr are second-order variables. If X1, ...,Xr

are pairwise distinct, then κ is called a granular weight formula. Let Gran[x](Υ)
denote the set of all granular weight formulas over Υ and x. We say that a formula
γ ∈ aBool[x](Υ) is a simple almost boolean formula over Υ and x if it is of the form

382 P. Babari et al.

⊕n
i=1(βi ⊗ κi) where n ≥ 1, κ1, ...,κn ∈ Gran[x](Υ) and β1, ...,βn ∈ Bool(Σ, D)

are boolean formulas (not necessarily mutually exclusive). We say that a formula
ψ ∈ wEMSOres(Υ) is canonical over Υ if whenever it contains a subformula of
the form

⊗
x.γ, then γ is a simple almost boolean formula over Υ and x. Now

we show that each sentence ψ ∈ wEMSOres(Υ) can be translated into a canonical
sentence over Υ :

Lemma 6.2. Let ψ ∈ wEMSOres(Υ) be a sentence. Then, there exists a canon-
ical sentence ζ over Υ such that [[ζ]] = [[ψ]].

Proof (Sketch). First, using the commutativity and distributivity of the data
semiring S, we can replace every almost boolean formula γ ∈ aBool[x](Υ) occur-
ring in ψ by a formula γ′ =

⊕n
i=1(βi ⊗ κi) where β1, ...,βn ∈ Bool(Σ, D) and

each κi is a semi-granular weight formula over Υ and x which is of the form
si ⊗ ⊗r

k=1fik(Yk,x). Let η ∈ wEMSOres(Υ) be the sentence obtained after these
replacements. Second, we replace semi-granular weight formulas in η by granu-
lar weight formulas. The idea is the following. Assume that η =

⊕
X1, ...,Xk.ϕ

with ϕ ∈ wFOres(Υ). In the case when ϕ contains a semi-granular formula
κ = s ⊗ f1(Y1,x) ⊗ ... ⊗ fi(Yi,x) ⊗ ... ⊗ fj(Yj ,x) ⊗ ... ⊗ fn(Yn,x) with i �= j
and Yi = Yj , then we take a fresh second-order variable Z and replace η by the
sentence

⊕
X1, ...,Xk,Z.([∀z.(z ∈ Z ↔ z ∈ Yi)]⊗ ϕ̃) where ϕ̃ is obtained from ϕ

by replacing the variable Yj in κ by the fresh variable Z. Following this process,
in finitely many steps we can get rid of all repeating second-order variables in
semi-granular weight formulas and obtain the desired canonical sentence ζ with
[[ζ]] = [[ψ]].

Theorem 6.3. Let ψ ∈ wEMSOres(Σ, S, D) be a sentence. Then there exists a
WRA A over Σ, S and D such that [[A]] = [[ψ]].

Proof (Sketch). By Lemma 6.2, we may assume that ψ is canonical. We pro-
ceed by induction on the structure of a subformula ζ of ψ. As usual, whenever
ζ contains free variables, ζ will be translated into a WRA over the extended
alphabet Σ × {0, 1}Free(ζ). We restrict ourselves to the most interesting case
ζ =

⊗
x.γ. Since ψ is canonical, γ is a simple almost boolean formula. Let

Reg be the set of all second-order variables Y such that γ has a subformula
of the form R(Y ,x) with R ∈ R or f(Y ,x) with f ∈ F . Let (Yi)1≤i≤r be an
enumeration of Reg. Using 0, 1 and 1D×D, we can transform γ into the form
γ′ =

⊕n
i=1(βi ⊗ si ⊗ ⊗r

k=1fik(Yk,x)) where β1, ...,βn ∈ Bool(Σ, D), si ∈ S and
fik ∈ F . Note that the idea of the construction of [12] relies on the fact that
β1, ...,βn are mutually exclusive. However, in our situation this is not the case.
We also may assume for simplicity that, for all i ∈ {1, ...,n} and k ∈ {1, ..., r},
βi has a subformula of the form R(Yk,x). This means that Reg ⊆ Free(βi)
for all i ∈ {1, ...,n}. Let S̃ ⊆ S be the set of all si appearing in γ′ and
F̃ ⊆ F the set of all fik appearing in γ′. Consider the extended alphabet
Δ = Σ × {1, ...,n} × S̃ × F̃r. We construct a formula ξ ∈ Bool(Δ, D) over the
extended alphabet which demands that, for all positions of a data word, when-
ever the {1, ...,n}-component is i, then βi (lifted to the extended alphabet) holds

Weighted Register Automata and Weighted Logic on Data Words 383

and the S̃-component is si and F̃r-component is (fi1, ..., fir). By Theorem 5.3,
there exists a deterministic visibly register automaton A = (Q,Reg, I,T ,F) over
Δ×{0, 1}Free(ξ)\Reg, Reg and D such that L(A) = L(ξ). Note that A can be con-
sidered as a register automaton over the alphabet Δ × {0, 1}Free(ξ) and D. We
construct a WRA A′ = (Q,Reg, I,T ,F , 〈wttrans,wtdata〉) over Δ × {0, 1}Free(ξ), D

and S where wttrans and wtdata are defined according to the auxiliary components
S̃ and F̃r of the extended alphabet Δ and obtain a WRA A′ over the alphabet
Δ×{0, 1}Free(ξ). Let h : Δ×{0, 1}Free(ξ) → Σ ×{0, 1}Free(ξ) be the projection. By
Lemma 3.4 (b), there exists a WRA B with [[B]] = h([[A′]]). Then one can show
that [[B]] = [[ζ]].

Then our Theorem 4.4 follows from Theorems 6.1 and 6.3.

7 Discussion

We introduced a model of weighted register automata and gave an expressively
equivalent weighted logic. On the one hand, our results show the robustness
of the automata-theoretic approach, help to understand better the behaviors of
weighted register automata and can also find applications for the setting of timed
words. On the other hand, our expressive equivalence result could be used as a
basis for the quantitative verification of systems with data, e.g., for the study
of quantitative extensions of temporal logics on data words [15]. An important
open question concerns algorithmic properties of weighted register automata. We
believe that the optimal reachability problem for weighted register automata is
decidable for various examples considered in this paper. It could be interesting
to extend our results to the setting of infinite data words and data trees and
to investigate in the setting of data words the cases where the weight measure
cannot be modelled using semirings (e.g., average or discounted costs, energy
problems and weighted register automata with multiple cost parameters). Note
that these nonclassical weight measures have been extensively studied in the
setting of weighted timed automata. It could be also interesting to compare
the expressive power of our register automata model with the data automata
model of [9]. We believe that they are incomparable. An extension of class reg-
ister automata and the logic captured by them [7], where data words have been
considered as behavioral models of concurrent systems, to the weighted setting
could be attractive, as well.

References

1. Alur, R., D’Antoni, L., Deshmukh, J., Raghothaman, M., Yuan, Y.: Regular func-
tions and cost register automata. In: LICS 2013, pp. 13–22. IEEE Computer Society
(2013)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Alur, R., Fix, L., Henzinger, T.: Event-clock automata: a determinizable class of
timed automata. Theor. Comput. Sci. 211(1–2), 253–273 (1999)

384 P. Babari et al.

4. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC 2004, pp. 202–
211. ACM (2004)

5. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

6. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Logic 12(4), 27 (2011)

7. Bollig, B.: An automaton over data words that captures EMSO Logic. In: Katoen,
J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171–186. Springer,
Heidelberg (2011)

8. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg
(2009)

9. Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2),
75–85 (2002)

10. Bouyer, P., Petit, A., Thérien, D.: An algebraic characterization of data and timed
languages. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 248–261. Springer, Heidelberg (2001)

11. Büchi, J.R.: Weak second order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Informatik 6, 66–92 (1960)

12. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1–2), 69–86 (2007)

13. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg
(2009)

14. Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed automata
and weighted relative distance logic. In: Esparza, J., Fraigniaud, P., Husfeldt, T.,
Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 171–182.
Springer, Heidelberg (2014)

15. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Logic 10(3), 30 (2009)

16. Figueira, D.: Alternating register automata on finite data words and trees. Logical
Methods Comput. Sci. 8(1: 22), 1–43 (2012)

17. Figueira, D., Hofman, P., Lasota, S.: Relating timed and register automata. In:
EXPRESS 2010, EPTCS, vol. 41, pp. 61–75 (2010)

18. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134,
329–363 (1994)

19. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Logic 5(3), 403–435 (2004)

20. Quaas, K.: MSO logics for weighted timed automata. Formal Methods Syst. Des.
38(3), 193–222 (2011)

21. Wilke, T.: Specifying timed state sequences in powerful decidable logics and
timed automata. In: Langmaack, H., Roever, W.-P., Vytopil, J. (eds.) FTRTFT
1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994). doi:10.1007/
3-540-58468-4 191

http://dx.doi.org/10.1007/3-540-58468-4_191
http://dx.doi.org/10.1007/3-540-58468-4_191

Hybrid Automata as Coalgebras

Renato Neves(B) and Luis S. Barbosa

HASLab (INESC TEC) & Universidade do Minho, Braga, Portugal
rjneves@inescporto.pt, lsb@di.uminho.pt

Abstract. Able to simultaneously encode discrete transitions and con-
tinuous behaviour, hybrid automata are the de facto framework for the
formal specification and analysis of hybrid systems. The current paper
revisits hybrid automata from a coalgebraic point of view. This allows to
interpret them as state-based components, and provides a uniform the-
ory to address variability in their definition, as well as the corresponding
notions of behaviour, bisimulation, and observational semantics.

1 Introduction

1.1 Context

Consider a cruise control system. It comprises digital controllers, sensors, and
actuators, that act in coordination to make the vehicle reach the intended speed.
The system’s behaviour, from an external perspective, is observed in the (contin-
uous) evolution of a physical process (velocity). But at the same time we know
that the controller, which has influence over this process, changes its internal
state in a discrete manner.

Systems with this interaction pattern are often called hybrid. Their formal
specification and analysis typically resorts to the theory of hybrid automata
[Hen96], whose distinguishing feature is the ability of state variables to contin-
uously evolve. This allows to express the evolution of physical processes, like
movement, time, temperature, and pressure. In addition, there is syntactical
machinery (guards, state invariants, and assignments) to facilitate the descrip-
tion of complex behaviour in a concise manner. For illustration purposes,

Example 1. Consider a (simplistic) system comprised of a tank and a valve con-
nected to it. The valve allows water to flow in at a rate of 2 cm/s during intervals
of c seconds; between these periods the valve is shut (also) for c seconds. We can
describe this behaviour via the hybrid automaton below.

�������	l̇ = 2
ṫ = 1
t ≤ c

t≥c

t:=0 ��

�������	l̇ = 0
ṫ = 1
t ≤ ct≥c

t:=0

��

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 385–402, 2016.
DOI: 10.1007/978-3-319-46750-4 22

386 R. Neves and L.S. Barbosa

The variable l denotes the water level, which rises when the valve is open (differ-
ential equation l̇ = 2). Then, the differential equation ṫ = 1 defines the passage
of time, which, along with invariant t ≤ c, forces the current state to be active
for at most c seconds. On the other hand, the guards t ≥ c and assignments
t := 0 force the current state to be active at least c seconds before a switch.
Finally, note that the guards t ≥ c do not force transitions to happen, but only
permit them. This means that if not for invariant t ≤ c, the valve could be open
(or shut) indefinitely.

The semantics of hybrid automata is traditionally described in terms of
labelled transition systems (lts): each hybrid automaton yields an lts whose
edges encode both the discrete events and continuous evolutions (cf. [Hen96]).
Edges in the latter are labelled by elements of R≥0 and reflect the difference
of state variables with respect to the source and sink nodes. For example,
denoting the left state (of the previous hybrid automaton) by m1, the edge
(m1, 1, 0.5) t−→ (m1, 1 + 2t, 0.5 + t) exists in the underlying lts iff 0.5 + t ≤ c.
This will be explained in more detail in Sect. 2.

For now, we emphasise that such a semantics ‘collapses’ both discrete assign-
ments and continuous evolutions into the same relation, which makes difficult
to distinguish the system’s internal, thus hidden behaviour (typically its state
changes), from what can be observed externally. Such a distinction, however, is
at the very heart of the component-based paradigm, in which complex systems
are verified through a suitable analysis of their (simpler) constituents (see e.g.,
[Bar03,HJ11,Szy98]).

To understand hybrid automata as state-based components is an important
step towards their coalgebraic characterisation in the spirit of [Bar03,HJ11].
Such an achievement would provide them several composition operators (with
corresponding laws), refinement techniques, and synchronisation mechanisms.

Another relevant point is the existence of several variants of hybrid automata
(e.g., [Hen96,Spr00,LLK+99]), motivated by the need to capture different types
of behaviour (e.g., nondeterministic, probabilistic, faulty). To the best of our
knowledge, a uniform, formal theory for different types of hybrid automata does
not yet exist.

1.2 Contributions

This paper characterises hybrid automata as coalgebras of a specific type. This
promotes the black-box perspective discussed above, where the (discrete) state
transitions are internal, hidden from the environment, and the continuous evo-
lutions are external, making up the observable behaviour. To be concrete,

– ‘going coalgebraic’ provides a uniform, canonical observational semantics that
faithfully reflects the black-box perspective, and frames the behaviour into well
known constructions (e.g., streams, infinite binary trees), marking a separation
between the discrete domain and the continuous one.

– Moreover, a generic (coalgebraic) characterisation of bisimulation, para-
metrised by a transition type (technically, a functor), emerges across different

Hybrid Automata as Coalgebras 387

sorts of hybrid automata in a uniform manner. Indeed, it is shown that differ-
ent notions of bisimilarity (associated with variants of hybrid automata) are
subsumed by the corresponding coalgebraic definition.

We will also see that the coalgebraic characterisation proposed in this paper
facilitates the understanding of hybrid automata and helps to systematise the
concept along a plethora of, often elaborated, definitions in the literature. In its
most basic variant, a hybrid automaton becomes reduced to a machine that from
a state (internally) jumps to another, and (externally) produces a continuous
evolution. As expected, this implies that, even in the presence of both discrete
and continuous behaviour, only the continuous part can be directly observed.

The coalgebraic characterisation paves the way to yet another contribution:
a hierarchy of different types of hybrid automata organised with respect to their
‘expressivity’, a concept also to be here understood within the coalgebraic frame-
work.

1.3 Roadmap

Section 2 provides a brief background on hybrid automata and coalgebras.
Section 3 establishes the relation between classic hybrid automata (in a deter-
ministic setting) and the corresponding coalgebras. In particular, it shows how
to encode hybrid automata as coalgebras, explores the associated observational
semantics, and reframes the classic notion of bisimulation (for hybrid automata)
as a coalgebraic one.

Then, building on the coalgebraic perspective, Sect. 4 considers different
types of functors in order to (re)discover several variants of hybrid automata.
Two interesting cases are the ones that involve probabilistic [Spr00] and replica-
ting behaviour, the latter being new to the best of our knowledge. Section 4 also
establishes the hierarchy of hybrid automata mentioned above. Finally, Sect. 5
concludes and hints at future work directions.

We assume that the reader has some familiarity with elementary category
theory and topology.

2 Background

2.1 Hybrid Automata

Introduced in the early nineties as an answer to the rapid emergence of
hybrid systems, hybrid automata form an active research area that encom-
passes diverse topics. These span from decidability [Hen96], to extensions that
cater for input mechanisms (e.g., [AH97,LLK+99]), and uncertainty [Spr00].
Hybrid automata have also been considered as a modelling tool in life sciences
[BCB+09,AMP+03]. Formally,

Definition 1 ([Hen96]). A hybrid automaton is a tuple (M,E,Σ,X, init, inv,
dyn, asg, grd) where

388 R. Neves and L.S. Barbosa

– M is a finite set of discrete states (often called control modes, or locations),
E is a transition relation E ⊆ M × Σ × M , and Σ a set of labels. A triple
(m1, l,m2) ∈ E will often be written as m1

l� m2.
– X is a finite set of real-valued variables {x1, . . . , xn}.
– init and inv are functions that associate to each mode a predicate over the

variables in X. Letter Z denotes the set {(m, v) ∈ M × Rn | v |= (inv m)},
where expression v |= (inv m) means that predicate (inv m) is satisfied by v.

– dyn is a function that associates to each state a predicate over the variables in
X ∪Ẋ, where Ẋ = {ẋ1, . . . , ẋn} represents the first derivatives of the variables
in X. It is used to define the set of continuous evolutions that may occur at
each state.

– asg is a function such that given an edge (e ∈ E) returns a predicate over
X ∪ X ′, where X ′ = {x′

1, . . . , x
′
n} represents the variables in X immediately

after a discrete jump. This provides an assignment to each edge. Finally, the
function grd associates each edge with a guard, i.e., a predicate over X.

A classic example may help to illustrate this quite complex definition.

Example 2. Consider a bouncing ball dropped at some positive height p and
with no initial velocity v. Due to the gravitational acceleration g, it falls into
the ground but then bounces back up, losing part of its kinetic energy in the
process. The following hybrid automaton sums up this behaviour.

�������	
ṗ = v
v̇ = g
p ≥ 0

p = 0 ∧ v > 0,
v′ = v × −0.5��

Note that only one mode exists; let us call it m. Also, there is exactly one
discrete transition: m � m ∈ E, omitting its label for simplicity. Actually, in
this example there is no need for labels. Then X = {p, v}, and (inv m) is p ≥ 0 –
which entails Z = {m}×R≥0×R, where the second (R≥0) and third components
(R) denote, respectively, position and velocity.

Finally, grd(m � m) is p = 0 ∧ v > 0, (dyn m) is {ṗ = v, v̇ = g}, and
asg(m � m) is v′ = v × −0.5 ∧ p′ = p. Note that the right-hand side of the last
predicate does not appear in the hybrid automaton above, a common practice
to avoid a burdened notation.

In order to keep results simple and intuitive, we do not consider labels or
initial states, as they can be accommodated later on in a straightforward manner.

Frequently it is assumed that, given any mode, function dyn returns a system
of differential equations with exactly one solution (e.g., [Jac00,ACH+95]). We
adopt this approach as well. Such an assumption may seem too restrictive but,
in fact, such is not the case for most hybrid systems described in the literature,
as they rarely involve nonlinear differential equations. The important point is
that this condition allows function dyn to induce a function,

flow : (M × Rn) × R≥0 → Rn

Hybrid Automata as Coalgebras 389

such that given a pair (m, v) ∈ (M × Rn), flow ((m, v), −) : R≥0 → Rn is a
continuous function, which represents the solution to the system of differential
equations; note that its domain (R≥0) represents time.

Assume also that an hybrid automaton cannot jump from a valid state
(m, v) ∈ (M ×Rn) into an invalid one, where by valid we mean that (m, v) ∈ Z.
In symbols, assume that for any pair

(
(m1, v1), (m2, v2)

) ∈ (M × Rn)2 such
that m1 � m2, v1 |= grd(m1 � m2), and (v1, v2) |= asg(m1 � m2) we have
v2 |= (inv m2).

As mentioned in Sect. 1, the semantics of hybrid automata is traditionally
described in terms of ltss.

Definition 2 ([Hen96]). Consider a hybrid automaton. Its underlying lts is a
tuple (Z,L, T) such that L = 1 + R≥0 (1 is a singleton set), and T ⊆ Z × L × Z
is defined as

(
(m1, v1), l, (m2, v2)

) ∈ T iff

1. if l ∈ 1 then m1 � m2, v1 |= grd
(
m1 � m2

)
, (v1, v2) |= asg

(
m1 � m2

)
,

2. if l ∈ R≥0 then m1 = m2, flow ((m1, v1), l) = v2, and for all t ∈ [0, l]
flow ((m1, v1), t) |= (inv m1).

We write a triple (z1, l, z2) ∈ T as z1
l−→ z2.

Example 3. Recall the hybrid automaton from Example 2. The associated lts
(Z,L, T) is defined as follows: Z = {m}×R≥0 ×R, L = 1+R≥0, and (m, p1, v1)

l−→ (m, p2, v2) iff

1. if l ∈ 1 then p1 = 0 ∧ v1 > 0, and v2 = v1 × −0.5 ∧ p1 = p2;
2. if l ∈ R≥0 then flow ((m, p1, v1), l) = (p2, v2), and for all t ∈ [0, l],

flow ((m, p1, v1), t) ≥ 0.

In this case the function flow, induced by dyn, describes the continuous evolution
of position and velocity (between jumps).

Note that both discrete events and continuous evolutions are embedded in
the relation T . Not only this makes difficult to adopt the black-box perspective
mentioned above, but it also turns the verification of hybrid automata into a
challenging task, as an infinite number of states and edges needs to be taken
into consideration. The standard technique for overcoming the latter issue is to
quotient by a bisimulation equivalence, i.e., to collapse states that possess equiv-
alent behaviour. The resulting states become then symbolic representations of
(possibly infinite) regions, and verification techniques are applied to the reduced
system instead.

Definition 3 ([Hen96]). Consider the underlying labelled transition system
(S,L, T) of a hybrid automaton, and an equivalence relation Φ ⊆ S × S over
the states. A Φ-bisimulation R ⊆ S × S is a relation such that (s1, q1) ∈ R (or
more concisely, s1 R q1) entails the following cases:

1. s1 Φ q1,

390 R. Neves and L.S. Barbosa

2. for each label l ∈ L, if s1
l−→ s2 then there is a state q2 such that q1

l−→ q2
and s2 R q2,

3. for each label l ∈ L, if q1
l−→ q2 then there is a state s2 such that s1

l−→ s2
and s2 R q2.

Two states s1, q1 ∈ S are Φ-bisimilar (in symbols, s1 ≡Φ q1) if they are related
by a Φ-bisimulation.
We will start our (coalgebraic) rendering of hybrid automata in a deterministic
setting, restricting Definition 1 with the following conditions:

1. Relation E is a function (E : M → M).
2. Assignments are deterministic, i.e., they take the form x := θ, where θ is

an expression with variables of X that denotes a real value, and x ∈ X.
For example, in the case of the bouncing ball above, the assignment v′ =
v × −0.5 is changed to v := v × −0.5. Note that Example 1 (tank-and-valve)
also adopted this approach.

3. As soon as an edge becomes enabled (i.e. the associated guard is satisfied) the
current state must switch (a similar condition is adopted in [Nad97], where
hybrid automata with this property are called time-deterministic). More con-
cretely, each pair (m, v) ∈ Z has exactly one duration (δ ∈ R≥0) for its
evolution flow((m, v),−) : R≥0 → Rn, which, intuitively, corresponds to the
time that the current mode takes to jump starting in (m, v). This happens,
for example, in the hybrid automaton that describes the tank-and-valve (c
seconds) and the bouncing ball system (the time the ball takes to reach the
ground from a specific height and velocity).
Unlike the two conditions above, this condition, which we refer to as as-soon-
as, is assumed throughout the paper.

The three conditions together give no possibility for a hybrid automaton to
choose between possible executions, and therefore induce a function nxt : Z → Z,
which given a pair (m, v) ∈ Z, returns the pair that results from the correspond-
ing evolution (given by function flow and associated duration δ) and subsequent
discrete transition. Formally,

nxt(m, v) =
(
E(m), asg(m � E(m)) u)

where u = flow((m, v), δ). By a slight abuse of notation we denote the expression
asg(m � E(m)) as a function. Note also that the value u is the last point (in
the evolution of (m, v)) before the jump.

2.2 Coalgebras

The theory of coalgebras [Rut00] establishes an abstract, categorial framework
that promotes a uniform study of state-based transition systems1. The idea is
1 We restrict ourselves to the concepts strictly necessary to the paper. The interested

reader will find in document [Rut00] a comprehensive introduction to the theory of
coalgebras.

Hybrid Automata as Coalgebras 391

that a functor F : C → C over some category C (typically, Set) gives ‘shape’ to
a transition type, and arrows S → FS in C (F-coalgebras, or simply coalgebras)
make up the family of corresponding transition systems.

Definition 4. Consider a functor F : C → C. It gives rise to category CoAlgF

whose objects are coalgebras S → FS, and morphisms between two coalgebras
α : S → FS, β : Q → FQ are arrows f : S → Q in C such that the diagram
below in the left commutes.

S

α

��

f
�� Q

β

��

FS
Ff

�� FQ

S

α

��

[(−)]
�� νF

γ

��

FS
F[(−)]

�� FνF

Under mild conditions, a category CoAlgF has a final object, i.e., a coalgebra
γ : νF → FνF such that for any coalgebra α : S → FS there is a unique morphism
[(−)] : S → νF that makes the diagram above in the right to commute. A prime
example is the final (− × A)-coalgebra 〈tl, hd〉 : Aω → Aω × A. Briefly, Aω is the
set of infinite lists (streams) of elements in A, and 〈tl, hd〉 is defined as,

〈tl, hd〉 (a0, a1, . . .) = ((a1, . . .), a0).

Since 〈tl, hd〉 is final, each coalgebra α : S → S×A has a unique morphism [(−)]α :
S → Aω, called the behaviour or coinductive extension of α – whenever found
suitable we will drop the subscript in [(−)]α. Intuitively, [(−)]α : S → Aω gives
the observable behaviour of each state (s ∈ S) of α : S → S × A. Actually, final
objects in categories of coalgebras provide the observational semantics mentioned
in Sect. 1.

Bisimulation is another key concept in coalgebra theory.

Definition 5. Consider two F–coalgebras α : S → FS, β : Q → FQ in Set,
and a relation R ⊆ S ×Q. Then R is an F-bisimulation (or simply bisimulation)
if there is a third coalgebra γ : R → FR that makes the following diagram to
commute.

S

α

��

R
π1��

π2 ��

γ

��

Q

β

��

FS FR
Fπ1

��
Fπ2

�� FQ

We say that states s ∈ S, and q ∈ Q are coalgebraically bisimilar (in symbols,
s ∼ q) if they are related by some F-bisimulation.

392 R. Neves and L.S. Barbosa

3 Deterministic Hybrid Automata as Coalgebras

3.1 The Model

In order to encode hybrid automata as coalgebras, recall the state-based, black-
box perspective described in the introductory section: discrete transitions occur
internally, hidden from the environment, whereas the observable behaviour (or
output) corresponds to continuous evolutions. As explained before, for any given
suitable pair (m, v) ∈ (M ×Rn), a hybrid automaton outputs a continuous evolu-
tion over Rn, with a specific duration δ ∈ R≥0. Formally, a continuous function
[0, δ] → Rn where [0, δ] has the subspace topology induced by the Euclidean
one, and Rn has the Euclidean topology – this requires a brief use of topological
notions in the following construction.

Definition 6. Generalising the output type from Rn to an arbitrary topological
space (O, τ), the output of an hybrid automaton is defined as the sum of all
continuous evolutions over (O, τ). In symbols,

U
(∐

δ∈R≥0

(O, τ)[0,δ]
)

where [0, δ] is equipped with the subspace topology induced by the Euclidean one,
and U : Top → Set is the forgetful functor between the category of topological
spaces and continuous functions (Top) and Set. We will denote the construction
above by H(O, τ), or simply HO.

For what follows, let us denote the curried version of a function f : A × B → C,
by λf : A → CB . Then, consider a hybrid automaton and recall that each pair
(m, v) ∈ Z defines flow((m, v),−) : R≥0 → Rn whose domain can be restricted
to duration [0, δ]. This leads to a function λ flow : Z → H(Rn), which by a slight
abuse of notation, and for the sake of generality we type as

out : Z → HO.

Finally, note that function out : Z → HO, together with function nxt : Z → Z
(see Sect. 2), forms a (− × HO)-coalgebra

〈nxt, out〉 : Z → Z × HO,

which (fully) characterises the behaviour of the hybrid automaton.
The intuition is that each state (m, v) ∈ Z gives rise to an observable, continuous
evolution (e ∈ HO), and an internal, discrete transition to the next state (z ∈ Z).
Let us illustrate this concept with a few examples.

Example 4. Recall the tank-and-valve system described in Sect. 1. The corre-
sponding coalgebra 〈nxt, out〉 : Z → Z × HO is defined as

〈nxt, out〉(m1, l, t) = ((m2, l + 2 c, 0), f), 〈nxt, out〉(m2, l, t) = ((m1, l, 0), g)

where the functions f, g : [0, c] → R2 are defined as

f r = (l + 2r, t + r), g r = (l, t + r).

Hybrid Automata as Coalgebras 393

Example 5. Consider again the bouncing ball system and, for illustration pur-
poses, take only its movement as the observable behaviour. The corresponding
coalgebra 〈nxt, out〉 : Z → Z × HO is given by

〈nxt, out〉 (m, p, v) =
(
(m, 0, v′),mov(p, v,−)

)

where variable v′ corresponds to the (abrupt) change of velocity due to the col-
lision, function mov(p, v,−) : [0, δ] → R describes the ball’s movement between
jumps, and δ denotes the time that the ball takes to reach the ground from state
(p, v). In symbols,

v′ = (v + gδ) × −0.5, mov(p, v, t) = p + vt + 1
2gt2, δ =

√
2gp+v2+v

g

As mentioned in the previous section, each coalgebra S → S × HO yields a
function [(−)] : S → (HO)ω which computes, for a given s ∈ S, a stream of
(observable) continuous evolutions [(s)], which correspond to the (internal) states
that are visited starting in s. For example,

Example 6. Consider again the bouncing ball system; the first three elements of
[((0, 5))] are represented in the following plots.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

time

po
s

1st element

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

time

po
s

2nd element

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

time

po
s

3rd element

3.2 Bisimulation in the Deterministic Case

Recall from the previous section that bisimulation for hybrid automata
(Definition 3) is parametrised by an equivalence relation over the state space.
Let us see how to capture this coalgebraically.

Consider a coalgebra 〈nxt, out〉 : Z → Z × HO (modelling a hybrid automa-
ton) and an equivalence relation over its states Φ ⊆ Z×Z. We define a coalgebra
〈nxt, out〉Φ : Z → Z × H(Z/Φ) such that

〈nxt, out〉Φz = (nxt z, q · (ev z))

where ev : Z → HZ is defined as (ev(m, v)) t = (m, (out(m, v)) t), and q : Z →
Z/Φ is the quotient map induced by Φ.

Technically, 〈nxt, out〉Φ is a FZ/Φ
-coalgebra where FZ/Φ

X = X × H(Z/Φ).
Intuitively, coalgebra 〈nxt, out〉Φ behaves like 〈nxt, out〉 but allows its internal
states and continuous evolutions to be ‘partially’ observed; ‘how much’ one can
observe, is dictated by equivalence relation Φ. Denoting Z/Φ by Q,

394 R. Neves and L.S. Barbosa

Definition 7. Consider a coalgebra 〈nxt, out〉Φ : Z → Z × HQ induced by a
hybrid automaton and an equivalence relation Φ ⊆ Z ×Z. A relation R ⊆ Z ×Z
is a coalgebraic Φ-bisimulation iff there is a FZ/Φ-coalgebra γ : R → R × HQ
that makes the following diagram to commute.

Z

〈nxt,out〉Φ

��

R
π1��

π2 ��

γ

��

Z

〈nxt,out〉Φ

��

Z × HQ R × HQ
π1×id
��

π2×id
�� Z × HQ

We say that states z1, z2 ∈ Z are coalgebraically Φ-bisimilar (in symbols, z1 ∼Φ

z2) if they are related by a coalgebraic Φ-bisimulation.

Given two functions f, g : A → B, and relation R ⊆ B ×B, denote the condition
∀a ∈ A. (f a)R (g a) by f R g. Definition 7 tells that a relation R is a coalgebraic
Φ-bisimulation iff z1 R z2 implies

(ev z1) Φ (ev z2), and (nxt z1) R (nxt z2).

Theorem 1. Let 〈nxt, out〉Φ : Z → Z × HQ be induced by a hybrid automaton
and an equivalence relation Φ ⊆ Z × Z. Then for any two states z1, z2 ∈ Z,
z1 ≡Φ z2 iff z1 ∼Φ z2.

Proof. In [NB16].

4 When Different Transition Types Come into Play

4.1 The General Picture

The previous section introduced a coalgebraic semantics for hybrid automata
in a deterministic setting. The behaviour of digital controllers, however, is far
more complex, often combining nondeterministic, or probabilistic features. This
calls for variations in the definition of hybrid automata, and, consequently, for a
more general coalgebraic semantics, able to capture such variants in a uniform
manner. Therefore, we consider coalgebras,

〈nxt, out〉 : S → (FS × HO)I

where F determines an internal transition type, and set I denotes an input type.
Technically, such arrows can be decomposed into nxt : S×I → FS, out : S×I →
HO (again by a slight abuse of notation). This makes clear that variations in
functor F correspond to variations on how the system (discretely) jumps to a next
state. In regard to hybrid automata, we will see that these changes are essentially
reflected in relation E and the assignment function asg (recall Definition 1).

Table 1 lists several variations of the functor F and input type I. Each variant
corresponds to a specific definition of hybrid automata. Some of the latter are
already well known (e.g. the nondeterministic case in row 4), but others are new
and thus have not been studied before (e.g. the replicating case in row 3).

Hybrid Automata as Coalgebras 395

Table 1. Possible variants for F

Coalgebra Functor F Behaviour Input

S → (S × HO) Id X = X Deterministic No

S → (S × HO)I Id X = X Deterministic Yes

S → (ΔS × HO) Δ X = X × X Replicating No

S → (PS × HO) P X = {A ⊆ X} NondeterministicNo

S → (DS × HO) D X = {μ ∈ [0, 1]X | μ[X] = 1}1Probabilistic No

S → (PDS × HO)PD — Segala2 No
1μ[X] =

∑
x∈X μ x.

2Traditionally this expression refers to systems with both nondeterministic and
probabilistic behaviour.

This illustrates the high level of genericity that coalgebras bring to the theory
of hybrid automata: specific types of automata are captured in specific instanti-
ations of functor F, and global constructions and results are defined parametric
on F once and for all. For example, such is the case of coalgebraic Φ-bisimulation,
which we will discuss in Sect. 4.4.

The cases listed in Table 1 will be discussed in more detail in the following
sections.

4.2 Reactive and Replicating Behaviour

The arrows S → (S × HO) were studied in the previous section. We saw that
they provide a suitable coalgebraic semantics for deterministic hybrid automata.
Hence, we pass directly to arrows typed as, S → (S × HO)I .

These correspond to a variant of hybrid automata, qualified as open (or reac-
tive), that takes input/output into consideration (cf. [LLK+99]); thus extending
the classical definition of hybrid automata (Definition 1) as follows:

Definition 8 ([LLK+99]). Fix an input set I. Then, add I to the domain of
functions dyn, inv, grd, and asg, keeping the remaining components equal.

For example, while in the classic case each mode m ∈ M gave rise to a predicate
(inv m), now each pair (m, i) ∈ M × I induces a predicate (inv (m, i)).

Similarly, function flow : (M × Rn) × R≥0 → Rn, induced by dyn, has now
the signature

flow : (M × Rn) × I × R≥0 → Rn.

In order to encode open hybrid automata as coalgebras, the condition as-soon-as
also needs to be slightly changed: while previously each pair (m, v) ∈ (M × Rn)
was associated with a duration δ (see Sect. 2), now we require the same for each
triple (m, v, i) ∈ (M ×Rn ×I). As in Sects. 2 and 3, we also assume that an open
hybrid automaton cannot jump from a valid state into an invalid one.

396 R. Neves and L.S. Barbosa

Then, let us define function nxt : Z × I → Z as

nxt(m, v, i) =
(
E(m), asg(m � E(m), i) u

)

where u = flow(m, v, i, δ). Finally, given functions nxt : Z ×I → Z, out : Z ×I →
HO, we form coalgebra

〈nxt, out〉 : Z → (Z × HO)I .

Let us illustrate the expressive power of (− × HO)I -coalgebras via an example
related to the bouncing ball system.

Example 7. Suppose we can set the instants of time at which the ball bounces –
this may be interpreted, for example, as a foot that kicks the ball up. To define
such a behaviour one can construct the following coalgebra:

〈nxt, out〉 (m, p, v, i) =
(
(m, 0, v′),mov(p, v,−)

)

where v′ = (v + gi) × −0.5, and function mov(p, v,−) : [0, i] → R is defined as
before.

The category of (− × HO)I -coalgebras also has a final coalgebra. Formally, the
following diagram commutes uniquely,

S

α

��

[(−)]
�� (HO)I+

γ

��

(S × HO)I

([(−)]×id)I

�� ((HO)I+ × HO)I

where I+ denotes the set of nonempty lists of elements in I, and

(γ f) i = (g, f [i]), g is = f (i : is).

Intuitively, any coalgebra α : S → (S × HO)I , induces a unique function [(−)] :
S → (HO)I+

(cf. [Jac12]), such that [(s)] associates to each nonempty list of
inputs the last evolution observed in α, starting in s ∈ S.

Example 8. In Example 7 we considered a bouncing ball system that allows to
choose the instants of time at which the ball bounces. Expressions [((0, 5))] [0.8],
[((0, 5))] [0.8, 0.6], and [((0, 5))] [0.8, 0.6, 0.6] denote the following sequence.

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

time

po
s

[((0, 5))] [0.8]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

time

po
s

[((0, 5))] [0.8, 0.6]

0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

time

po
s

[((0, 5))] [0.8, 0.6, 0.6]

Hybrid Automata as Coalgebras 397

Functor Diagonal (Δ) gives rise to arrows of type 〈nxt, out〉 : S → ΔS × HO.
These correspond to deterministic hybrid automata, as studied in Sect. 3, but
now able to jump to two different places at the same time. The intuition is that
such systems replicate themselves at each discrete transition. For example, the
bouncing ball would turn into two at each bounce. From a strict computer science
point of view this may seem rather strange, but in other areas it is a common
behaviour: e.g., in biology, cells indeed replicate when a specific saturation point
is reached. To the best of our knowledge, there is no variant of hybrid automata
in the literature associated with this type of behaviour.

4.3 Nondeterministic and Probabilistic Behaviour

Let us now concentrate on the powerset functor (P). Actually, for the sake of
simplicity we will restrict to its finitary version, Pω, which considers only the
finite subsets of a given set X. As expected, it gives rise to arrows typed as,

Z → (PωZ × HO)

which precisely correspond to a nondeterministic version of the hybrid automata
explored in the previous section. More concretely,

– relation E, previously assumed to be a function, is now finitely branching (i.e.,
each mode has a finite number of outgoing edges),

– the assignments are allowed to be finitely non deterministic, meaning that the
value assigned to a variable is determined up to a finite number of possibilities.

Thus, function nxt : Z → PωZ is defined as

nxt(m, v) =
⋃

m′∈E(m)

({m′} × asg(m � m′)(u)
)

where u = flow(m, v, δ), and asg(m � m′) is regarded as a function that given a
tuple of valuations v ∈ Rn, returns the assignments that are possible to perform.

Consider now probabilistic branching by taking F = D, or F = PωD, in
S → (FS × HO). Interestingly, hybrid automata whose internal transition type
corresponds to PωD were already introduced in document [Spr00]. The idea is
that these systems are able to nondeterministically choose a distribution function
over the states (which, intuitively, gives the probability of a given state being the
next one). Actually, not only this allows to equip edges with probabilities, but
also gives rise to probabilistic assignments: for example, one may say x := x+10
with probability 0.9.

We refer the interested reader to this paper’s extended version [NB16] for a
more detailed overview of arrows S → DS × HO, S → PωDS × HO and their
correspondence to the probabilistic hybrid automata introduced in [Spr00].

398 R. Neves and L.S. Barbosa

4.4 Bisimulation and Observational Semantics

Let us now generalise the notion of coalgebraic Φ-bisimulation (Definition 7)
to coalgebras typed as 〈nxt, out〉 : Z → (FZ × HO)I . As before, assume that
Z ⊆ M ×Rn. Then given an equivalence relation Φ ⊆ Z ×Z, we define coalgebra
〈nxt, out〉Φ : Z → (FZ × HQ)I similarly to before. More concretely,

〈nxt, out〉Φ(z, i) = (nxt(z, i), q · (ev(z, i)))

where ev : Z × I → HZ is a function such that for any z = (m, v) ∈ Z, i ∈ I,
(ev(z, i)) t = (m, (out(z, i)) t), and q : Z → Z/Φ is the quotient map induced by
Φ. Then denoting Z/Φ by Q,

Definition 9. Consider a coalgebra 〈nxt, out〉Φ : Z → (FZ × HQ)I induced by
an equivalence relation Φ ⊆ Z × Z. A relation R ⊆ Z × Z is a coalgebraic Φ-
bisimulation if there is a coalgebra R → (FR × HQ)I that makes the following
diagram to commute.

Z

〈nxt,out〉Φ

��

R
π1��

π2 ��

��

Z

〈nxt,out〉Φ

��

(FZ × HQ)I (FR × HQ)I

(Fπ1×id)I

��

(Fπ2×id)I

�� (FZ × HQ)I

We say that states z1, z2 ∈ Z are coalgebraically Φ-bisimilar (in symbols, z1 ∼Φ

z2) if they are related by a coalgebraic Φ-bisimulation.
Observe that a coalgebraic Φ-bisimulation R is, in fact, a coalgebraic bisim-

ulation in the category of (F × HQ)I -coalgebras. Moreover, note that this defi-
nition coincides with Definition 7 when F = Id and I = 1. Actually, for F = Pω,
F = PωD (with I = 1) we have the following results relating classic and coalge-
braic Φ-bisimilarity, ≡Φ and ∼Φ, respectively.

Theorem 2. Consider a coalgebra 〈nxt, out〉Φ : Z → (PωZ × HQ) induced by
a nondeterministic hybrid automaton and an equivalence relation Φ ⊆ Z × Z.
Then for any two states z1, z2 ∈ Z, z1 ≡Φ z2 iff z1 ∼Φ z2.

Proof. In [NB16].

Theorem 3. Consider a coalgebra 〈nxt, out〉Φ : Z → (PωDZ × HQ) induced by
a probabilistic hybrid automaton [Spr00] and an equivalence relation Φ ⊆ Z ×Z.
Then, for any two states z1, z2 ∈ Z, z1 ≡Φ z2 iff z1 ∼Φ z2.

Proof. In [NB16].

Another interesting aspect to mention concerns open hybrid automata and the
apparent absence of a suitable notion of Φ-bisimulation for them (see the previous
subsection and also [LLK+99]). However, instantiating Definition 9 with F = Id,
we obtain a suitable notion of Φ-bisimulation for such automata, which gives
evidence to the generality of the coalgebraic framework.

Hybrid Automata as Coalgebras 399

In order to characterise the observational semantics associated with the
arrows S → (FS×HO)I , we need to guarantee the existence of a final (F×HO)I -
coalgebra. In Set, the existence of an observational semantics (i.e., a final coal-
gebra) for systems of type S → (FS × HO)I is ensured whenever functor F is
bounded (cf. [Rut00]). This is not a strong condition. Actually, it holds for all
polynomial functors, the finite powerset (Pω), and all composites made up of
these cases (the reader will find in [Rut00] a complete characterisation of this
condition and corresponding proofs). Another case is the distribution functor
with finite support (Dω); more explicitly, the restriction of functor D that only
considers distributions μ ∈ DωX with a finite number of elements x ∈ X such
that μ x > 0 (see the proof, for example, in [Jac12], Theorem 4.6.9).

Therefore, all cases enumerated in Table 1 have a final coalgebra provided
that functors P and D are restricted to their finitary versions.

4.5 A Hierarchy of Hybrid Automata

Natural transformations are a suitable mechanism to transform a coalgebra into
another of a different transition type, because naturality entails preservation
of bisimilarity [Sok05]. The case for reflection, however, is more complex: as
described in [Sok05], in Set bisimilarity is reflected when the natural transfor-
mation is injective (i.e., all its components are injective), and the underlying
functor of the resulting system preserves weak pullbacks.

Fortunately, it is known that all polynomial functors, the powerset, and the
distribution functor, preserve weak pullbacks (cf. [Sok05]). Moreover, preserva-
tion of weak pullbacks is closed by composition. Therefore, in many cases check-
ing for reflectivity reduces to checking for injectivity. Actually, this is precisely
the case for all variants of S → (FS × HO)I considered in this paper.

Observe that from a natural transformation τ : F → G we can construct the
natural transformation (τ × id)I : (F × HO)I → (G × HO)I .

Then, given a coalgebra α : S → (F × HO)I , via the natural transformation
above, we define ((τ × id)I)S · α : S → (GS × HO)I .
Since all internal transition types (functors) considered in this paper preserve
weak pullbacks, from the existence of injective natural transformations (between
transition types), it is possible generate a hierarchy of systems in terms of their
expressive power.

‘To be more expressive’ here means that looking at an (F ×HO)I -coalgebra
as a (G × HO)I -coalgebra – through the natural transformation τ : F → G –
never entails loss of observable information. In other words, if two states of a
(F × HO)I -coalgebra are bisimilar when looking at the latter as a (G × HO)I -
coalgebra, then the same is true before the application of τ (i.e. coalgebraic
bisimilarity is reflected). The hierarchy is expressed in the following diagram of
injective natural transformations,

400 R. Neves and L.S. Barbosa

Pω

Pωυ

��

Δ

Id �� υ ��
		

τ

		��������

κ

��������

D �� κ′
�� PωD

where for any set X, τX x = (x, x), υX x = μ where μ x = 1, κX x = {x}, and
κ′

X μ = {μ}. Note that there is no injective natural transformation Δ → Pω

as order is not preserved. Moreover observe that the obvious mapping Pω → D

(which maps any finite set to the corresponding uniform distribution) does not
respect naturality.

We conclude by mentioning the canonical injective natural transformation
(F × HO) → (F × HO)I (assuming that I �= ∅), which, given an element,
returns the constant function over it. This adds to the hierarchy the obvious
relation between a family of systems and the corresponding extended version
that harbours the input/output dimension.

5 Conclusions and Future Work

Even if hybrid automata are the standard formalism for hybrid systems, their
definition often needs to cater for different computational behaviours found in
practice. In order to make such a process systematic, this paper proposes a coal-
gebraic rendering of hybrid automata. This allows the study of several variants
of the latter, as well as related notions, (e.g., bisimulation, observational seman-
tics) in a uniform manner, at the same time promoting a black-box perspective in
which discrete actions are hidden from the environment while continuous evolu-
tions make up the observable behaviour. Furthermore, this characterises hybrid
automata as (coalgebraic) components, in the spirit of [Bar03,HJ11].

Interestingly, a somewhat dual perspective appears in the work of Jacobs
[Jac00], where an object-oriented approach for hybrid systems is pursued. More
concretely, hybrid systems are viewed there as coalgebras equipped with a
monoid action (to represent time) that acts over the state space, forcing con-
tinuous evolutions to be hidden from the environment. Such a view allows to
express physical processes that (continuously) evolve internally, and are possible
to interact with at specific instants of time.

It is also relevant to mention the work of Haghverdi et al. [HTP05], whose
aim is to provide an abstract notion of bisimulation for dynamical, control, and
hybrid systems (the latter being understood as hybrid automata). To achieve
this, they resort to the notion of an open map, which has a close relation to
that of coalgebras. Variants of hybrid automata, however, are not taken into
consideration.

As future work, we intend to further explore different variants of hybrid
automata by varying the functor that gives shape to the internal transitions.
For example, arrows of type S → (DS × HO)I , giving rise to what we call

Hybrid Automata as Coalgebras 401

‘reactive Markov hybrid automata’, deserve an independent study. Other inter-
esting cases are replicating hybrid systems (which we briefly addressed here) and
the arrows S → WS × HO (WS = KS , for K a set of weights), which makes
possible to prescribe costs to discrete transitions and assignments.

Going more generic, and in order to drop the condition as-soon-as (see
Sect. 2), one may extend the internal transition type to the ‘continuous part’ by
considering arrows of type S → (F(S × HO))I instead. In some cases, however,
this may be problematic, as the transition type would need to have a continuous
nature. For instance, probabilistic behaviour should be replaced with a stochastic
counterpart instead.

On a different note, recall that the results established in this paper allow to
define a general characterisation of bisimulation for (different types of) hybrid
automata. Such results pave the way to do the same for other notions of
bisimulation, one interesting example being approximate bisimulation for hybrid
automata [GP11].

Finally, a coalgebraic characterisation of hybrid automata makes possible to
see them as hybrid components (cf. [NBHM16]), in the spirit of [Bar03,HJ11].
Generally speaking, this sort of component reproduces the black-box perspec-
tive here adopted; and the associated calculus brings to hybrid automata several
forms of composition operators (e.g., parallel, pipelining, sum), refinement tech-
niques, and wiring mechanisms, as well as the corresponding algebraic laws. We
are currently studying the results brought by this development to the theory of
hybrid automata.

Acknowledgements. This work is funded by ERDF - European Regional Devel-
opment Fund, through the COMPETE Programme, and by National Funds through
FCT within project PTDC/EEI-CTP/4836/2014. The first author is also sponsored
by FCT grant SFRH/BD/52234/2013, and the second by FCT grant SFRH/BSAB/
113890/2015

References

[ACH+95] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H.,
Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis
of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

[AH97] Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243,
pp. 74–88. Springer, Heidelberg (1997). doi:10.1007/3-540-63141-0 6

[AMP+03] Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., Simeoni, M.: Model-
ing cellular behavior with hybrid automata: bisimulation and collapsing.
In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 57–74. Springer,
Heidelberg (2003)

[Bar03] Barbosa, L.S.: Towards a calculus of state-based software components. J.
Univ. Comput. Sci. 9, 891–909 (2003)

[BCB+09] Bartocci, E., Corradini, F., Di Berardini, M.R., Entcheva, E., Smolka,
S.A., Grosu, R.: Modeling, simulation of cardiac tissue using hybrid i, o
automata. Theor. Comput. Sci. 410(33–34), 3149–3165 (2009). Concur-
rent Systems Biology: To Nadia Busi (1968–2007)

http://dx.doi.org/10.1007/3-540-63141-0_6

402 R. Neves and L.S. Barbosa

[GP11] Girard, A., Pappas, G.J.: Approximate bisimulation: a bridge between
computer science and control theory. Eur. J. Control 17(5–6), 568–578
(2011)

[Hen96] Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th
Annual IEEE Symposium on Logic in Computer Science, pp. 278–292.
IEEE Computer Society (1996)

[HJ11] Hasuo, I., Jacobs, B.: Traces for coalgebraic components. Math. Struct.
Comput. Sci. 21(2), 267–320 (2011)

[HTP05] Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for
dynamical, control, and hybrid systems. Theor. Comput. Sci. 342(2–3),
229–261 (2005)

[Jac00] Jacobs, B.: Object-oriented hybrid systems of coalgebras plus monoid
actions. Theor. Comput. Sci. 239(1), 41–95 (2000)

[Jac12] Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and
observations (2012)

[LLK+99] Liu, J., Liu, X., Koo, T.-KJ., Sinopoli, B., Sastry, S., Lee, E.A.: A hier-
archical hybrid system model and its simulation. In: 38th IEEE Decision
and Control, vol. 4, pp. 3508–3513. IEEE (1999)

[Nad97] Nadjm-Tehrani, S.: Time-deterministic hybrid transition systems. In:
Antsaklis, P., Lemmon, M., Kohn, W., Nerode, A., Sastry, S. (eds.) HS
1997. LNCS, vol. 1567, pp. 238–250. Springer, Heidelberg (1999). doi:10.
1007/3-540-49163-5 13

[NB16] Neves, R., Barbosa, L.S.: Hybrid automata as coalgebras (extended ver-
sion) (2016). http://alfa.di.uminho.pt/∼nevrenato/pdfs/HAExtended.
pdf

[NBHM16] Neves, R., Barbosa, L.S., Hofmann, D., Martins, M.A.: Continuity as
a computational effect. CoRR, abs/1507.03219 (2016). To appear in J.
Logical Algebraic Methods Programm

[Rut00] Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000). Modern Algebra

[Sok05] Sokolova, A.: Coalgebraic analysis of probabilistic systems. Ph.D. thesis,
Technische Universiteit Eindhoven (2005)

[Spr00] Sproston, J.: Decidable model checking of probabilistic hybrid automata.
In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer,
Heidelberg (2000). doi:10.1007/3-540-45352-0 5

[Szy98] Szyperski, C.: Component Software. Beyond Object-Oriented Program-
ming. Addison-Wesley, New York (1998)

http://dx.doi.org/10.1007/3-540-49163-5_13
http://dx.doi.org/10.1007/3-540-49163-5_13
http://alfa.di.uminho.pt/~nevrenato/pdfs/HAExtended.pdf
http://alfa.di.uminho.pt/~nevrenato/pdfs/HAExtended.pdf
http://dx.doi.org/10.1007/3-540-45352-0_5

Temporal Logics

Temporal Logic Verification for Delay
Differential Equations

Peter Nazier Mosaad(B), Martin Fränzle, and Bai Xue

Department of Computer Science, Carl v. Ossietzky Universität, Oldenburg, Germany
{peter.nazier.mosaad,fraenzle,bai.xue}@informatik.uni-oldenburg.de

Abstract. Delay differential equations (DDEs) play an important role
in the modeling of dynamic processes. Delays may arise in contemporary
control schemes like networked distributed control and may cause dete-
rioration of control performance, invalidating both stability and safety
properties. This induces an interest in DDE especially in the area of mod-
eling embedded control and formal methods for its verification. In this
paper, we present an approach aiming at automatic safety verification
of a simple class of DDEs against requirements expressed in a linear-
time temporal logic. As requirements specification language, we exploit
metric interval temporal logic (MITL) with a continuous-time seman-
tics evaluating signals over metric spaces. We employ an interval-based
Taylor over-approximation method to enclose the solution of the DDE.
As the solution of the DDE gets represented as a timed state sequence
in terms of the Taylor coefficients, we can effectively solve temporal-
logic verification problems represented as time-bounded MITL formulae.
We encode necessary conditions for their satisfaction as SMT formulae
over polynomial arithmetic and use the iSAT3 SMT solver in its bounded
model checking mode for discharging the resulting proof obligations, thus
proving satisfaction of MITL specifications by the trajectories induced
by a DDE. In contrast to our preliminary work in [34], we can verify
arbitrary time-bounded MITL formulae, including nesting of modalities,
rather than just invariance properties.

1 Introduction

Ordinary differential equations (ODEs) are traditionally used to model the con-
tinuous behavior within continuous- or hybrid-state feedback control systems.
Significant research has consequently been pursued to achieve automatic verifi-
cation for such dynamical systems, among it seamless integration of safe numeric
ODE solving with satisfiability-modulo-theory solving [8,13]. In practice, delay is
introduced into the feedback loop if components are spatially or logically distrib-
uted. Such delays may significantly alter the system dynamics and unmodeled
delays in a control loop consequently have the potential to invalidate any sta-
bility and safety certificate obtained on the delay-free model. An appropriate

This research is funded by the Deutsche Forschungsgemeinschaft as part of the
Research Training Group DFG GRK 1765 SCARE.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 405–421, 2016.
DOI: 10.1007/978-3-319-46750-4 23

406 P.N. Mosaad et al.

generalization of ODE able to model the delay within the framework of differ-
ential equations is delay differential equations (DDEs), as suggested by [3].

DDEs play an important role in the modeling of natural or artificial processes
with time delays in biology, physics, economics, engineering, etc. As a con-
sequence, attention has gone to developing tools permitting their mechanical
analysis. However, such tools still are mostly confined to numeric simulation,
e.g. by Matlab’s dde23 algorithm. Numerical simulation, despite being extremely
useful in system analysis, fails to present reliable certificates of system properties
due to numeric approximation. Techniques for safely enclosing set-based initial
value problems of ODEs, be it safe interval enclosures [22,25,31], Taylor mod-
els [4,26], or flow-pipe approximations based on polyhedra [6], zonotopes [14],
ellipsoids [19], or support functions [21], consequently need to be lifted to DDEs.

In [34], a safe enclosure method using interval-based Taylor forms is pre-
sented to enclose a set of functions by a parametric Taylor series with parame-
ters in interval form. To avoid dimension explosion incurred by the ever-growing
degree of the Taylor series along the time axis, the method depends on fixing the
degree for the Taylor series and moving higher-degree terms into the parametric
uncertainty permitted by the interval form of the Taylor coefficients. By using
this data structure to iterate bounded degree Taylor over-approximations of the
time-wise segments of the solution to a DDE, the approach identifies the oper-
ator that yields the parameters of the Taylor over-approximation for the next
temporal segment from the current one. Employing constraint solving to analyze
the properties of this operator, an automatic procedure is obtained to provide
stability and safety verification for a simple class of DDEs of the form

d
dt

x(t) = f(x(t − δ)) (1)

with linear or polynomial vector field f : RN → R
N , where the derivative at t is a

function of the trajectory at t − δ, i.e., the signal with the delay δ is applied. The
method proposed in [34] dealt only with simple invariants as safety properties.
Improving on the previous work in [34], the contribution of the current paper lies
in verifying a class of safety requirement specified using linear-time temporal logic.

The method proposed in this article again addresses DDEs in the form of
Eq. (1) and builds upon the safe enclosure method for DDEs presented in [34],
yet addresses metric interval temporal logic (MITL) [1,10,28] with continuous
semantics over signals. MITL is a linear temporal logic that is meaningful when
the states evolve in metric spaces, an assumption met by continuous-state sys-
tems as in Eq. (1). It is considered as a real-time extension of linear temporal logic
(LTL), where the modalities of LTL are constrained with timing bounds. In par-
ticular, given a continuous dynamical system (1) with its initial condition and a
temporal logic specification expressed in time-constrained MITL, we employ the
interval-based Taylor over-approximation method to enclose the solution of the
given DDE. This facilitates effective reduction of the signal-based, continuous-
time and continuous-state MITL verification problem to a related discrete-time
MITL verification problem expressible in terms of timed state sequences. By
using any bounded model checking (BMC) tool built on top of an arithmetic

Temporal Logic Verification for Delay Differential Equations 407

SMT solver being able to address polynomial arithmetic, we obtain a procedure
able to provide safety certificates for DDE relative to temporal logic specifica-
tions. In our case, we use the iSAT31 implementation of the iSAT algorithm [12]
that provides techniques for bounded and unbounded verification problems like
k-induction [30] and Craig interpolation [24].

For dealing with temporal properties expressed in MITL, the key step is
to safely determine truth values of atomic propositions occurring in different
polarities, i.e., to generate necessary or sufficient conditions for their validity
over a time frame based on the Taylor approximation of the DDE (1). Based on
this, the solver is able to verify more complex formulae of temporal logic also
involving Boolean connectives and temporal modalities, like the (bounded) until
operator. Our approach to constructing the necessary (or sufficient, resp.) con-
ditions for the atomic predicates relies on a safe linear approximation method,
namely a tangent line approximation over the Taylor model; hence, it encloses
the atomic formula over a time frame. Our approach is characterized by the
soundness guarantees obtained due to the over-approximation of the DDE and
the over- or under-approximation —depending on polarity— of atomic predi-
cates. The accuracy of approximation can be selected; an automatic refinement
method dynamically adapting the accuracy in case of a negative verdict, how-
ever, remains to be developed.

We demonstrate how our approach works in practice and therefore present
verification of temporal properties on example systems.

This paper is structured as follows. In Sect. 2, we first formulate the tem-
poral verification problem on DDE in the form of Eq. (1) by defining syntax
and continuous-time, continuous-state signal-based semantics of MITL formulae,
our requirements specification language. Section 3 develops interval-based Tay-
lor over-approximation as a safe time-wise discretization to the solution of the
DDEs, providing a time-invariant operator generating a timed state sequence on
Taylor coefficients. In Sect. 4, we adapt the interpretation of MITL to the timed
state sequence such that it safely recovers the original semantics on the actual
solution of the DDE in terms of conditions on the Taylor coefficients of the time-
discrete model. In Sects. 4.2 and 4.3, we then show how to use the iSAT3 SMT
solver in bounded model checking mode to discharge the resulting verification
conditions, thus demonstrating our technique on pertinent examples. Section 5
finally presents some ideas for refinement of the method proposed and future
directions of our work.

2 Problem Formulation

In this section, we formulate the verification problem of a simple class of DDEs
in the form of Eq. (1) against a class of safety requirements specified using linear-
time temporal logic. We define metric interval temporal logic (MITL) with con-
tinuous semantics as requirements specification language for such continuous-
state systems.
1 http://projects.informatik.uni-freiburg.de/projects/isat3/.

http://projects.informatik.uni-freiburg.de/projects/isat3/

408 P.N. Mosaad et al.

Let R be the set of the real numbers. Our time domain is the set of nonneg-
ative real numbers R≥0. Also, the trajectory of the DDE of Eq. (1) on an initial
condition x([0, δ]) ≡ c ∈ R is a function x(t) such that x : R≥0 → R

N satisfies
the initial condition and ∀t ≥ δ : d

dtx(t) = f(x(t−δ)), where the positive integer
N denotes the dimension of the space. In order to specify the temporal properties
of interest, we exploit MITL with continuous semantics that is meaningful when
the states evolve in metric spaces as in Eq. (1). We say that P(C) denotes the
powerset of a set C and assume that AP is a set of atomic propositions. Then,
the predicate mapping M : AP → P(RN) is a set valued function that assigns
to each atomic proposition ρ ∈ AP a set of states M(ρ) ⊆ R

N . In this paper,
we take the set of atomic propositions AP to be the simple bound constraints
x(t) ∼ c, where ∼∈ {<,≤, >,≥} and c ∈ Q.

2.1 Metric Interval Temporal Logic

Metric interval temporal logic (MITL) [1] is a linear temporal logic that is mean-
ingful when the states evolve in metric spaces, an assumption met by continuous-
state systems as in Eq. (1). It is a real-time extension of linear temporal logic
(LTL), where the modalities of LTL are constrained with timing bounds. Metric
temporal logic (MTL) was first introduced by Koymans [17] to specify real-time
properties. In order to address the undecidability problem of MTL, Alur et al. [1]
relaxed the punctuality of the temporal operators s.t. they cannot constrain to
singleton intervals. We employ MITL to formally characterize the desired behav-
ior of DDEs. Along the following lines, we review and suitably adapt the syntax
and the continuous semantics of MITL as presented in [1,28].

Definition 1 (Syntax of MITL). An MITL formula ϕ is built from a set of
atomic propositions AP using Boolean connectives and timed-constrained ver-
sions of the until operator. It is inductively defined according to the grammar

ϕ:: =
 | ρ | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

where ρ ∈ AP ,
 is the Boolean constant true and I ⊆ Q≥0 is a nonsingular
interval imposing timing bounds on the temporal operators, where Q≥0 is the set
of non-negative rational numbers.

We can derive the constant false by ⊥ ≡ ¬
. Also, we can define additional
temporal operators such as release RI , eventually ♦I , and always �I as follows:

ϕ1RIϕ2 ≡ ¬((¬ϕ1)UI(¬ϕ2)),
♦Iϕ ≡
UIϕ, and
�Iϕ ≡ ⊥RIϕ ≡ ¬♦¬ϕ.

Note that MITL has no next operator as the time domain is dense. When
I = [0,∞], we can remove the subscript I from the temporal operators, obtain-
ing the traditional modalities of LTL. Finally, we would like to point out that
the decidability problem of MITL in the continuous semantics for both model

Temporal Logic Verification for Delay Differential Equations 409

checking and satisfiability problems is out of the scope of this paper. For details
about the decidability problem, refer to [1,27]. Also, having a decidable model
property of DDE as being a model of MITL formula is an open issue.

Continuous-Time, Continuous-State Semantics of MITL. The continu-
ous semantics of MITL formulae is used to express specifications on the desired
temporal evolution to the solutions of DDEs in the form of Eq. (1). This seman-
tics is based on real-valued signals x : R≥0 → R

N over time. We say that signal
x satisfies atomic proposition xi ∼ c at time t ≥ 0, denoted x, t |= xi ∼ c, iff
xi(t) ∼ c holds, where xi is one of the variables interpreted by the trajectory
x. Based on this, semantics of arbitrary MITL formulae is defined inductively,
with the semantics of Boolean connectives ¬ and ∧ as well as the constant

being standard. The semantics of the time-constrained until operator is defined
as follows: x, t |= ϕ1UIϕ2 iff for some t′ ∈ I, x, t+t′ |= ϕ2 holds and furthermore
x, t |= ϕ1 for all t ∈ (t, t + t′).

By convention, we say that the DDE of Eq. (1) with an initial value x([0, δ]) ≡
c satisfies an MITL formula ϕ if its solution trajectory x(t) satisfies ϕ in the
sense of x, 0 |= ϕ. In what follows, we employ the interval-based Taylor over-
approximation method [34] to enclose the solution of such a DDE, which in turn
generates a timed state sequence of Taylor coefficients. Thereby we reduce a
correctness problem over the continuous semantics into a corresponding problem
of a time-invariant operator over discrete time. Later, we recover the continuous
semantics on the actual solution of the DDE from the timed state sequence
semantics on the Taylor coefficients.

3 Computing Enclosures for DDEs by Taylor Models

In this section, we review the bounded degree interval-based Taylor overapprox-
imation method for a simple class of DDEs first presented in [34].2 In order to
compute an enclosure for the trajectory x(t) defined by an initial value problem
of the DDE (1), a template interval Taylor form of fixed degree k is defined as

fn(t) = an0 + an1t + · · · + ank
tk, (2)

where fn encloses the trajectory for time interval [nδ, (n+1)δ], the constant δ is
the feedback delay from Eq. (1), and an0 , . . . , ank

are interval-vector parameters.
The trajectory induced by DDE (1) can be represented by a piece-wise function,
with the duration of each piece being the feedback delay δ. To compute the
enclosure for the whole solution of the DDE, we need to calculate the relation
between the interval Taylor coefficients in successive time steps as pre-post-
constraints on these interval parameters. For notational convenience, we denote
the interval parameters [an0 , . . . , ank

] by a matrix A(n) in R
N×(k+1). The relation

2 The corresponding prototype implementation of the interval Taylor over-
approximation method for DDEs as well as some examples are available for download
from https://github.com/liangdzou/isat-dde.

https://github.com/liangdzou/isat-dde

410 P.N. Mosaad et al.

between A(n) and A(n + 1) can be computed, exploiting different orders of Lie
derivatives f

(1)
n+1, f

(2)
n+1, . . . , f

(k)
n+1, as follows:

f
(1)
n+1(t) = g(fn(t)), f (2)

n+1(t) =
d f

(1)
n+1(t)
d t

, . . . , f
(k)
n+1(t) =

d f
(k−1)
n+1 (t)
d t

, (3)

i.e., the first order is obtained directly from the given DDE (1) and the (i+1)-st
order is computed from the i-th order by symbolic differentiation. Then, the
Taylor expansion of fn+1(t) with fixed degree k is derived as follows:

fn+1(t) = fn(δ) +
f
(1)
n+1(0)

1!
t + · · · +

f
(k−1)
n+1 (0)
(k − 1)!

tk−1 +
f
(k)
n+1(ξn)

k!
tk , (4)

where ξn is a vector ranging over [0, δ]N .
From Eq. (4), by comparing the coefficients of monomials with the same

degree at the two sides and by replacing ξn by the interval vector [0, δ]N , we
can obtain a time-invariant operator which represents the relation between A(n)
and A(n + 1). The details of this construction can be found in [34] or retrieved
from the example underneath. Hence, we safely enclose the trajectory induced
by the DDE (1) by a discrete-time model providing a timed state sequence on a
state space S ⊆ R

N .

3.1 Time-Wise Discretization of DDEs into Timed State Sequences

We demonstrate on a running example (taken from [34]) how to provide the
discrete-time model that encloses the solution of a DDE like Eq. (1). The running
example is the DDE

ẋ(t) = −x(t − 1) (5)

with the initial condition x([0, 1]) ≡ 1. Figure 1 shows the solution of ODE
ẋ = −x without delay (the dashed line) and with 1 second delay (the solid
line). Obviously, the difference between the ODE and the DDE is substantial
and necessitates analysing the behavior of the DDE.

The method, in [34], aims at over-approximating the solution of DDE (5)
by iterating bounded degree interval-based Taylor over-approximations of the
time-wise segments of the solution to the DDE. That way, we identify the oper-
ator that yields the parameters of the Taylor over-approximation for the next
temporal segment from the current one. For instance, suppose we are trying to
over-approximate the solution of DDE (5) by polynomials of degree 2. Then we
can predefine a template Taylor form fn(t) = an0 + an1t + an2t

2 on interval
[n, n + 1], where an0 , an1 , and an2 are interval parameters able to incorporate
the approximation error eventually necessarily incurred by bounding the degree
of the polynomial to (in this example) 2. Here, fn(t) corresponds to the solution
x of DDE (5) at time n + t, i.e., fn(t) over-approximates x(n + t) in the sense
of x(n + t) ∈ fn(t).

In order to compute the Taylor model, the first and second derivative f
(1)
n+1(t)

and f
(2)
n+1(t) of solution segment n + 1 based on the preceding segment (where

Temporal Logic Verification for Delay Differential Equations 411

Fig. 1. Solutions to the ODE ẋ = −x (dashed graph) and the related DDE ẋ(t) =
−x(t − 1) (solid line), both on similar initial conditions x(0) = 1 and x([0, 1]) ≡ 1,
respectively.

both segments are of duration 1 each) have to be calculated. The first derivative
f
(1)
n+1(t) is computed directly from Eq. (5) as

f
(1)
n+1(t) = −fn(t) = −an0 − an1t − an2t

2 .

The second derivative f
(2)
n+1(t) is computed based on f

(1)
n+1(t) by

f
(2)
n+1(t) =

d (f (1)
n+1(t))
d t

= −an1 − 2an2t .

By using a Lagrange remainder with fresh variable ξn ∈ [0, 1], we obtain

fn+1(t) = fn(1) +
f
(1)
n+1(0)

1!
t +

f
(2)
n+1(ξn)

2!
t2

= (an0 + an1 + an2) − an0t − an1 + 2an2ξn

2
t2.

Then, the operator expressing the relation between Taylor coefficients in the
current and the next step can be derived by replacing both fn(t) and fn+1(t)
with their parametric forms an0 + an1t + an2t

2 and an+10 + an+11t + an+12t
2 in

the above equation and pursuing coefficient matching. As a result, one obtains
the operator

⎡

⎣
an+10

an+11

an+12

⎤

⎦ =

[
1 1 1

−1 0 0
0 − 1

2
−ξn

][
an0

an1

an2

]

(6)

412 P.N. Mosaad et al.

mapping the coefficients of the Taylor form at step fn to the coefficients of the
Taylor form of fn+1. The coefficients change at every δ time units (every second
in the given example) according to the above operator, which therefore defines
a discrete-time dynamical system corresponding to the DDE. The discrete-time
operator can be rendered time-invariant, yet interval-valued by substituting the
uncertain time varying parameter ξn with its interval [0, δ]. Hence, we can safely
enclose the solution of DDE (5) by a sequence of parametric Taylor series with
parameters in interval form. In the case of system (5), as well as for any other
linear DDE, the operator generating this sequence is a set-valued linear operator
definable by an effectively computable interval matrix.

3.2 Proving Continuous-Time Properties on the Time Discretization

Operator (6) straightaway defines a safe temporal discretization of the DDE sys-
tem in Eq. (1), i.e., an operator generating a classical timed state sequence in
the sense of [1,9]. We can, however, not simply apply the discrete-time inter-
pretation of MITL to this timed state sequence, as it ranges over a differ-
ent state space such that we have to translate forth and back between the
state spaces and time models. The iterated execution of operator (6), start-
ing from an initial vector a00 , . . . , a0k of Taylor coefficients encoding the ini-
tial solution segment x([0, δ]), generates a timed state sequence over (interval)
Taylor coefficients, with time stamps ti = iδ, rather than a signal over the state
variables xi. We do therefore need a translation step generating conditions over
the timed sequence of Taylor coefficients from which we are able to recover the
original continuous-time, continuous-state signal-based semantics on the actual
solution x of the DDE, as defined in Sect. 2.1.

As has already been observed in [34], such a mapping is straightforward when
invariance properties are to be dealt with, for which a sufficient —yet, in the
light of over-approximation of the solution, obviously not necessary— condition
can be obtained as follows. For an invariance requirement �x ∈Safe, where
Safe is a safe set of states, the requirement in the n-th segment is translated
to ∀t ∈ [0, 1] : fn(t) ∈ Safe, where fn is the Taylor form stemming from the
n-th iteration of the operator (6). Hence, the safety property S(x) for system
(5) is translated to a safety property ∀n ∈ N,∀t ∈ [0, δ] : fn(t) ∈ Safe. As
its violation is an existential statement both w.r.t. a step number n and an
existentially quantified time point t, a solver for satisfiability modulo theory
over the existential theory of polynomial arithmetic can be used to solve the
safety verification problem. It requires polynomial constraint solving due to the
Taylor forms, i.e., polynomial expressions involved in the statement fn(t) ∈ Safe.

Different proof schemes can be implemented using such a solver: using k-
induction [30] or interpolation-based unbounded proof schemes [24], absence of
any sequence of valuations generated by operator (6) and satisfying ∃n ∈ N,∃t ∈
[0, δ] : fn(t) �∈ Safe can be shown, thereby rigorously showing safety of the DDE
system under investigation. Bounded model checking of the same system could,
on the other hand, generate counterexamples to safety, which however may be
spurious due to the overapproximation involved in the Taylor enclosure.

Temporal Logic Verification for Delay Differential Equations 413

4 Solving MITL Formulae with Continuous Semantics
Over Time-Discrete Taylor-Based Approximations

In this section, we extend the above idea of generating sufficient conditions for
MITL specifications on DDEs in terms of the sequences of enclosing (interval)
Taylor coefficients. The aim is to cover a large fragment of MITL, rather than
just invariance properties as in [34]. We therefore present a technique to recover
the continuous semantics of MITL formulae on the actual solution of the DDEs
in the form of Eq. (1) from timed state sequences representing interval Taylor
approximations. As explained in the previous section, we have obtained a gen-
erator for a timed state sequence (the operator (6)) representing the solution of
the DDE, yet ranging over a different state space: the Taylor coefficients. Hence,
the continuous interpretation of the MITL formulae over DDE solutions has to
be translated into a semantically appropriate discrete interpretation on a timed
state sequence. This translation needs to restore, in the sense of providing suffi-
cient conditions for satisfaction, the continuous semantics of the MITL formulae
over the discrete model of the timed state sequence. In order to be able to deal
with negations in (sub-)formulae, we will subsequently state pairs of sufficient
and of necessary conditions.

4.1 Atomic Propositions

According to the MITL syntax of Sect. 2, atomic propositions are of the form
xi ∼ c, where c is a constant and ∼ an inequational relational operator, i.e.,
one of <,≤, >,≥. Conditions for satisfaction of such a proposition over a time
frame [nδ, (n + 1)δ] can obviously be expressed in terms of the values of xi in
the endpoints t = nδ and t = (n + 1)δ plus knowledge about the curvature of xi

throughout [nδ, (n + 1)δ]. All the aforementioned information items can readily
be retrieved from the Taylor coefficients an0 , . . . , ank

.
We therefore split between the cases where the Taylor polynomials fn(t) are

being concave up (i.e., f
(2)
n (t) ≥ 0) or concave down (i.e., f

(2)
n (t) ≤ 0) throughout

the interval. Note that due to the interval coefficients as well as the impact of
higher-order derivatives, a third case actually is possible: some solutions may be
left-bend, others right-bend, or even a single one may feature both curvature
directions. We do not take up this case here explicitly, as constraints solving will
later resolve it implicitly by in that case asserting the conjunction of conditions
for both curvatures and —if that turns out to be unsatisfiable— subsequently
splitting time and/or value intervals until a pure situation is achieved.

Furthermore, based on the polarities of the inequalities in the atomic proposi-
tions (i.e., whether it is an upper or a lower bound), we consider another two main
cases in constructing the sufficient conditions on the over-approximated model.

Case 1. Assume the atomic proposition is of the form xi � c, with c ∈ Q and
� ∈ {<,≤}.

414 P.N. Mosaad et al.

Assume that fn is the interval Taylor polynomial enclosing xi over the time
interval [nδ, (n + 1)δ] and that we want to construct a sufficient condition for
validity of xi � c over [nδ, (n + 1)δ].

When fn(t) is concave up, i.e., ∀t ∈ [0, δ] : f
(2)
n (t) ≥ 0, we formulate the

condition Nn,1 guaranteeing validity of xi � c over [nδ, (n + 1)δ] as follows:

Nn,1 := (fn(0) � r) ∧ (fn(δ) � r). (7)

In case that fn(t) is concave down, i.e., ∀t ∈ [0, δ] : f
(2)
n (t) ≤ 0, we apply

the linear approximation method to construct the condition Nn,2 guaranteeing
validity of xi � c over [nδ, (n + 1)δ] as follows:

Nn,2 := ∀ε ∈ [0, δ] : ((fn(0) + f (1)
n (0) · ε � r) ∨ (fn(δ) − f (1)

n (δ) · ε � r)). (8)

By considering all the cases, when fn(t) is concave up or concave down w.r.t.
the interval Taylor coefficients, we construct the condition Nn for the over-
approximation model of the DDE as follows:

Nn := (f (2)
n (t) ≥ 0 ∧ Nn,1) ∨ (f (2)

n (t) ≤ 0 ∧ Nn,2). (9)

Note that the condition Nn is the sufficient condition for validity of xi � r
over time frame [nδ, (n + 1)δ]. Its universally quantified form therefore converts
into an existentially quantified one amenable to SMT solving as soon as we are
using its negation, as usual in SMT-based analysis trying to falsify the given
property, e.g. using the iSAT solver.

Proposition 1. Let ψ be an MITL formula, ẋ(t) = f(x(t − δ)) be a DDE with
its initial conditions, and Nn be the formula generated from ψ and the DDE.
Then the satisfiability of Nn implies ∀t∗ ∈ [nδ, (n + 1)δ] : x, t∗ |= ψ, where x is
the solution to the DDE.

Case 2. Assume the atomic proposition is of the form xi 	 c, with c ∈ Q and
	 ∈ {>,≥}.

In this case, when fn(t) is concave up, i.e., ∀t ∈ [0, δ] : f
(2)
n (t) ≥ 0, the

condition Nn,1 is formulated by applying the linear approximation method to
guarantee validity of xi 	 c over [nδ, (n + 1)δ] as follows:

Nn,1 := ∀ε ∈ [0, δ] : ((fn(0) + f (1)
n (0) · ε 	 r) ∧ (fn(δ) − f (1)

n (δ) · ε 	 r)). (10)

For fn(t) is concave down, i.e., ∀t ∈ [0, δ] : f
(2)
n (t) ≤ 0, the sufficient condition

Nn,2 guaranteeing validity of xi 	 c over [nδ, (n + 1)δ] is formulated as follows:

Nn,2 := (fn(0) 	 r) ∧ (fn(δ) 	 r). (11)

As above in Eq. (9), the condition Nn for the over-approximation model is
constructed as the disjunction of (10) and (11).

Note that for cases where the curvature is not fixed over a time interval,
we may have the constraint solver split both the time and the Taylor coefficient
intervals into sub-intervals, thus eventually fixing them to (locally) defined signs.

Temporal Logic Verification for Delay Differential Equations 415

4.2 Boolean Connectives

Assume we have a compound formula of the form ψ1 = φ1 ∧ φ2 or ψ2 = ¬φ1

and are given translations of φ1,2 into corresponding sufficient conditions over
the Taylor approximations. Then we can obviously handle ψ1 by just conjoining
the encodings of φ1 and φ2. As the same trick applies for disjunction rather than
conjunction, we can handle ψ2 by converting it into negation normal form, taking
advantage of the immediate translation of complementary atomic propositions.

4.3 Until Operator

Assume we have a compound formula of the form ψ = φ1UIφ2, with the lower
and upper bound of I for simplicity being integer multiples lδ and uδ of δ
(including the unbounded case u = ∞). Then a sufficient condition for validity
of ψ over time frame [nδ, (n + 1)δ] can be formulated as

Nn :=
u∨

i=l

⎛

⎝N φ2
i ∧

i−1∧

j=0

N φ1
j

⎞

⎠ , (12)

where N φi
. represents the respective encodings of subformulae.

Please note that in practice, we will not expand the above conjunctions and
disjunctions, but will instead encode them by state bits and an appropriate tran-
sition relation within a transition system, leaving the unwinding to a bounded
model-checking engine, like the one available in iSAT3.

4.4 Verification Examples

In this section, we use the iSAT3 SMT solver in its bounded model checking
(BMC) mode to verify/falsify the temporal verification problems. The iSAT3
solver is a satisfiability checker for Boolean combinations of arithmetic con-
straints over real- and integer-valued variables as well as a bounded model-
checker for transition systems over the same fragment of arithmetic [29]. It is a
stable version implementation of the iSAT algorithm [12]. The solver can effi-
ciently solve bounded and unbounded verification problems that involve polyno-
mial (and, if needed, transcendental) arithmetic. Hence, it is a good option to
solve our proposed problem due to the Taylor forms involved. Also, it allows us
to verify/falsify a variety of MITL formulae built on atomic predicates defined
over simple bounds, linear, and nonlinear constraints [18]. Due to the solving
procedures of the solver, for handling existential constraints only, we provide
necessary or sufficient conditions based on the over-approximation model of the
DDE to recover the continuous semantics of the MITL formula ϕ(x) on the
actual solution x of the DDE from the timed state sequence semantics. In such a
way, the solver is able to verify/falsify more complex formulae of temporal logic
including, e.g., the (bounded) until operator.

We demonstrate that approach based on some examples of DDEs in the form
of Eq. (1). In our examples, we consider the DDE (5) as presented in Sect. 3.1
with different MITL formulae to be verified.

416 P.N. Mosaad et al.

Example 1. Consider the linear DDE ẋ(t) = −x(t − 1) with initial condition
x([0, 1]) ≡ 1 and a safety property of the form �[0,50](x ≤ 3) to be checked.

Based on the bounded degree interval Taylor models to over-approximate
the solution by the polynomials of degree 2, we calculate the operator Eq. (6) as
presented in Sect. 3.1 that expresses the relation between Taylor coefficients in
the current and the next time segment. Consequently, the timed state sequence
is obtained where the states range over the interval Taylor coefficients in turn
representing polynomials of degree 2 associated with time intervals of duration
1 each, and a predicate mapping function. We encode the over-approximation
model in the input language of the iSAT3 solver as shown in Listing (1.1). To
achieve this, we need to define the variables of the dynamic system, Taylor coef-
ficients of the Taylor over-approximation solution, the duration of each segment
t (here t ∈ [0, 1]), the uncertain time varying parameter ξ (here ξ ∈ [0, 1]), and
the counter for the timing bound of the MITL formula.

As explained above, the MITL formula is transformed into the Taylor domain
interpreted over the timed state sequence in terms of the Taylor coefficients such
that the property now is �[0,50](fn(t) ≤ 3), where fn(t) is the Taylor polynomial
of degree 2. The solver can solve the formula upholding its original continuous
semantics as its violation (i.e., fn(t) > 3) is an existential statement both w.r.t.
the state si and an existentially quantified time point t. Note that in Listing (1.1),
lines 16 and 24 provide a sufficient condition for the over-approximation to even-
tually reach x > 3 preserving the continuous semantics of the MITL formula.
If the solver found a CEX, it means that the solver found a violation for the
safety property w.r.t. the timing bounds I and the over-approximation model.
Otherwise, in case there is no CEX, it means that the safety property has no
violation in kdepth of the timing bound. In addition, the bounded depth kdepth

can be set with --start-depth and --max-depth command line options in the
iSAT3 solver instead of defining a counter.

In our example, the solver outputs that the system is safe, namely the target
property is not reachable. In other words, the violation of the property (i.e., the
target property) is never reachable in depth 50; hence, the given MITL formula
holds in depth 50.

Example 2. Consider the same DDE equation as Example (1) with the same
initial condition, but for solving the safety property (x ≥ 1) U[0,50] (x ≥ 3).

For the MITL formula in the Taylor domain, we construct the condition (the
Boolean variable c in our example) on fn(t) ≥ 1 for the over-approximation
model of the DDE; hence, we safely determine the truth value of the atomic
predicate fn(t) ≥ 1 in the course of checking the stop condition of the until
operator. In other words, we recover the continuous semantics of the MITL
formula on the actual solution of the DDE from the interpretation on the timed
state sequence. To encode such problem in the input language of iSAT3 solver as
shown in Listing (1.2), we define a fresh Boolean variable, b in our example, and
initialize it with false value that remains as long as the second predicate (i.e.,
fn(t) ≥ 3) in the given formula does not occur. In order to get a sound answer

Temporal Logic Verification for Delay Differential Equations 417

that the MITL formula has no violation w.r.t. the over-approximation model, we
encode the violation of the property as the target property, in a sense, we search
for the violation of the MITL formula. In this vein, the generated condition, c in
our example, is the necessary condition for the violation of the MITL formula.

1 DECL
2 -- The range of each variable has to be bounded
3 float [-1000, 1000] a0,a1,a2,x;
4 float [0,1] t,xi;
5 -- Define counter for bounded verification problem
6 int [0 ,1000] counter;
7 INIT
8 -- Initialize Taylor parameters
9 a0 = 1;

10 a1 = 0;
11 a2 = 0;
12 x = 1;
13 counter = 0; --t_l of the timing bound
14 TRANS
15 -- Taylor polynomial form of degree 2
16 x’= a0 + a1*t + a2*(t^2);
17 -- The relation between current and next step
18 a0’ = a0 + a1 + a2;
19 a1’ = -a0;
20 a2’ = -0.5*a1 - xi*a2;
21 counter ’ = counter + 1;
22 TARGET
23 -- The negation of the safety property and t_u
24 x > 3 and counter <= 50;

Listing 1.1. MITL formula with the always temporal operator

Note that we may use the semantics of the weak until operator, which is
similar to the until operator but the stop condition is not required. This is
commonly used in case of unbounded verification problems. In this example,
the solver outputs that the system is unsafe, which means that the violation
of the MITL formula is reachable w.r.t. the over-approximation model of the
DDE. In this case, the solver provides a CEX that can be spurious due to the
over-approximation model. We can do refinements on the over-approximation
model by increasing the bounded degree of the Taylor form fn(t). Note that
after increasing the bounded degree by 1, the solver still gives unsafe result.

Finally, along these lines, we should point out that all the above verification
procedures for the temporal specifications of the simple class of DDE may fail
due to two reasons. First, the excessive over-approximation for the solution of
DDE, which would be induced by selecting an insufficient bound on the degree
of the Taylor forms. In order to address this issue, we select a higher degree,
however, it is unclear with a negative verdict that the failure is obtained from
the excessive over-approximation or the property of the system under investiga-
tion. Aiming at disambiguating these two cases, methods using counter-example
guided abstraction refinement (CEGAR) [7] remain to be developed for enhanc-
ing the over-approximation model. Second, the iSAT3 solver may not terminate
especially in case of unbounded verification problems due to the excessive com-
plexity in particular to the Taylor models with high degree. This can in principle
be cured by trying to negate the bound constraints in the safety property which

418 P.N. Mosaad et al.

might help the solver to find fast a witness for solving the problem. Further-
more, efficient algorithms for interpolation-based BMC [24] are employed in the
iSAT3 solver to efficiently solve the unbounded verification problems even for
non-linear constraints [18].

1 DECL

2 float [-1000, 1000] a0 , a1 , a2 , x;

3 float [0,1] t, xi;

4 int [0,50] counter; --define the counter for the timing bound

5 boole b, c; -- define c and b as Boolean variables

6 INIT

7 --initialize the the system wrt. the initial condition

8 a0 = 1;

9 a1 = 0;

10 a2 = 0;

11 x = 1;

12 c <-> (x>=1); --initialize c, the necessary condition of x>=1

13 b = 0; --initialize b with false

14 counter = 0; --counter for the timing bound of the formula

15 TRANS

16 -- description of the over -approximation DDE model

17 x’ = a0 + a1*t + a2*(t^2);

18 a0 ’ = a0 + a1 +a2;

19 a1 ’ = -a0;

20 a2 ’ = -0.5*a1 - xi *a2;

21 counter ’ = counter +1; --increment the counter by 1 for each state

22 -- Boolean variable b is false as long as x>=3 doesn ’t occur

23 b’ <-> (b or x>=3);

24 -- Boolean variable c of the necessary condition of x>=1

25 c’ <-> ((x>=1 && x’>=1 && a2 <=0)) or

26 ((x>=1 && x+ a1 >=1 && a2 >=0) and (x’>=1 && x’-a1 >=1 && a2 >=0));

27 TARGET

28 counter <=50;

29 !c and !b; --the target property is the violation of the MITL formula

Listing 1.2. MITL formula with the (bounded) until temporal operator

5 Conclusion and Future Work

In this paper, we have elaborated a method to verify/falsify temporal speci-
fications of time-delay systems modeled by a simple class of delay differential
equations (DDEs) with a single constant delay. Several dynamical systems can
be modeled by DDEs with a single constant delay as in biology [15,23], optics
[16], economics [32,33], ecology [11], to name just a few. As requirements spec-
ification language, we have exploited metric interval temporal logic (MITL) [1]
with continuous semantics on the solutions of the DDEs. We have built our
method on employing a fixed degree interval-based Taylor over-approximation
technique [34] to provide a safe enclosure method for DDEs, thereby in turn
obtaining timed state sequences. In this way, the continuous semantics of the
MITL formulae is reduced to a time-discrete problem on timed state sequences
in terms of Taylor coefficients. Then, we have encoded the interpretation of
MITL on these timed state sequences in order to recover the continuous seman-
tics on the actual solutions of the DDEs. Furthermore encoding the negation
of the resulting sufficient conditions for MITL satisfaction in a bounded model
checking (BMC) tool built on top of an arithmetic SMT solver addressing (a.o.)
polynomial arithmetic, we hence have obtained an approach able to provide cer-
tificates of temporal properties for a class of DDEs. In our case, we have used
the iSAT3 solver, which is the third implementation of the iSAT algorithm [12].
In very first experiments on a simple DDE, the iSAT3 solver proved able to solve

Temporal Logic Verification for Delay Differential Equations 419

the temporal properties expressed in MITL formulae, thereby safely determining
satisfaction of the formulae in an over-approximation setting. We were able to
verify formulae of temporal logic also involving Boolean connectives and tem-
poral modalities, like the (bounded) until operator. Our approach to construct
the sufficient (or necessary, after final complementation in the BMC encoding)
conditions for the atomic predicates relies on the linear approximation method
(tangent line approximation) over the Taylor over-approximation model; hence,
we safely enclose the atomic formula over each time interval of the timed state
sequence.

We have presented some examples to demonstrate our method. The sound-
ness of the method is guaranteed due to the over-approximation employed
in DDE enclosure by Taylor forms and the over- or under-approximation —
depending on polarity— of the atomic predicates. Such over-approximation
may, however, provide spurious counterexamples in case of a failing verification
attempt, which ought to be disambiguated from true counterexamples.

To resolve that ambiguity in case of a negative verdict, as a future work,
further techniques remain to be developed. We may build our idea on the general
counter-example guided abstraction refinement (CEGAR) technique [7].

In control applications, one may furthermore want to combine delayed feed-
back, as imposed a.o. by networked control, with immediate state feedback
modeled by ordinary differential equations (ODEs). Some algorithms are cur-
rently under development to handle such cases. The main idea is based on a
layered combination of Taylor-model computation for ODE, e.g., [26], with the
ideas imposed in [34] for DDE. In this way, we may extend our method exposed
herein to verify the temporal properties of dynamical systems modeled by the
combination of ODE and DDE. In subsequent steps, we plan to extend the
method even further to more general kinds of DDE, like DDE with multiple
different discrete delays, DDE with randomly distributed delay, or DDE with
time-dependent or more generally state-dependent delay [20]. Finally, we would
like to point out that in this paper, we essentially have presented a verification
method based on model checking to design a time-delay continuous systems mod-
eled by a simple class of DDEs. This method may also be used in interactive
proofs and stepwise refinement of hybrid systems featuring delayed feedback,
akin to the methods developed for traditional hybrid systems [2,5].

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

2. Babin, G., Aı̈t-Ameur, Y., Nakajima, S., Pantel, M.: Refinement and proof based
development of systems characterized by continuous functions. In: Li, X., Liu,
Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 55–70. Springer, Heidelberg
(2015). doi:10.1007/978-3-319-25942-0 4

3. Bellman, R., Cooke, K.L.: Differential-difference equations. Technical report
R-374-PR, The RAND Corporation, Santa Monica, California, January 1963

http://dx.doi.org/10.1007/978-3-319-25942-0_4

420 P.N. Mosaad et al.

4. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliable Comput. 4(4), 361–369
(1998)

5. Butler, M.J., Abrial, J.-R., Banach, R.: Modelling and refining hybrid systems
in Event-B and Rodin. In: Petre, L., Sekerinski, E. (eds.) From Action Systems
to Distributed Systems - The Refinement Approach, pp. 29–42. Chapman and
Hall/CRC, Boca Raton (2016)

6. Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for
dynamic systems. In: Proceedings of the 37th International Conference on Decision
and Control (CDC 1998) (1998)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167 15

8. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to
hybrid systems. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88387-6 14

9. Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using sim-
ulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp.
171–186. Springer, Heidelberg (2006)

10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for finite
state sequences in metric spaces. Technical report MS-CIS-06-05, Dept. of CIS,
Univ. of Pennsylvania (2006)

11. Fort, J., Méndez, V.: Time-delayed theory of the neolithic transition in Europe.
Phys. Rev. Lett. 82(4), 867 (1999)

12. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure.
J. Satisfiability, Boolean Model. Comput. - Special Issue on SAT/CP Integr. 1,
209–236 (2007)

13. Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, pp. 105–112. IEEE,
20–23 October 2013

14. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer,
Heidelberg (2005)

15. Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton
University Press, Princeton (1988)

16. Ikeda, K., Matsumoto, K.: High-dimensional chaotic behavior in systems with time-
delayed feedback. Physica D 29(1–2), 223–235 (1987)

17. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

18. Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear
constraints. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol.
6919, pp. 240–255. Springer, Heidelberg (2011)

19. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for hybrid dynamics: the
reachability problem. In: Kurzhanski, A.B., Varaiya, P. (eds.) New Directions and
Applications in Control Theory. LNCIS, vol. 321, pp. 193–205. Springer, Heidelberg
(2005)

20. Lakshmanan, M., Senthilkumar, D.V.: Dynamics of Nonlinear Time-Delay Sys-
tems. Springer, Heidelberg (2011)

http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1007/978-3-540-88387-6_14
http://dx.doi.org/10.1007/978-3-540-88387-6_14

Temporal Logic Verification for Delay Differential Equations 421

21. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support
functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)

22. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertauf-
gaben. Ph.D. thesis, Fakultät für Mathematik der Universität Karlsruhe, Karlsruhe
(1988)

23. Mackey, M.C., Glass, L., et al.: Oscillation and chaos in physiological control sys-
tems. Science 197(4300), 287–289 (1977)

24. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45069-6 1

25. Moore, R.E.: Automatic local coordinate transformation to reduce the growth of
error bounds in interval computation of solutions of ordinary differential equations.
In: Ball, L.B. (ed.) Error in Digital Computation, vol. II, pp. 103–140. Wiley, New
York (1965)

26. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of
ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)

27. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Pro-
ceedings of the 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
Chicago, IL, USA, pp. 188–197. IEEE Computer Society, 26–29 June 2005

28. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In:
Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer,
Heidelberg (2008)

29. Scheiber, K.: iSAT3 Manual, April 2014
30. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction

and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol.
1954, pp. 127–144. Springer, Heidelberg (2000). doi:10.1007/3-540-40922-X 8

31. Stauning, O.: Automatic validation of numerical solutions. Ph.D. thesis, Technical
University of Denmark, Lyngby (1997)

32. Szyd�lowski, M., Krawiec, A.: The stability problem in the kaldor-kalecki business
cycle model. Chaos, Solitons & Fractals 25(2), 299–305 (2005)

33. Szyd�lowski, M., Krawiec, A., Tobo�la, J.: Nonlinear oscillations in business cycle
model with time lags. Chaos, Solitons & Fractals 12(3), 505–517 (2001)

34. Zou, L., Fränzle, M., Zhan, N., Nazier Mosaad, P.: Automatic verification of sta-
bility and safety for delay differential equations. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015, Part II. LNCS, vol. 9207, pp. 338–355. Springer, Heidelberg
(2015)

http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/3-540-40922-X_8

Dynamic Logic with Binders and Its Application
to the Development of Reactive Systems

Alexandre Madeira1(B), Luis S. Barbosa1, Rolf Hennicker2,
and Manuel A. Martins3

1 HASLab INESC TEC, University of Minho, Braga, Portugal
madeira@ua.pt

2 Ludwig-Maximilians-Universität München, Munich, Germany
3 CIDMA - Department of Mathematics, University of Aveiro, Aveiro, Portugal

Abstract. This paper introduces a logic to support the specification and
development of reactive systems on various levels of abstraction, from
property specifications, concerning e.g. safety and liveness requirements,
to constructive specifications representing concrete processes. This is
achieved by combining binders of hybrid logic with regular modalities
of dynamic logics in the same formalism, which we call D↓-logic. The
semantics of our logic focuses on effective processes and is therefore given
in terms of reachable transition systems with initial states. The second
part of the paper resorts to this logic to frame stepwise development of
reactive systems within the software development methodology proposed
by Sannella and Tarlecki. In particular, we instantiate the generic con-
cepts of constructor and abstractor implementations by using standard
operators on reactive components, like relabelling and parallel compo-
sition, as constructors, and bisimulation for abstraction. We also study
vertical composition of implementations which relies on the preservation
of bisimularity by the constructions on labeleld transition systems.

1 Introduction

The quest for suitable notions of implementation and refinement has been for
more than four decades on the research agenda for rigorous Software Engineering.
It goes back to Hoare’s paper on data refinement [16], which influenced the whole
family of model-oriented methods, starting with VDM [18]. A recent reference
[30] collects a number of interesting refinement case studies in the B method,
probably the most industrially successful in the family.

Almost 30 years ago, D. Sannella and A. Tarlecki claimed, in what would
become a most influential paper in (formal) Software Engineering [28], that “the
program development process is a sequence of implementation steps leading from
a specification to a program”. Being rather vague on what was to be understood
either by specifications (“just finite syntactic objects of some kind” which “describe
a certain signature and a class of models over it”) or programs (“which for us
are just very tight specifications”), the paper focuses entirely on the development
process, based on a notion of refinement. In model-oriented approaches it is con-
sensual that a specification refines to another if every model of the latter is a model
c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 422–440, 2016.
DOI: 10.1007/978-3-319-46750-4 24

Dynamic Logic with Binders and Its Application 423

of the former. Sannella and Tarlecki’s work complemented and generalised this
idea with the notions of “constructor” and “abstractor implementations”. The
idea of a constructor implementation is that for implementing a specification SP
one may use one or several given specifications and apply a construction on top
of them to satisfy the requirements of SP. Abstractor implementations have been
introduced to deal with the fact that sometimes the properties of a requirements
specification are not literally satisfied by an implementation but only up to an
abstraction which usually involves hiding of implementation details. Over time,
many others contributed along similar paths, with Sannella and Tarlecki’s spe-
cific view later consolidated in their landmark book [29]. All main ingredients were
already there: (i) the emphasis on loose specifications; (ii) correctness by construc-
tion, guaranteed by vertical compositionality and (iii) genericity, as the develop-
ment process is independent, or parametric, on whatever logical system better
captures the requirements to be handled.

Our paper investigates this approach in the context of reactive software, i.e.
systems which interact with their environment along the whole computation, and
not only in its starting and termination points [1]. The relevance of such an effort
is anticipated in Sannella and Tarlecki’s book [29] itself: “An example of an area
for which a satisfactory, commonly accepted solution still seems to be outstanding
(despite numerous proposals and active research) is the theory of concurrency”
(page 157). Different approaches in that direction have been proposed, of which
we single out an extension to concurrency in K. Havelund’s Ph.D. thesis [15].
The book, however, focused essentially on functional requirements expressed by
algebraic specifications and implemented in a functional programming language.

On the other hand, the development of reactive systems, nowadays the norm
rather than the exception, followed a different path. Typical approaches start
from the construction of a concrete model (e.g. in the form of a transition system
[31], a Petri net [26] or a process algebra expression [4,17]) upon which the
relevant properties are later formulated in a suitable (modal) logic and typically
verified by some form of model-checking. Resorting to old software engineering
jargon, most of these approaches proceed by inventing & verifying, whereas this
paper takes the alternative correct by construction perspective.

Our hypothesis is that also in the domain of reactive systems, loose specifi-
cation has an important role to play, because they support the gradual addition
of requirements and implementation decisions such that verification of the cor-
rectness of a complex system can be done piecewise in smaller steps. Thus also
a documentation keeping trace of design decisions is available supporting main-
tenance and extensibility of systems. Therefore, our challenge was twofold. First
to design a logic to support the development of reactive systems at different
levels of abstraction. Second, to follow Sannella and Tarlecki’s recipe according
to which “specific notions of implementation (...) corresponds to a restriction on
the choice of constructors and abstractors which may be used” [28]. The paper’s
contributions respond to such challenges:

– Borrowing modalities indexed by regular expressions of actions, from dynamic
logic [14], and state variables and binders, from hybrid logic [6], a new logic,

424 A. Madeira et al.

D↓, is proposed to express properties of computations of reactive systems.
D↓ is able to express abstract properties, such as liveness requirements or
deadlock avoidance, but also to describe concrete, recursive process structures
implementing them. Note that our focus is actually on computations, and
therefore on transition structures over reachable states with an initial point,
rather than on arbitrary relational structures with global satisfaction, as usual
in modal logic. Symbol ↓ in D↓ stands for the binder operator borrowed from
hybrid logic: ↓ x.φ evaluates φ and assigns to variable x the current state of
evaluation.

– Then, a particular pallete of constructors and abstractors found relevant to the
development of reactive systems, is introduced. Interestingly, it turns out that
requirements of Sannella and Tarlecki’s methodology for vertical composition
of abstractor/constructor implementations is just the congruence property of
bisimulation w.r.t. constructions on labelled transition systems, like parallel
composition and relabelling.

The new D↓ logic is introduced in Sect. 2. Then, the two following sections,
3 and 4, respectively, introduce the development method, with a brief revision
of the relevant background, and its tuning to the design of reactive systems.
Finally, Sect. 5 concludes and points out some issues for future work. To respect
the page limit fixed for the Conference, all proofs were removed from the paper.
They appear in the accompanying technical report [21].

2 D↓ - A Dynamic Logic with Binders

2.1 D↓-logic: Syntax and Semantics

D↓ logic is designed to express properties of reactive systems, from abstract
safety and liveness properties, down to concrete ones specifying the (recursive)
structure of processes. It thus combines modalities with regular expressions,
as originally introduced in Dynamic Logic [14], and binders in state variables.
This logic retains from Hybrid Logic [6], only state variables and the binder
operator first studied by V. Goranko in [11]. These motivations are reflected in
its semantics. Differently from what is usual in modal logics, whose semantics are
given by Kripke structures and the satisfaction evaluated globally in each model,
D↓ models are reachable transition systems with initial states where satisfaction
is evaluated.

Definition 1 (Model). Models for a finite set of atomic actions A are reachable
A-LTSs, i.e. triples (W,w0, R) where W is a set of states, w0 ∈ W is the initial
state and R = (Ra ⊆ W×W)a∈A is a family of transition relations such that, for
each w ∈ W , there is a finite sequence of transitions Rak(wk−1, wk), 1 ≤ k ≤ n,
with wk ∈ W , ak ∈ A, such that w0 = w0 and wn = w.

The set of (structured) actions, Act(A), induced by a set of atomic actions
A is given by

α:: = a | α;α | α + α | α∗

Dynamic Logic with Binders and Its Application 425

where a ∈ A.
Let X be an infinite set of variables, disjoint with the symbols of the atomic

actions A. A valuation for an A-model M = (W,w0, R) is a function g : X → W .
Given such a g and x ∈ X, g[x �→ w] denotes the valuation for M such that
g[x �→ w](x) = w and g[x �→ w](y) = g(y) for any other y �= x ∈ X.

Definition 2 (Formulas and sentences). The set FmD↓
(A) of A-formulas is

given by

ϕ:: = tt | ff | x | ↓ x. ϕ | @xϕ | 〈α〉ϕ | [α]ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ X and α ∈ Act(A). SenD↓
(A) = {ϕ ∈ FmD↓

(A)|FVar(ϕ) = ∅} is the
set of A-sentences, where FVar(ϕ) are the free variables of ϕ, defined as usual
with ↓ being the unique operator binding variables.

D↓ retains from Hybrid Logic the use of binders, but omits nominals: only
state variables are used, even as parameters to the satisfaction operator (@x). By
doing so, the logic becomes restricted to express properties of reachable states
from the initial state, i.e. processes.

To define the satisfaction relation we need to clarify how composed actions are
interpreted in models. Let α ∈ Act(A) and M ∈ ModD↓

(A). The interpretation
of an action α in M extends the interpretation of atomic actions by Rα;α′ =
Rα ◦ Rα′ , Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)�, with the operations ◦, ∪ and �
standing for relational composition, union and Kleene closure.

Given an A-model M = (W,w0, R), w ∈ W and g : X → W ,

– M, g, w |= tt is true; M, g, w |= ff is false;
– M, g, w |= x iff g(x) = w;
– M, g, w |=↓ x. ϕ iff M, g[x �→ w], w |= ϕ;
– M, g, w |= @xϕ iff M, g, g(x) |= ϕ;
– M, g, w |= 〈α〉ϕ iff there is a w′ ∈ W with (w,w′) ∈ Rα and M, g, w′ |= ϕ;
– M, g, w |= [α]ϕ iff for any w′ ∈ W with (w,w′) ∈ Rα it holds M, g, w′ |= ϕ;
– M, g, w |= ¬ϕ iff it is false that M, g, w |= ϕ;
– M, g, w |= ϕ ∧ ϕ′ iff M, g, w |= ϕ and M, g, w |= ϕ′;
– M, g, w |= ϕ ∨ ϕ′ iff M, g, w |= ϕ or M, g, w |= ϕ′.

We write M, w |= ϕ if, for any valuation g : X → W , M, g, w |= ϕ. If ϕ is
a sentence, then the valuation is irrelevant, i.e., M, g, w |= ϕ iff M, w |= ϕ. For
each sentence ϕ ∈ SenD↓

(A), we write M |= ϕ whenever M, w0 |= ϕ. Observe
again the pertinence of avoiding nominals: if a formula is satisfied in the standard
semantics of Hybrid Logic, then it is satisfiable in ours. Obviously, this would
not happen in the presence of nominals.

The remaining of the section discusses the versatility of D↓ claimed in the
introductory section. Here and in the following sentences, in the context of a set
of actions A = {a1, . . . , an}, we write A for the complex action a1 + . . .+an and
for any ai ∈ A, we write −ai for the complex action a1+. . .+ai−1+ai+1+. . .+an.

426 A. Madeira et al.

By using regular modalities from Dynamic Logic [13,14], D↓ is able to express
liveness requirements such as “after the occurrence of an action a, an action b can
be eventually realised” with [A∗; a]〈A∗; b〉tt or “after the occurrence of an action
a, an occurrence of an action b is eventually possible if it has not occurred before”
with [A∗; a; (−b)∗]〈A∗; b〉tt. Safety properties are also captured by sentences of
the form [A∗]ϕ. In particular, deadlock freeness is expressed by [A∗]〈A〉tt.
Example 1. As a running example we consider a product line with a stepwise
development of a product for compressing files services, involving compressions
of text and of image files. We start with an abstract requirements specification
SP0. It is built over the set A = {inTxt, inGif, outZip, outJpg} of atomic actions
inTxt, inGif for inputting a txt-file or a gif-file, and actions outZip, outJpg
for outputting a zip-file or a jpg-file. Sentences (0.1)–(0.3) below express three
requirements: (0.1) Whenever a txt-file has been received for compression, the
next action must be an output of a zip-file, (0.2) whenever a gif-file has been
received, the next action must be an output of a jpg-file, and (0.3) the system
should never terminate.

(0.1) [A∗; inTxt]
(〈outZip〉tt ∧ [−outZip]ff

)

(0.2) [A∗; inGif]
(〈outJpg〉tt ∧ [−outJpg]ff

)

(0.3) [A∗]〈A〉tt
Obviously, SP0 is a very loose specification of rudimentary requirements and

there are infinitely many models which satisfy the sentences (0.1)–(0.3). ��
D↓-logic, however, is also suited to directly express process structures and,

thus, the implementation of abstract requirements. The binder operator is crucial
for this. The ability to give names to visited states, together with the modal
features to express transitions, makes possible a precise description of the whole
dynamics of a process in a single sentence. Binders allow to express recursive
patterns, namely loop transitions (from the current to some visited state). In
fact we have no way to make this kind of specification in the absence of a feature
to refer to specific states in a model, as in standard modal logic. For example,
sentence

↓ x0.
(〈a〉x0 ∧ 〈b〉 ↓ x1.(〈a〉x0 ∧ 〈b〉x1)

)
(1)

specifies a process with two states accepting actions a and b respectively. As
discussed in the sequel, the stepwise development of a reactive system typically
leads to a set of requirements defining concrete transition systems and expressed
in the fragment of D↓ which omits modalities indexed by the Kleene closure of
actions, that can be directly translated into a set of FSP [22] definitions. Figure 1
depicts the translation of the formula above as computed by a proof-of-concept
implementation of such a translator1. Note, however, that sentence (1) loosely
specifies the purposed scenario (e.g. a single state system looping on a and b also
satisfies this requirement). Resorting to full D↓ concrete processes unique up to
isomorphism, can be defined, i.e. we may introduce monomorphic specifications.
1 See translator.nrc.pt.

Dynamic Logic with Binders and Its Application 427

Fig. 1. D2FSP Translator: Translating D↓ into FSP processes.

For this specific example, it is enough to consider, in the conjunction in the scope
of x1, the term @x1¬x0 (to distinguish between the states binded by x0 and x1),
as well as to enforce determinism resorting to formula (det) in Example 2.

2.2 Turning D↓-logic into an Institution

In order to fit the necessary requirements to adopt the Sannella Tarlecki devel-
opment method, logic D↓ has to be framed as a logical institution [10].

In this view, our first concern is about the signatures category. As suggested,
signatures for D↓ are finite sets A of atomic actions, and a signature morphism

A
σ �� A′ is just a function σ : A → A′. Clearly, this entails a category to be

denoted by SignD↓
.

Our second concern is about the models functor. Given two models, M =
(W,w0, R) and M′ = (W ′, w′

0, R
′), for a signature A, a model morphism is a

function h : W → W ′ such that h(w0) = w′
0 and, for each a ∈ A, if (w1, w2) ∈ Ra

then (h(w1), h(w2)) ∈ R′
a. We can easily observe that the class of models for A,

and the corresponding morphisms, defines a category ModD↓
(A).

Definition 3 (Model reduct). Let A
σ �� A′ be a signature morphism

and M′ = (W ′, w′
0, R

′) an A′-model. The σ-reduct of M′ is the A-model
ModD↓

(σ)(M′) = (W,w0, R) such that

– w0 = w′
0;

– W is the largest set with w′
0 ∈ W and, for each v ∈ W , either v = w′

0 or there
is a w ∈ W such that (w, v) ∈ R′

σ(a), for some a ∈ A;
– for each a ∈ A, Ra = R′

σ(a) ∩ W 2.

Models morphisms are preserved by reducts, in the sense that, for each models
morphism h : M′

1 → M′
2 there is a models morphism h′ : ModD↓

(σ)(M′
1) →

ModD↓
(σ)(M′

2), where h′ is the restriction of h to the states of ModD↓
(σ)(M′

1).
Hence, for each signature morphism A

σ �� A′ , a functor ModD↓
(σ) :

ModD↓
(A′) → ModD↓

(A) maps models and morphisms to the corresponding

428 A. Madeira et al.

reducts. Finally, this lifts to a contravariantmodels functor,ModD↓
: (SignD↓

)op →
Cat, mapping each signature to the category of its models and, each signature mor-
phism to its reduct functor.

The third concern is about the definition of the functor of sentences. Each
signature morphism A

σ �� A′ can be extended to formulas’ translation

σ̂ : FmD↓
(A) → FmD↓

(A′) identifying variables and replacing, symbol by sym-
bol, each action by the respective σ-image. In particular, σ̂(↓ x.ϕ) =↓ x.σ̂(ϕ)
and σ̂(@xϕ) = @xσ̂(ϕ). Since FVar(ϕ) = FVar(σ̂(ϕ)) we can assure that, for
each signature morphism A

σ �� A′ , we can define a translation of sentences

SenD↓
(σ) : SenD↓

(A) → SenD↓
(A′), by SenD↓

(σ)(ϕ) = σ̂(ϕ), ϕ ∈ SenD↓
(A).

This entails the intended functor SenD↓
: SignD↓ → Set, mapping each signature

to the set of its sentences, and each signature morphism to the corresponding
translation of sentences.

Finally, our forth concern is on the agreement of the satisfaction relation
w.r.t. satisfaction condition. This is established in the following result:

Theorem 1. Let σ : A → A′ be a signature morphism, M′ = (W ′, w′
0, R

′) ∈
ModD↓

(A′), ModD↓
(σ)(M′) = (W,w0, R) and ϕ ∈ FmD↓

(A). Then, for any
w ∈ W (⊆ W ′) and for any valuations g : X → W and g′ : X → W ′, such that,
g(x) = g′(x) for all x ∈ FVar(ϕ), we have

ModD↓
(σ)(M′), g, w |= ϕ iff M′, g′, w |= σ̂(ϕ)

In order to get the satisfaction condition, we only have to note that for any
ϕ ∈ SenD↓

(A), we have FVar(ϕ) = ∅, and hence, by Theorem 1, for any w ∈ W ,
ModD↓

(σ)(M′), w |= ϕ iff M′, w |= SenD↓
(σ)(ϕ). Moreover, by the definition of

reduct, w0 = w′
0 ∈ W . Therefore, ModD↓

(σ)(M′) |= ϕ iff M′ |= SenD↓
(σ)(ϕ).

3 Formal Development á la Sannella and Tarlecki

Developing correct programs from specifications entails the need for a suitable
logic setting in which meaning can be assigned both to specifications and their
refinement. Sannella and Tarlecki have proposed a formal development method-
ology [28,29] which is presented in a generic way for arbitrary logical systems
forming an institution. As already pointed out in the Introduction, Sannella and
Tarlecki have studied various algebraic institutions to illustrate their methodol-
ogy and they presume the lack of a satisfactory solution in the theory of con-
currency. In this section we briefly summarize their crucial principles for formal
program development over an arbitrary institution and we illustrate the case
of simple implementations by examples of our D↓-logic institution. The more
involved concepts of constructor and abstractor implementations will be instan-
tiated for the case of D↓-logic later on in Sect. 4.

In the following we assume given an arbitrary institutions with category Sign
of signatures and signature morphisms, with sentence functor Sen : Sign → Set,

Dynamic Logic with Binders and Its Application 429

and with models functor Mod : Signop → Cat assigning to any signature Σ ∈
|Sign| a category Mod(Σ) whose objects in |Mod(Σ)| are called Σ-models. As
usual, the class of objects of a category C is denoted by |C|. If it is clear from
the context, we will simply write C for |C|.

3.1 Simple Implementations

The simplest way to design a specification is by expressing the system require-
ments by means of a set of sentences over a suitable signature, i.e. as a pair SP =
(Sig(SP), Ax(SP)) where Sig(SP) ∈ |Sign| and Ax(SP) ⊆ |Sen(Sig(SP))|.
The (loose) semantics of such a flat specification SP consists of the pair
(Sig(SP),Mod(SP)) where

Mod(SP) = {M ∈ |Mod(Sig(SP))| : M |= Ax(SP)}.

In this context, a refinement step is understood as a restriction of an
abstract class of models to a more concrete one. Following the terminology of
Sannella and Tarlecki, we will call a specification which refines another one an
implementation. Formally, a specification SP ′ is a simple implementation of
a specification SP over the same signature, in symbols SP � SP ′, whenever
Mod(SP) ⊇ Mod(SP ′). Transitivity of the inclusion relation ensures the vertical
composition of simple implementation steps.

Example 2. We illustrate two refinement steps with simple implementations in
the D↓-logic institution. Consider the specification SP0 of Example 1 which
expresses some rudimentary requirements for the behavior of compressing files
services. The action set A defined in Example 1 provides the signature of SP0

and the axioms of SP0 are the three sentences (0.1)–(0.3) shown in Example 1.

First refinement step SP0 � SP1. SP0 is a very loose specification which
would allow to start a computation with an arbitrary action. We will be a bit
more precise now and require that at the beginning only an input (of a text or gif
file) is allowed; see axiom (1.1) below. Moreover whenever an output action (of
any kind) has happened then the system must go on with an input (of any kind);
see axiom (1.4). This leads to the specification SP1 with Sig(SP1) = Sig(SP0) =
A and with the following set of axioms Ax(SP1):

(1.1) 〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff
(1.2) [A∗; inTxt]

(〈outZip〉tt ∧ [−outZip]ff
)

(1.3) [A∗; inGif]
(〈outJpg〉tt ∧ [−outJpg]ff

)

(1.4) [A∗; (outZip + outJpg)]
(〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff

)

It is easy to check that SP0 � SP1 holds: Axioms (0.1) and (0.2) of SP0

occur as axioms (1.2) and (1.3) in SP1. It is also easy to see that non-termination
(axiom (0.3) of SP0) is guaranteed by the axioms of SP1.

The level of underspecification is, at this moment, still very high. Among
the infinitely many models of SP1, we can find, as an admissible model the LTS
shown in Fig. 2 with initial state w0 and with an alternating compression mode.

Second refinement step SP1 � SP2. This step rules out alternating behav-
iours as shown above. The first axiom (2.1) of the following specification SP2

430 A. Madeira et al.

is equivalent to axiom (1.1) of SP1. Alternating behaviours are ruled out by
axioms (2.2) and (2.3) which require that after any text compression and after
any image compression the initial state must be reached again. To express this
we need state variables and binders which are available in D↓-logic. In our exam-
ple we introduce one state variable x0 which names the initial state by using the
binder at the beginning of axioms (2.2) and (2.3). Moreover, we only want to
admit deterministic models such that in any (reachable) state there can be no
two outgoing transitions with the same action. It turns out that D↓-logic also
allows to specify this determinism property with the set of axioms (det) shown
below. This leads to the specification SP2 with Sig(SP2) = Sig(SP1) = A and
with axioms Ax(SP2):

(2.1) (〈inTxt〉tt ∨ 〈inGif〉tt) ∧ [outZip + outJpg]ff
(2.2) ↓ x0. [inTxt]

(〈outZip〉x0 ∧ [−outZip]ff
)

(2.3) ↓ x0. [inGif]
(〈outJpg〉x0 ∧ [−outJpg]ff

)

(det) For each a ∈ A, the axiom: [A∗] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y.@x[a]y))

Clearly SP2 fulfills the requirements of SP1, i.e. SP1 � SP2. SP2 has three
models which are shown in Fig. 3. (Remember that models can only have states
reachable from the initial one.) The first model allows only text compression, the
second one only image compression, and the third supports both. The signature
of all models is A, though in the first two some actions have no transitions.

Let us still discuss some variations of SP2 to underpin the expressive power
of D↓. If we want only the model where both text and image compression are
possible, then we can simply replace in axiom (2.1) 〈inTxt〉tt ∨ 〈inGif〉tt by
〈inTxt〉tt ∧ 〈inGif〉tt. If we would like to require that text compression must be
possible in any model but image compression is optional, i.e. we rule out the
second model in Fig. 3, then we would simply omit ∨〈inGif〉tt in axiom (2.1).
This is an interesting case since this shows that D↓-logic can express so-called
“may”-transitions offered by modal transition systems [20] to specify options for
implementations. ��

Fig. 2. A model of SP1

3.2 Constructor Implementations

The concept of simple implementations is, in general, too strict to capture
software development practice, along which, implementation decisions typically
introduce new design features or reuse already implemented ones, usually entail-
ing a change of signatures along the way. The notion of constructor implemen-
tation offers the necessary generalization. The idea is that for implementing a

Dynamic Logic with Binders and Its Application 431

Fig. 3. Models of SP2

specification SP one may use a given specification SP′ and apply a construction
to the models of SP′ such that they become models of SP. More generally, an
implementation of SP may be obtained by using not only one but several spec-
ifications SP′

1, . . . ,SP′
n as a basis and applying an n-ary constructor such that

for any tuple of models of SP′
1, . . . ,SP′

n the construction leads to a model of
SP. Such an implementation is called a constructor implementation with decom-
position in [29] since the implementation of SP is designed by using several
components. These ideas are formalized as follows, partially in a less general
manner than the corresponding definitions in [29] which allow also partial and
higher-order functions as constructors.

Given signatures Σ1, ..., Σn, Σ ∈ |Sign|, a constructor is a total function
κ : Mod(Σ1) × · · · × Mod(Σn) → Mod(Σ). Constructors compose as follows:
Given a constructor κ : Mod(Σ1) × · · · × Mod(Σn) → Mod(Σ) and a set of
constructors κi : Mod(Σ1

i) × · · · × Mod(Σki
i) → Mod(Σi), 1 ≤ i ≤ n, the

constructor κ(κ1, . . . , κn) : Mod(Σ1
1) × · · · × Mod(Σk1

1) × · · · × Mod(Σ1
n) × · · · ×

Mod(Σkn
n) → Mod(Σ) is obtained by the usual composition of functions.

Definition 4 (Constructor implementation). Given specifications SP,SP′
1,

. . . ,SP′
n, and a constructor κ : Mod(Sig(SP ′

1)) × · · · × Mod(Sig(SP ′
n)) →

Mod(Sig(SP)), we say that 〈SP ′
1, . . . , SP ′

n〉 is a constructor implementation
via κ of SP , in symbols SP �κ 〈SP ′

1, . . . , SP ′
n〉, if for all Mi ∈ Mod(SP ′

i) we
have κ(M1, . . . ,Mn) ∈ Mod(SP). We say that the implementation involves a
decomposition if n > 1.

3.3 Abstractor Implementations

Another aspect in formal program development concerns the fact that some-
times the properties of a requirements specification are not literally satisfied by
an implementation but only up to an admissible abstraction. Usually such an
abstraction concerns implementation details which are hidden to the user of the
system and which may, for instance for efficiency reasons, not be fully conform
to the requirements specification. Then the implementation is still considered
to be correct if it shows the desired observable behavior. In general this can be
expressed by considering an equivalence relation ≡ on the models of the abstract
specification and to allow the implementation models to be only equivalent to
models of the requirements specification.

432 A. Madeira et al.

Formally, let SP be a specification and ≡⊆ Mod(Sig(SP))×Mod(Sig(SP))
be an equivalence relation. Let Abs≡(Mod(SP)) be the closure of Mod(SP)
under ≡. A specification SP ′ with the same signature as SP is a simple abstrac-
tor implementation of SP w.r.t. ≡, whenever Abs≡(Mod(SP)) ⊇ Mod(SP ′).
Both concepts, constructors and abstractors can be combined as shown in the
definition of an abstractor implementation. (For simplicity, the term constructor
is omitted.)

Definition 5 (Abstractor implementation). Let SP,SP ′
1, . . . ,SP ′

n be spec-
ifications, κ : Mod(Sig(SP ′

1)) × · · · × Mod(Sig(SP ′
n)) → Mod(Sig(SP)) a con-

structor, and ≡⊆ Mod(Sig(SP)) × Mod(Sig(SP)) an equivalence relation. We
say that 〈SP ′

1, · · · , SP ′
n〉 is an abstractor implementation of SP via κ w.r.t.

≡, in symbols SP �≡
κ 〈SP ′

1, · · · , SP ′
n〉, if for all Mi ∈ Mod(SP ′

i) we have
κ(M1, . . . ,Mn) ∈ Abs≡(Mod(SP)).

4 Reactive Systems Development with D↓

4.1 Constructor Implementations in D↓-logic

This section introduces a pallete of constructors to support the formal develop-
ment of reactive systems with D↓, instantiating the definitions in Sect. 3.2. The
idea is to lift standard constructions on labelled transition systems (see, e.g. [31])
to constructors for implementations. We will illustrate most of the constructors
introduced in the following with our running example.

Along the refinement process it is sometimes convenient to reduce the action
set, for instance, by omitting some actions previously introduced as auxiliary
actions or as options that are no longer needed. For this purpose we use the
alphabet extension constructor. Remember that constructors always map con-
crete models to abstract ones. Therefore when omitting actions in a refinement
step we need an alphabet extension on the concrete models to fit them to the
abstract signature.

Definition 6 (Alphabet extension). Let A,A′ ∈ |SignD↓ | be signatures in
D↓, i.e. action sets, such that A ⊆ A′. The alphabet extension constructor κext :
ModD↓

(A) → ModD↓
(A′) is defined as follows: For each M = (W,w0, R) ∈

ModD↓
(A), κext(M) = (W,w0, R

′) with R′
a = Ra for all a ∈ A and R′

a = ∅ for all
a ∈ A′ \ A.

Example 3. The specification SP2 of Example 2 has the three models shown in
Fig. 3. Hence, it allows three directions to proceed further in the product line.

Third refinement step SP2 �κext SP3. We will consider here the simple
case where we vote for a tool that supports only text compression. The following
specification SP3 is a direct axiomatisation of the first model in Fig. 3 considered
over the smaller action set A3 = {inTxt, outZip}. Hence, Sig(SP3) = A3 and the
axioms in Ax(SP3) are:

Dynamic Logic with Binders and Its Application 433

(3.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈outZip〉x0 ∧ [inTxt]ff) ∧ [outZip]ff)
(det) For each a ∈ A3, the axiom: [A∗

3] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y.@x[a]y))

Since the signature of SP3 has less actions than the one of SP2, we apply
an alphabet extension constructor κext : ModD↓

(A3) → ModD↓
(A) which trans-

forms the model of SP3 into an LTS with the same states and transitions but
with actions A and with an empty accessibility relation for the actions in A\A3.
Then, trivially, SP2 �κext SP3 holds. Specification SP3 is a simple example that
shows how labeled transition systems can be directly specified in D↓. This could
suggest that we are already close to a concrete implementation. But this is not
true, since SP3 is in principle just an interface specification which specifies the
system behavior “from the outside”, i.e. its interactions with the user. ��

The standard way to build reactive systems is by aggregating in parallel
smaller components. The following parallel composition constructor synchronis-
ing on shared actions caters for this.

Definition 7 (Parallel composition). Given signatures A and A′ the parallel
composition constructor κ⊗ : ModD↓

(A) × ModD↓
(A′) → ModD↓

(A ∪ A′) is a
function mapping models M = (W,w0, R) ∈ ModD↓

(A) and M′ = (W ′, w′
0, R

′) ∈
ModD↓

(A′), to the A ∪ A′-model M ⊗ M′ =
(
W⊗, (w0, w

′
0), R

⊗)
where W⊗ ⊆

W × W ′ and R⊗ = (R⊗
a)a∈A∪A′ are the least sets satisfying (w0, w

′
0) ∈ W⊗, and,

for each (w,w′) ∈ W⊗,

– if a ∈ A ∩ A′, (w, v) ∈ Ra, (w′, v′) ∈ R′
a, then (v, v′) ∈ W⊗ and(

(w,w′), (v, v′)
) ∈ R⊗

a ;
– if a ∈ A \ A′, (w, v) ∈ Ra, then (v, w′) ∈ W⊗ and

(
(w,w′), (v, w′)

) ∈ R⊗
a ;

– if a ∈ A′ \ A, (w′, v′) ∈ R′
a, then (w, v′) ∈ W⊗ and

(
(w,w′), (w, v′)

) ∈ R⊗
a .

Since, up to isomorphism, parallel composition is associative, the extension
of this constructor to the n-ary case is straightforward. Parallel composition is
a crucial operator for constructor implementations with decomposition; see Def-
inition 4. Remember again that constructors always go from concrete models to
abstract ones, i.e. in the opposite direction as the development process. There-
fore the parallel composition constructor justifies the implementation of reactive
systems by decomposition.

Example 4. We are now going to construct an implementation for the inter-
face specification SP3. in Example 3. For this purpose, we propose a decom-
position into two components, a controller component Ctrl and a component
GZip which does the actual text compression. The controller has the actions
ACtrl = {inTxt, txt, zip, outZip}. First, it receives (action inTxt) a txt-file from
the user. Then it hands over the text, with action txt, to the GZip component
and receives the resulting zip-file (action zip). Finally it provides the zip-file
to the user (action outZip) and is ready to serve a next compression. Hence,
the controller component has the signature Sig(Ctrl) = ACtrl and the following
axioms Ax(Ctrl) specify a single model, shown in Fig. 4 (left), with the behavior
as described above.

434 A. Madeira et al.

(4.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈txt〉 ↓ x2. (〈zip〉 ↓ x3. (〈outZip〉x0 ∧ [−outZip]ff)
∧[−zip]ff)

∧[−txt]ff)
∧[−inTxt]ff)

(det) For each a ∈ ACtrl, the axiom: [A∗
Ctrl] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y.@x[a]y))

The GZip component has the actions AGzip = {txt, compTxt, zip}. First, it
receives (action txt) the text to be compressed from the controller. Then it
does the compression (action compTxt), delivers the zip-file (action zip) to the
controller and is ready for a next round. The GZip component has the sig-
nature Sig(Gzip) = AGzip and the axioms Ax(Gzip) are similar to the ones
of the controller and not shown here. They specify a single model, shown in
Fig. 4 (right). To construct an implementation

〈
Ctrl,GZip

〉
by decomposition

(see Definition 4), we use the synchronous parallel composition operator “⊗”
defined above. According to [29], Exercise 6.1.15, any constructor gives rise to a
specification building operation. This means that we can define the specification
Ctrl ⊗GZip whose model class consists of all possible parallel compositions of the
models of the single specifications. Since Ctrl and GZip have, up to isomorphism,
only one model there is also only one model of Ctrl ⊗ GZip which is shown in
Fig. 5. Therefore, we know by construction that Ctrl ⊗ GZip �κ⊗

〈
Ctrl,GZip

〉

is a constructor implementation with decomposition. It remains to fill the gap
between SP3 and Ctrl ⊗ GZip which will be done with the action refinement
constructor to be introduced in Definition 9. ��
Two constructions which are frequently used and which are present in most
process algebras are relabelling and restriction. They are particular cases of the
reduct functor of the D↓ institution.

Fig. 4. Models of Ctrl and GZip

Definition 8 (Reduct, relabelling and restriction). Let σ : A → A′ be
a signature morphism. The reduct constructor κσ : ModD↓

(A′) → ModD↓
(A)

maps any model M′ ∈ ModD↓
(A′) to its reduct κσ(M′) = ModD↓

(σ)(M′).
Whenever σ is a bijective function, κσ is a relabelling constructor. If σ is injec-
tive, κσ is a restriction constructor removing actions and transitions.

A important refinement concept for reactive systems is action refinement
where an abstract action is implemented by a combination of several concrete

Dynamic Logic with Binders and Its Application 435

Fig. 5. Model of Ctrl ⊗ GZip

ones (see [12]). It turns out that an action refinement constructor can be easily
defined in D↓-logic if we use the reduct functor for models over a signature
consisting of structured actions built over atomic ones.

Definition 9 (Action refinement). Let A,A′ ∈ |SignD↓ | be signatures in D↓,
i.e. sets of actions. Let D be a finite subset of Act(A′) considered as a signature
in |SignD↓ | and let f : A → D be a signature morphism. The action refinement
constructor |f : ModD↓

(D) → ModD↓
(A) maps any model M′ ∈ ModD↓

(D) to
its reduct ModD↓

(f)(M′).

Example 5. Let us now establish a refinement relation between SP3

(Example 3) and Ctrl ⊗GZip (Example 4). The signature of SP3 consists of the
actions A3 = {inTxt, outZip}, the signature of Ctrl ⊗ GZip is the set A4 =
{inTxt, txt, compTxt, zip, outZip}. To obtain an action refinement we define the
signature morphism f : A3 → Act(A4) by f(inTxt) = inTxt; txt; compTxt
and f(outZip) = zip; outZip. Then we use the action refinement constructor |f :
ModD↓

(A4) → ModD↓
(A3) inducedbyf .Clearly, the applicationof |f to themodel

of Ctrl ⊗GZip leads to the model of SP3 explained above. Hence, SP3 �|f Ctrl ⊗
GZip and together with Example 4 we have also Ctrl ⊗ GZip �κ⊗

〈
Ctrl,GZip

〉

which completes our refinement chain

SP0 � SP1 � SP2 �κext SP3 �|f Ctrl ⊗ GZip �κ⊗
〈
Ctrl,GZip

〉
.

Finally, let us discuss how we could implement the last specification of the
chain in a concrete process algebra. Translation from D↓ to FSP yields

Ctrl = (inTxt -> txt -> zip -> outZip -> Ctrl).
Gzip = (txt -> compTxt -> zip -> Gzip).

The FSP semantics of the two processes are just the two models of the Ctrl
and Gzip specifications respectively. They can be put together to form a concur-
rent system (Ctrl || Gzip) by using the synchronous parallel composition of
FSP processes. Since the semantics of parallel composition in FSP coincides with
our constructor κ⊗, we have justified that the FSP system (Ctrl || Gzip) is a
correct implementation of the interface specification SP3. ��

436 A. Madeira et al.

4.2 Abstractor Implementations in D↓-logic

Abstractor implementations in the field of algebraic specifications use typically
observational equivalence relations between algebras based on the evaluation of
terms with observable sorts. Interestingly, in the area of concurrent systems,
abstractors have a very intuitive interpretation if we use bisimilarity notions. To
motivate this, consider the specification SP = ({a}, {↓ x.〈a〉x}). The axiom is
satisfied by the first LTS in Fig. 6, but not by the second one. Clearly, however,
both are bisimilar and so it should be irrelevant, for implementation purposes,
to choose one or the other as an implementation of SP . We capture this with
the principle of abstractor implementation using (strong) bisimilarity [24] as
behavioural equivalence.

Fig. 6. Behavioural equivalent LTSs

Vertical composition of implementations refers to the situation where the
implementation of a specification is further implemented in a next refinement
step. For simple implementations it is trivial that two implementation steps
compose. In the context of constructor and abstractor implementations the sit-
uation is more complex. A general condition to obtain vertical composition in
this case was established in [28]. However, the original result was only given for
unary implementation constructors. In order to adopt parallel composition as a
constructor, we first generalise the institution independent result of [28] to the
n-ary case involving decomposition:

Theorem 2 (Vertical composition). Consider specifications SP, SP1, . . . ,
SPn over an arbitrary institution, a constructor κ : Mod(Sig(SP1)) × · · · ×
Mod(Sig(SPn)) → Mod(Sig(SP)) and an equivalence ≡⊆ Mod(Sig(SP)) ×
Mod(Sig(SP)) such that SP �≡

κ 〈SP1, · · · , SPn〉. For each i ∈ {1, . . . , n}, let
SPi �≡i

κi
〈SP 1

i , · · · , SP ki
i 〉 with specifications SP 1

i , . . . , SP ki
i , constructor κi :

Mod(Sig(SP 1
i))×· · ·×Mod(Sig(SP ki

i)) → Mod(Sig(SPi)), and equivalence ≡i⊆
Mod(Sig(SPi)) × Mod(Sig(SPi)). Suppose that κ preserves the abstractions ≡i,
i.e. for each Mi,Ni ∈ Mod(Sig(SPi)) such that Mi ≡i Ni, κ(M1, . . . ,Mn) ≡
κ(N1, . . . ,Nn). Then,

SP �≡
κ(κ1,··· ,κn)

〈
SP 1

1 , · · · , SP k1
1 , · · · , SP 1

n , · · · , SP kn
n

〉
.

The remaining results establish the necessary compatibility properties between
the constructors defined in D↓ and behavioural equivalence ≡A ⊆ |ModD↓

(A)|×
|ModD↓

(A)|, A ∈ SignD↓
, defined as bisimilarity between LTSs.

Dynamic Logic with Binders and Its Application 437

Theorem 3. The alphabet extension constructor κext preserves behavioural
equivalences, i.e. for any M1 ≡A M2, κext(M1) ≡A′ κext(M2).

Theorem 4. The parallel composition constructor κ⊗ preserves behavioural
equivalences, i.e. for any M1 ≡A1 M′

1 and M2 ≡A2 M′
2, M1 ⊗ M2 ≡A1∪A2

M′
1 ⊗ M′

2.

Theorem 5. Let f : A → Act(A′) be a signature morphism. The constructor |f
preserves behavioural equivalences, i.e. for any M1,M2 ∈ ModD↓

(Act(A′)), if
M1 ≡Act(A′) M2, then |f (M1) ≡A |f (M2).

5 Conclusions and Future Work

We have introduced the logic D↓ suitable to specify abstract requirements for
reactive systems as well as concrete designs expressing (recursive) process struc-
tures. Therefore D↓ is appropriate to instantiate Sannella and Tarlecki’s refine-
ment framework to provide stepwise, correct-by-construction development of
reactive systems. We have illustrated this with a simple example using speci-
fications and implementation constructors over D↓. We believe that a case was
made for the suitability of both the logic and the method as a viable alternative
to other, more standard approaches to the design of reactive software.

Related Work. Since the 80’s, the formal development of reactive, concurrent
systems has emerged as one of the most active research topics in Computer
Science, with a plethora of approaches and formalisms. For a proper comparison
with this work, the following paragraphs restrict to two classes of methods: the
ones built on top of logics formalised as institutions, and the attempts to apply
to the domain of reactive systems the methods and techniques inherited from
the loose specification of abstract data types.

In the first class, references [7,9,25] introduce different institutions for tem-
poral logics, as a natural setting for the specification of abstract properties of
reactive processes. Process algebras themselves have also been framed as insti-
tutions. Reference [27] formalises CSP [17] in this way. What distinguishes our
own approach, based on D↓ is the possibility to combine and express in the
same logic both abstract properties, as in temporal logics, and their realisation
in concrete, recursive process terms, as typical in process algebras.

Our second motivation was to discuss how institution-independent methods,
used in (data-oriented) software development, could be applied to the design
of reactive systems. A related perspective is proposed in reference [23], which
suggests the loose specification of processes on top of the CSP institution [27]
mentioned above. The authors explore the reuse of institution independent struc-
turing mechanisms introduced in the CASL framework [3] to develop reactive
systems; in particular, process refinement is understood as inclusion of classes of
models. Note that the CASL (in-the-large) specification structuring mechanisms
can be also taken as specific constructors, as the ones given in this paper.

438 A. Madeira et al.

Future Work. A lot of work, however, remains to be done. First of all, logic D↓

is worth to be studied in itself, namely proof calculi, and their soundness and
completeness as well as decidability. In [2] it has been shown that nominal-free
dynamic logic with binders is undecidable. Decidability of D↓ is yet an open
question: while [2] considers standard Kripke structures and global satisfaction,
D↓ considers reachable models and satisfaction w.r.t. initial states. On the other
hand, in D↓ modalities are indexed with regular expressions over sets of actions.
It would also be worthwhile to discuss satisfaction up to some notion of obser-
vational equivalence, as done in [5] for algebraic specifications, thus leading to a
behavioural version of D↓.

The study of initial semantics (for some fragments) of D↓ is also in our
research agenda. For example, theories in the fragment of D↓ that alternates
binders with diamond modalities (thus binding all visited states) can be shown
to have weak initial semantics, which becomes strong initial in a deterministic
setting. The abstract study of initial semantics in hybrid(ised) logics reported
in [8], together with the canonical model construction for propositional dynamic
logic introduced in [19] can offer a nice starting point for this task. Moreover,
for realistic systems, data must be included in our logic.

A second line of inquiry is more directly related to the development method.
For example, defining an abstractor on top of some form of weak bisimilarity
would allow for a proper treatment of hiding, an important operation in CSP
[17] and some other process algebras through which a given set of actions is
made non observable. Finally, our aim is to add a final step to the method
proposed here in which any constructive specification can be translated to a
process algebra expression, as currently done by our proof-of-concept translator
D2CSP. A particularly elegant way to do it is to frame such a translation as an
institution morphism into an institution representing a specific process algebra,
for example the one proposed by M. Roggenbach [27] for CSP.

Acknowledgments. This work is financed by the ERDF European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and Interna-
tionalisation - COMPETE 2020 Programme and by National Funds through the Por-
tuguese funding agency, FCT - Fundação para a Ciência Tecnologia within project
POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013 at CIDMA. A. Madeira and
L. S. Barbosa are further supported by FCT individual grants SFRH/BPD/103004/2014

and SFRH/BSAB/113890/2015, respectively.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

2. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics.
In: Flum, J., Rodŕıguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–
321. Springer, Heidelberg (1999)

3. Astesiano, E., Bidoit, M., Kirchner, H., Krieg-Brückner, B., Mosses, P.D., Sannella,
D., Tarlecki, A.: CASL: the common algebraic specification language. Theor. Com-
put. Sci. 286(2), 153–196 (2002)

Dynamic Logic with Binders and Its Application 439

4. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories
of Communicating Processes. Cambridge University Press, Cambridge (2010)

5. Bidoit, M., Hennicker, R.: Constructor-based observational logic. J. Log. Algebr.
Program. 67(1–2), 3–51 (2006)

6. Braüner, T.: Hybrid Logic and Its Proof-Theory. Applied Logic Series, vol. 37.
Springer, Netherlands (2010)

7. Cengarle, M.V.: The temporal logic institution. Technical report 9805, LUM
München, Institut für Informatik (1998)

8. Diaconescu, R.: Institutional semantics for many-valued logics. Fuzzy Sets Syst.
218, 32–52 (2013)

9. Fiadeiro, J.L., Maibaum, T.S.E.: Temporal theories as modularisation units for
concurrent system specification. Formal Asp. Comput. 4(3), 239–272 (1992)

10. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

11. Goranko, V.: Temporal logic with reference pointers. In: Gabbay, D.M., Ohlbach,
H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 133–148. Springer, Heidelberg (1994).
doi:10.1007/BFb0013985

12. Gorrieri, R., Rensink, A., Zamboni, M.A.: Action refinement. In: Handbook of
Proacess Algebra, pp. 1047–1147. Elsevier (2000)

13. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

14. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
15. Havelund, K.: The Fork Calculus -Towards a Logic for Concurrent ML. Ph.D.

thesis, DIKU, University of Copenhagen, Denmark (1994)
16. Hoare, C.A.R.: Proof of correctness of data representations. Acta Inf. 1, 271–281

(1972)
17. Hoare, C.A.R.: Communicating Sequential Processes. Series in Computer Science.

Prentice-Hall International, Upper Saddle River (1985)
18. Jones, C.B.: Software Development - A Rigorous Approach. Series in Computer

Science. Prentice Hall, Upper Saddle River (1980)
19. Knijnenburg, P., van Leeuwen, J.: On models for propositional dynamic logic.

Theor. Comput. Sci. 91(2), 181–203 (1991)
20. Larsen, K.G., Thomsen, B.: A modal process logic. In: Third Annual Symposium

on Logic in Computer Science, pp. 203–210. IEEE Computer Society (1988)
21. Madeira, A., Barbosa, L., Hennicker, R., Martins, M.: Dynamic logic with binders

and its applications to the developmet of reactive systems (extended with proofs).
Technical report (2016). http://alfa.di.uminho.pt/∼madeira/main files/extreport.
pdf

22. Magee, J., Kramer, J.: Concurrency - State Models and Java Programs, 2nd edn.
Wiley, Hoboken (2006)

23. O’Reilly, L., Mossakowski, T., Roggenbach, M.: Compositional modelling and
reasoning in an institution for processes and data. In: Mossakowski, T.,
Kreowski, H.-J. (eds.) WADT 2010. LNCS, vol. 7137, pp. 251–269. Springer,
Heidelberg (2012)

24. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). doi:10.
1007/BFb0017309

25. Reggio, G., Astesiano, E., Choppy, C.: Casl-ltl: a casl extension for dynamic
reactive systems version 1.0. - summary. Technical report disi-tr-03-36. Technical
report, DFKI Lab Bremen (2013)

http://dx.doi.org/10.1007/BFb0013985
http://alfa.di.uminho.pt/~madeira/main_files/extreport.pdf
http://alfa.di.uminho.pt/~madeira/main_files/extreport.pdf
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1007/BFb0017309

440 A. Madeira et al.

26. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science. Springer, Heidelberg (1985)

27. Roggenbach, M.: CSP-CASL - a new integration of process algebra and algebraic
specification. Theor. Comput. Sci. 354(1), 42–71 (2006)

28. Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic
specifications: implementations revisited. Acta Inform. 25(3), 233–281 (1988)

29. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Monographs on TCS, an EATCS Series. Springer, Heidelberg
(2012)

30. Sekerinski, E., Sere, K.: Program Development by Refinement: Case Studies Using
the B Method. Springer, Heidelberg (2012)

31. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148.
Oxford University Press, Oxford (1995)

Propositional Dynamic Logic for Petri Nets
with Iteration

Mario R.F. Benevides1, Bruno Lopes2(B), and Edward Hermann Haeusler3

1 PESC/COPPE - Inst. de Matemática,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

mario@cos.ufrj.br
2 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil

bruno@ic.uff.br
3 Departamento de Informática, Pontif́ıcia Universidade

Católica do Rio de Janeiro, Rio de Janeiro, Brazil
hermann@inf.puc-rio.br

Abstract. This work extends our previous work [20] with the iteration
operator. This new operator allows for representing more general net-
works and thus enhancing the former propositional logic for Petri Nets.
We provide an axiomatization and a new semantics and prove soundness
and completeness with respect with its semantics. In order to illustrate
its usage, we also provide some examples.

Keywords: Propositional dynamic logic · Petri nets · Modal logic

1 Introduction

Propositional Dynamic Logic PDL plays an important role in formal specifica-
tion and reasoning about programs and actions. PDL is a multi-modal logic with
one modality for each program π 〈π〉. It has been used in formal specification to
reasoning about properties of programs and their behaviour. Correctness, termi-
nation, fairness, liveness and equivalence of programs are among the properties
usually desired. A Kripke semantics can be provided, with a frame F = 〈W,Rπ〉,
where W is a set of possible program states and for each program π, Rπ is a
binary relation on W such that (s, t) ∈ Rπ if and only if there is a computation
of π starting in s and terminating in t.

There are a lot of variations of PDL for different approaches [2]. Proposi-
tional Algorithmic Logic [24] that analizes properties of programs connectives,
the interpretation of Deontic Logic as a variant of Dynamic Logic [23], appli-
cations in linguistics [17], Multi-Dimensional Dynamic Logic [27] that allows
multi-agent [16] representation, Dynamic Arrow Logic [30] to deal with tran-
sitions in programs, Data Analysis Logic [7], Boolean Modal Logic [9], logics

M.R.F. Benevides, B. Lopes and E.H. Haeusler—This work was supported by the
Brazilian research agencies CNPq, FAPERJ and CAPES.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 441–456, 2016.
DOI: 10.1007/978-3-319-46750-4 25

442 M.R.F. Benevides et al.

for reasoning about knowledge [8], logics for knowledge representation [18] and
Dynamic Description Logic [31].

Petri Net is a widely used formalism to specify and to analyze concurrent
programs with a very nice graphical representation. It allows for representing
true concurrency and parallelism in a neat way.

In [20], we present the logic Petri-PDL which uses Marked Petri Net programs
as PDL programs. So if π is a Petri Net program with markup s, then the formula
〈s, π〉ϕ means that after running this program with the initial markup s, ϕ will
eventually be true (also possible a �-like modality replacing the tags by brackets
as an abbreviation for ¬〈s, π〉¬ϕ).

This work extends our previous work [20] with the iteration operator. This
new operator allows for representing more general networks and thus enhancing
the former propositional logic for Petri Nets. We provide a sound and complete
axiomatization and also prove the finite model property, which together with
the axiomatization yields decidability.

Our paper falls in the broad category of works that attempt to generalize
PDL and build dynamic logics that deal with classes of non-regular programs.
As examples of other works in this area, we can mention [11,12,19], that develop
decidable dynamic logics for fragments of the class of context-free programs and
[1,10,25,26] and [3], that develop dynamic logics for classes of programs with
some sort of concurrency. Our logics have a close relation to two logics in this
last group: Concurrent PDL [25] and Concurrent PDL with Channels [26]. Both
of these logics are expressive enough to represent interesting properties of com-
municating concurrent systems. However, neither of them has a simple Kripke
semantics. The first has a semantics based on super-states and super-processes
and its satisfiability problem can be proved undecidable (in fact, it is Π1

1 -hard).
Also, it does not have a complete axiomatization [26]. On the other hand, our
logics have a simple Kripke semantics, simple and complete axiomatizations and
the finite model property.

There are other approaches that use Dynamic Logic to reason about specifi-
cations of concurrent systems represented as Petri Nets [14,15,29]. They differ
from our approach by the fact that they use Dynamic logic as a specification
language for representing Petri Net, they do not encode Petri Nets as programs
of a Dynamic Logic. They translate Nets into PDL language while we have a
new Dynamic Logic tailored to reason about Petri Nets in a more natural way.

This paper is organized as follows. Section 2 presents all the background
needed about (Marked) Petri Nets formalism and Propositional Dynamic Logic.
Section 3, introduces our dynamic logic, with its language and semantics and also
proposes an axiomatization and provides a prove of soundness and completeness.
Section 5 illustrates the use of our logic with some examples. Finally, Sect. 6,
presents some final remarks and future works.

2 Background

This section presents a brief overview of two topics on which the later development
is based on. First, we make a brief review of the syntax and semantics of PDL [13].

Propositional Dynamic Logic for Petri Nets With Iteration 443

Second, we present the Petri Nets formalism and its variant, Marked Petri Nets.
Finally, the compositional approach introduced in [6] is briefly discussed.

2.1 Propositional Dynamic Logic

In this section, we present the syntax and semantics of the most used dynamic
logic called PDL for regular programs.

Definition 1. The PDL language consists of a set Φ of countably many proposi-
tion symbols, a set Π of countably many basic programs, the boolean connectives ¬
and ∧, the program constructors ; (sequential composition), ∪ (non-deterministic
choice) and � (iteration) and a modality 〈π〉 for every program π. The formulas are
defined as follows:

ϕ::=p | � | ¬ϕ | ϕ1 ∧ ϕ2 | 〈π〉ϕ, with π::=a | π1;π2 | π1 ∪ π2 | π�,

where p ∈ Φ and a ∈ Π.

In all the logics that appear in this paper, we use the standard abbreviations
⊥ ≡ ¬�, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ → φ ≡ ¬(ϕ ∧ ¬φ) and [π]ϕ ≡ ¬〈π〉¬ϕ.

Each program π corresponds to a modality 〈π〉, where a formula 〈π〉α means
that after the running of π, α eventually is true, considering that π halts. There
is also the possibility of using [π]α (as an abbreviation for ¬〈π〉¬α) indicating
that the property denoted by α holds after every possible run of π.

The semantics of PDL is normally given using a transition diagram, which
consists of a set of states and binary relations (one for each program) indicat-
ing the possible execution of each program at each state. In PDL literature a
transition diagram is called a frame.

Definition 2. A frame for PDL is a tuple F = 〈W,Rπ〉 where

– W is a non-empty set of states;
– Ra is a binary relation over W , for each basic program a ∈ Π;
– We can inductively define a binary relation Rπ, for each non-basic program

π, as follows
• Rπ1;π2 = Rπ1 ◦ Rπ2 ,
• Rπ1∪π2 = Rπ1 ∪ Rπ2 ,
• Rπ� = R�

π, where R�
π denotes the reflexive transitive closure of Rπ.

Definition 3. A model for PDL is a pair M = 〈F ,V〉, where F is a PDL
frame and V is a valuation function V : Φ → 2W .

The semantical notion of satisfaction for PDL is defined as follows:

Definition 4. Let M = 〈F ,V〉 be a model. The notion of satisfaction of a
formula ϕ in a model M at a state w, notation M, w � ϕ, can be inductively
defined as follows:

– M, w � p iff w ∈ V(p);

444 M.R.F. Benevides et al.

– M, w � � always;
– M, w � ¬ϕ iff M, w � ϕ;
– M, w � ϕ1 ∧ ϕ2 iff M, w � ϕ1 and M, w � ϕ2;
– M, w � 〈π〉ϕ iff there is w′ ∈ W such that wRπw′ and M, w′ � ϕ.

For more details on PDL see [13].

2.2 Petri Nets

A Petri Net [28] is a tuple P = 〈S, T,W 〉, where S is a finite non-empty set
of places, T is a finite set of transitions where S and T are disjoint and W
is a function which defines directed edges between places and transitions and
assigns a w ∈ N that represents a multiplicative weight for the transition, as
W : (S × T) ∪ (T × S) → N.

Marked Petri Nets. A markup function M is a function that assigns to
each place a natural number, M : S → N. A Marked Petri Net is a tuple
P = 〈S, T,W,M0〉 where 〈S, T,W 〉 is a Petri Net and M0 as an initial markup.
In the sequence, any reference to a Petri-Net means Marked Petri-Nets

The flow of a Petri Net is defined by a relation F = {(x, y) | W (x, y) > 0}; in
this work we take the restriction that for all transitions W (x, y) = 1. Let s ∈ S
and t ∈ T . The preset of t, denoted by •t, is defined as •t = {s ∈ S : (s, t) ∈ F};
the postset of t, denoted by t• is defined as t• = {s ∈ S : (t, s) ∈ F}. The preset
of s, denoted by •s, is defined as •s = {t ∈ T : (t, s) ∈ F}; the postset of s,
denoted by s• is defined as s• = {t ∈ T : (s, t) ∈ F}.

Given a markup M of a Petri Net, we say that a transition t is enabled on M
if and only if ∀x ∈ •t,M(x) ≥ 1. A new markup generated by firing a transition
which is enabled is defined as

Mi+1(x) =

⎧
⎨

⎩

Mi(x) − 1, ∀x ∈ •t \ t•

Mi(x) + 1, ∀x ∈ t• ∩ •t
Mi(x), otherwise

. (1)

A program behavior is described by the set M = {M1, . . . ,Mn} of a Petri Net
markups.

A Petri Net may be interpreted in a graphical representation, using a circle
to represent each s ∈ S, a rectangle to represent each t ∈ T , the relations defined
by W as edges between places and transitions. The amount of tokens from M
are represented as filled circles into the correspondent places. An example of a
valid Petri Net is in Fig. 2.

Just as an example, the Petri Net on Fig. 1 represents the operation of an
elevator for a building with five floors. A token in the place U indicates that the
elevator is able to go up one floor; and, when T1 fires, a token goes to D, so
the elevator can go down a floor. If the elevator goes down a floor (i.e., T2 fires)
a token goes to the place U . Figure 1 illustrates the Petri Net with its initial
markup.

Propositional Dynamic Logic for Petri Nets With Iteration 445

U

D

T1T2

Fig. 1. Petri Net for a simple elevator of five floors

Another example is in Fig. 2, which represents a SMS send and receive of
two cellphones. When the user sends a SMS from his cellphone, it goes to his
phone buffer (i.e., T1 fires and the token goes to p2). When the phone sends
the message to the operator (i.e., T2 fires) it goes to the operator buffer; so, the
messages must be sent to the receiver, but the receiver is able to receive only one
message at a time. If there is a message in the operator buffer and the receiver
is not receiving other message (i.e., there is at least a token in p3 and there is
a token in p4), the receiver can receive the message (i.e., T3 fires). At this point
the user can not receive other messages (i.e., there is no token in p4, so T3 is
not enabled); but, after the complete receive of the message (i.e., T4 fires), the
receiver is able to receive messages again (i.e., there is a token in p4 and when
p3 have at least a token, T3 will be enabled again).

p1

p2

p3

p4

p5

T1

T2

T3

T4

Fig. 2. Petri Net for a SMS send and receive

Basic Petri Nets. The Petri Net model used in this work is as defined by de
Almeida and Haeusler [6]. It uses three basic Petri Nets to define all valid Petri
Nets due to its compositions. These basic Petri Nets are as in Fig. 3.

To compose more complex Petri Nets from these three basic ones, it is used
a gluing procedure described, and proved corrected in [6].

As an example, taking the Petri Net in Fig. 1 it can be modelled as a com-
position of two Petri Nets of type 1, where UT1D is composed with DT2U ,
generating the Petri Net UT1D � DT2U where � denotes the Petri Net com-
position symbol. The Petri Net from Fig. 2 can be modelled by composition of
Petri Nets of the three basic types. The basic Petri Nets of this case are p2T2p3,
p5T4p4 (type 1), p3p4T3p5 (type 2) and p1T1p1P2 (type 3), composing the Petri
Net p2T2p3 � p5T4p4 � p3p4T3p5 � p1T1p1P2.

446 M.R.F. Benevides et al.

X Y

(a) Type 1 : t1

X

Y

Z

(b) Type 2 : t2

X
Y

Z

(c) Type 3 : t3

Fig. 3. Basic Petri Nets.

3 Propositional Dynamic Logic for Petri Nets
(Petri-PDL)

This section presents a Propositional Dynamic Logic that uses Petri Nets terms
as programs (Petri-PDL) [20].

3.1 Language and Semantics

The language of Petri-PDL consists of

Propositional symbols: p, q. . .
Place names: e.g.: a, b, c, d . . .
Transition types: T1 : xt1y, T2 : xyt2z and T3 : xt3yz
Petri Net Composition symbol: �
PDL operators: ; (sequential composition) and ()� (iteration)
Sequence of names: S = {ε, s1, s2, . . .}, where ε is the empty sequence. We
use the notation a ∈ s to denote that name a occurs in s. Let #(s, a) be the
number of occurrences of name a in s. We say that sequence r is a sub-sequence
of s, r � s, if for any name a, if a ∈ r implies a ∈ s and #(r, a) ≤ #(s, a).

Definition 5. Programs:

Basic programs: π :: =at1b | abt2c | at3bc where ti is of type Ti, i = 1, 2, 3 and
a, b and c are Place names.
Petri Net Programs: η :: =π | π � η | η�

Definition 6. A formula is defined as

ϕ :: =p | � | ¬ϕ | ϕ ∧ ϕ | 〈s, η〉ϕ.

We use the standard abbreviations ⊥ ≡ ¬�, ϕ ∨ φ ≡ ¬(¬ϕ ∧ ¬φ), ϕ → φ ≡
¬(ϕ ∧ ¬φ) and [s, η]ϕ ≡ ¬〈s, η〉¬ϕ.

The definition below introduces the firing function. It defines how the mark-
ing of a basic Petri Nets changes after a firing.

Propositional Dynamic Logic for Petri Nets With Iteration 447

Definition 7. We define the firing function f : S × πb → S as follows

– f(s, at1b) =
{

s1bs2, if s = s1as2
ε, if a ∈ s

}

– f(s, abt2c) =
{

s1cs2s3, if s = s1as2bs3
ε, if a or b ∈ s

}

– f(s, at3bc) =
{

s1s2bc, if s = s1as2
ε, if a ∈ s

}

The definitions that follow of frame, model and satisfaction are similar to the
one presented in Sect. 2.1 for PDL. Now, we have to adapt them to deal with
the firing of basics Petri Nets.

Definition 8. A frame for Petri-PDL is a 3-tuple 〈W,Rπ,M〉, where

– W is a non-empty set of states;
– M : W → S;
– Rπ is a binary relation over W , for each basic program π, satisfying the fol-

lowing condition. Let s = M(w)
• if f(s, π) = ε, if wRπv then f(s, π) � M(v)
• if f(s, π) = ε, (w, v) ∈ Rπ

– we inductively define a binary relation Rη, for each Petri Net program η as
follows

• Rη∗ = R∗
η, where R∗

η denotes the reflexive transitive closure of Rη.
• η = π1 � π2 � · · · � πn

Rη = (Rπ1 ◦ Rη∗) ∪ · · · ∪ (Rπn
◦ Rη∗)

Where s = M(w), ηi are basic programs and si = f(s, ηi), for all 1 ≤ i ≤ n.

Definition 9. A model for Petri-PDL is a pair M = 〈F ,V〉, where F is a
Petri-PDL frame and V is a valuation function V : Φ → 2W .

The semantical notion of satisfaction for Petri-PDL is defined as follows.

Definition 10. Let M = (F ,V) be a model. The notion of satisfaction of a
formula ϕ in a model M at a state w, notation M, w � ϕ, can be inductively
defined as follows:

– M, w � p iff w ∈ V(p);
– M, w � � always;
– M, w � ¬ϕ iff M, w � ϕ;
– M, w � ϕ1 ∧ ϕ2 iff M, w � ϕ1 and M, w � ϕ2;
– M, w � 〈s, η〉ϕ if there exists v ∈ W , wRηv, s � M(w) and M, v � ϕ.

If M, v � A for every state v, we say that A is valid in the model M, notation
M � A. And if A is valid in all M we say that A is valid , notation � A.

448 M.R.F. Benevides et al.

3.2 Axiomatic System

We consider the following set of axioms and rules, where p and q are proposition
symbols, ϕ and ψ are formulas, η = π1 � π2 � · · · � πn is a Petri Net program
and πi are basic program.

(PL) Enough propositional logic tautologies
(K) [s, η](p → q) → ([s, η]p → [s, η]q)
(Rec) 〈s, η∗〉p ↔ p ∨ 〈s, η〉〈s, η∗〉p
(FP) p ∧ [s, η∗](p → [s, η]p) → [s, η∗]p
(PC) 〈s, η〉ϕ ↔ 〈s, π1〉〈s1, η∗〉ϕ ∨ 〈s, π2〉〈s2, η∗〉ϕ ∨ · · · ∨ 〈s, πn〉〈sn, η∗〉ϕ, where
si = f(s, ηi), for all 1 ≤ i ≤ n.
(Rε) [s, π]⊥, if f(s, π) = ε
(Sub) If � ϕ, then � ϕσ, where σ uniformly substitutes proposition symbols by
arbitrary formulas.
(MP) If � ϕ and � ϕ → ψ, then � ψ.
(Gen) If � ϕ, then � [s, η]ϕ.

4 Soundness and Completeness

The axioms (PL) and (K) and the rules (Sub), (MP) and (Gen) are standard
in the modal logic literature.

Lemma 1. Validity of Petri-PDL axioms

Proof. 1. � Rec

Proof. Suppose that there is a world w from a model M = 〈W,Rπ,V,M〉 where
Rec is false. For Rec to be false in w, there are two cases:

(a) Suppose M,w � 〈s, π�〉p (1) and
M,w � p ∨ 〈s, π〉〈s, π�〉p (2)
Applying Definition 10 in (1) we have that M,w � 〈s, π〉〈s, π�〉p (3).
Applying Definition 10 again we have that M,w � p ∨ 〈s, π〉〈s, π�〉p, which
contradicts (2).
(b) Suppose M,w � 〈s, π�〉p (1) and
M,w � p ∨ 〈s, π〉〈s, π�〉p (2)
Applying Definition 10 in (1) we have M,w � p ∨ 〈s, π〉p (3).
Using the axiom (Gen) and then (K) in (3) we have that M,w � [s, π]p ∨
〈s, π〉p, then, using Definition 10, we have that M,w � 〈s, π〉p∨〈s, π〉p, which
by Definition 10 implies that M,w � 〈s, π〉p. (4)
But by (1) and Definition 10 we can not have (4).
Then, there is a contradiction.

So, Rec is valid. ��

2. � FP

Propositional Dynamic Logic for Petri Nets With Iteration 449

Proof. Supose that there is a world w from a model M = 〈W,Rπ,V,M〉 where
FP is false.

So, M�
3,w � p ∧ [s, π�](p → [s, π]p) (1) and

M�
3,w � [s, π�]p (2).

By (1) and Definition 10 we have that M�
3,w � p and M�

3,w � [s, π�](p →
[s, π]p) (4)

Applying (MP) in (4) we have that M�
3,w � [s, π�]([s, π]p), which contradicts

(2).
So, FP is valid.

3. � PC

Supose that there is a world w from a model M = 〈W,Rπ,V,M〉 where PC is
false. For PC to be false in w, there are two cases:

(a) Suppose M, w � 〈s, η〉ϕ (1).
(1) iff there is a v such that wRηv, s � M(w) and M, v � ϕ (2).
By Definition 8 Rη = (Rπ1 ◦ Rη∗) ∪ · · · ∪ (Rπn

◦ Rη∗) which implies that
for some 0 ≤ i ≤ n, w(Rπi

◦ Rη∗)v. Using Definition 10 twice we obtain.
M, w � 〈s, πi〉〈si, η

∗〉ϕ. This implies
M, w � 〈s, π1〉〈s1, η∗〉ϕ ∨ 〈s, π2〉〈s2, η∗〉ϕ ∨ · · · ∨ 〈s, πn〉〈sn, η∗〉ϕ.
(b) Suppose M, w � 〈s, π1〉〈s1, η∗〉ϕ ∨ 〈s, π2〉〈s2, η∗〉ϕ ∨ · · · ∨ 〈s, πn〉〈sn, η∗〉ϕ
(2), iff for some i (1 ≤ i ≤ n), M,w � 〈s, πi〉〈si, η

∗〉ϕ iff
there is a u such that wRηi

u, s � M(w) and M, u � 〈si, η
∗〉ϕ ,

iff there is a v such that uRηv, si � M(u) and M, v � ϕ (3). But this implies
that w(Rπi

◦ Rη∗)v and consequently w((Rπ1 ◦ Rη∗) ∪ · · · ∪ (Rπn
◦ Rη∗))v(4)

By Definition 8, (3) and (4) we have wRηv and s � M(w) and M,v � ϕ.
Thus, M, w � 〈s, η〉ϕ

4. � Rε,

Suppose f(s, π) = ε and � [s, π]⊥, so there exists a model M and a state w such
that M,w � [s, π]⊥ iff M, w � 〈s, π〉� (1)

From (1), there is a v such that wRπv, s � M(w) and M, v � �
But f(s, π) = ε and thus by Definition 8 (w, v) ∈ Rπ, which is a contradiction.
Hence, the axiomatic system is consistent.

Definition 11. (Fischer and Ladner Closure): Let Γ be a set of formulas.
The closure of Γ , notation CFL(Γ), is the smallest set of formulas satisfying
the following conditions:

1. CFL(Γ) is closed under subformulas,
2. if 〈s, η∗〉ϕ ∈ CFL(Γ), then 〈s, η〉ϕ ∈ CFL(Γ),
3. if 〈s, η∗〉ϕ ∈ CFL(Γ), then 〈s, η〉〈s, η�〉ϕ ∈ CFL(Γ),
4. if 〈s, η〉ϕ ∈ CFL(Γ), then 〈s, ηi〉〈si, η

�〉ϕ ∈ CFL(Γ), where η = η1 � η2 �
· · · � ηn and si = f(s, ηi), for all 1 ≤ i ≤ n.

5. if ϕ ∈ CFL(Γ) and ϕ is not of the form ¬ψ, then ¬ϕ ∈ CFL(Γ).

450 M.R.F. Benevides et al.

We prove that if Γ is a finite set of formulas, then the closure CFL(Γ) of Γ
is also finite. We assume Γ to be finite from now on.

Lemma 2. If Γ is a finite set of formulas, then CFL(Γ) is also finite.

Proof. This proof is standard in PDL literature [4]. ��
Definition 12. Let Γ be a set of formulas. A set of formulas A is said to be an
atom of Γ if it is a maximal consistent subset of CFL(Γ). The set of all atoms
of Γ is denoted by At(Γ).

Lemma 3. Let Γ be a set of formulas. If ϕ ∈ CFL(Γ) and ϕ is consistent then
there exists an atom A ∈ At(Γ) such that ϕ ∈ A.

Proof. We can construct the atom A as follows. First, we enumerate the elements
of CFL(Γ) as φ1, · · · , φn. We start the construction making A1 = {ϕ}, then for
1 < i < n, we know that � ∧ Ai ↔ (

∧ Ai ∧φi+1)∨ (
∧ Ai ∧¬φi+1) is a tautology

and therefore either Ai ∧ φi+1 or Ai ∧ ¬φi+1 is consistent. We take Ai+1 as the
union of Ai with the consistent member of the previous disjunction. At the end,
we make A = An. ��
Definition 13. Let Γ be a set of formulas and 〈s, η〉ϕ ∈ At(Γ). The canonical
relations over Γ SΓ

η on At(Γ) are defined as follows:

ASΓ
η B iff

∧
A ∧ 〈s, η〉

∧
B is consistent.

Definition 14. Let {〈s1, η1〉ϕ1, ..., 〈sn, ηn〉ϕn} be the set of all diamond formu-
las occurring in one atom A. We define the canonical marking of A M(A) as
follows

1. M(A) := s1; s2; ...; sn;
2. for all basic programs π, if ASΓ

η B and f(M(A), π) � M(B), then add to
M(B) as few as possible names to make f(M(A), π) � M(B).

Definition 15. Let Γ be a set of formulas. The canonical model over Γ is
a tuple MΓ = 〈At(Γ), SΓ

η ,MΓ ,VΓ 〉, where for all propositional symbols p and
for all atoms A ∈ At(Γ) we have

– MΓ : At(Γ) �→ S, called canonical marking;
– VΓ (p) = {A ∈ At(Γ) | p ∈ A} is called canonical valuation;
– SΓ

η are the canonical relations1.

Lemma 1. For all basic programs π, let s = M(A), Sπ satisfies

1. if f(s, π) = ε, if ASπB then f(s, π) � M(B)
2. if f(s, π) = ε, then (A,B) ∈ Sπ

Proof. The proof of 1. is straightforward from the definition of canonical marking
(Definition 14). The proof of 2. follows from axiom Rε.
1 For the sake of clarity we avoid using the Γ subscripts.

Propositional Dynamic Logic for Petri Nets With Iteration 451

Lemma 2 (Existence Lemma for Canonical Models). Let A ∈ At(Γ)
and 〈s, η〉ϕ ∈ CFL. Then,

〈s, η〉ϕ ∈ A iff there exists B ∈ At(Γ) such that ASηB, s � M(A) and ϕ ∈ B.

Proof. ⇒: Suppose 〈s, η〉ϕ ∈ A. By Definition 14 we know that s � M(A).
By Definition 12, we have that

∧ A∧〈s, η〉ϕ is consistent. Using the tautology
� ϕ ↔ ((ϕ∧φ)∨(ϕ∧¬φ)), we have that either

∧ A∧〈s, η〉(ϕ∧φ) is consistent
or

∧ A ∧ 〈s, η〉(ϕ ∧ ¬φ) is consistent. So, by the appropriate choice of φ, for
all formulas φ ∈ CFL, we can construct an atom B such that ϕ ∈ B and∧ A ∧ 〈s, η〉(ϕ ∧ ∧ B) is consistent and by Definition 13 ASηB.
⇐: Suppose there is B such that ϕ ∈ B and ASηB and s � M(A). Then∧ A∧〈s, η〉∧ B is consistent and also

∧ A∧〈s, η〉ϕ is consistent. But 〈s, η〉ϕ ∈
CFL and by maximality 〈s, η〉ϕ ∈ A.

Lemma 3 (Truth Lemma for Canonical Models). Let M = (W,Sη,M,V)
be a finite canonical model constructed over a formula φ. For all atoms A and
all ϕ ∈ CFL(φ), M,A |= ϕ iff ϕ ∈ A.

Proof. The proof is by induction on the construction of ϕ.

– Atomic formulas and Boolean operators: the proof is straightforward from the
definition of V.

– Modality 〈x〉, for x ∈ {π, π1 � · · · � πn, η}.

⇒: Suppose M,A |= 〈s, x〉ϕ, then there exists A′ such that ASxA′, s � M(A)
and M,A′ |= ϕ. By the induction hypothesis we know that ϕ ∈ A′, and by
Lemma 2 we have 〈s, x〉ϕ ∈ A.
⇐: Suppose M,A |= 〈s, x〉ϕ, by the definition of satisfaction we have M,A |=
¬〈s, x〉ϕ. Then for all A′, ASxA′ and s � M(A) implies M,A′ |= ϕ. By
the induction hypothesis we know that ϕ ∈ A′, and by Lemma 2 we have
〈s, x〉ϕ ∈ A.

Lemma 4. Let A,B ∈ At(Γ). Then if ASη�B then AS�
ηB.

Proof. Suppose ASη�B. Let C = {C ∈ At(Γ) | AS�
ηC}. We want to show that

B ∈ C. Let C∧
∨ = (

∧ C1 ∨ · · · ∨ ∧ Cn) and s = s1...sn, where si = M(Ci).
It is not difficult to see that C∧

∨ ∧ 〈s, η〉¬C∧
∨ is inconsistent, otherwise for

some D not reachable from A, C∧
∨ ∧〈s, η〉∧ D would be consistent, and for some

Ci,
∧ Ci ∧ 〈si, η〉 ∧ D was also consistent, which would mean that D ∈ C, which

is not the case. From a similar reasoning we know that
∧A ∧ 〈s, η〉¬C∧

∨ is also
inconsistent and hence � ∧ A → [s, η]C∧

∨ is a theorem.
As C∧

∨ ∧ 〈s, η〉¬C∧
∨ is inconsistent, so its negation is a theorem � ¬(C∧

∨ ∧
〈s, η〉¬C∧

∨) and also � (C∧
∨ → [s, η]C∧

∨) (1), applying generalization �
[s, η](C∧

∨ → [s, η]C∧
∨). Using Segerberg axiom (axiom 6), we have � ([s, η]C∧

∨ →
[s, η]C∧

∨) and by (1) we obtain � (C∧
∨ → [s, η]C∧

∨). As � ∧ A → [s, η]C∧
∨ is a

theorem, then � ∧ A → [s, η]C∧
∨. By supposition,

∧ A∧〈s, η〉∧ B is consistent
and so is

∧ B ∧ C∧
∨. Therefore, for at least one C ∈ C, we know that

∧ B ∧ ∧ C
is consistent. By maximality, we have that B = C. And by the definition of C∧

∨,
we have AS�

ηB. ��

452 M.R.F. Benevides et al.

Definition 16. Let Γ be a set of formulas. The proper canonical model over
Γ is a tuple N Γ = 〈At(Γ), RΓ

η ,MΓ ,VΓ 〉, where for all propositional symbols p
and for all atoms A ∈ At(Γ) we have

– VΓ (p) = {A ∈ At(Γ) | p ∈ A} is called canonical valuation;
– MΓ is the canonical marking;
– RΓ

π := SΓ
π , for every basic program π;

– we inductively define a binary relation Rη is inductively define as follows,2.

– Rη∗ = R∗
η;

– η = π1 � π2 � · · · � πn

Rη = (Rπ1 ◦ Rη∗) ∪ · · · ∪ (Rπn
◦ Rη∗)

Lemma 4. For all programs η, Sη ⊆ Rη.

Proof. By induction on the length of programs η

– For basic programs π, Sη = Rη (Definition 16)
– η = θ�. We have that Rθ� = R�

θ . By induction hypothesis Sθ ⊆ Rθ. But we
know that if Sθ ⊆ Rθ then S�

θ ⊆ R�
θ . So S�

θ ⊆ R�
θ (1).

By Lemma 4, Sθ� ⊆ S�
θ , and thus Sθ� ⊆ S�

θ ⊆ R�
θ = Rθ�

– η = π1 � π2 � · · · � πn. We have that Rη = (Rπ1 ◦ Rη∗) ∪ · · · ∪ (Rπn
◦ Rη∗).

By the previous item we know Sθ� ⊆ Rθ� , and by the induction hypothesis
Sπi

⊆ Rπi
and thus (Sπ1 ◦ Sη∗) ∪ · · · ∪ (Sπn

◦ Sη∗) ⊆ Rθ (0).
Suppose ASηB, iff

∧ A ∧ 〈s, η〉∧ B is consistent.
Using axiom (PC)∧ A ∧ 〈s, π1〉〈s1, η∗〉∧ B ∨ 〈s, π2〉〈s2, η∗〉∧ B ∨ · · · ∨ 〈s, πn〉〈sn, η∗〉∧ B
is consistent. For at least one i,

∧ A ∧ 〈s, πi〉〈si, η
∗〉∧ B is consistent.

Using a forcing choices argument we can construct a C such that∧ A ∧ 〈s, πi〉
∧ C is consistent (1) and∧ C ∧ 〈si, η

∗〉∧ B is consistent.
Let s′ = M(C). As si � s′, then∧ C ∧ 〈s′, η∗〉∧ B is consistent (2).
From (1) and (2) we have ASπi

C and CSη∗B, and
A(Sπi

◦ Sη∗)B. Thus
A(Sπ1 ◦ Sη∗) ∪ · · · ∪ (Sπn

◦ Sη∗)B.
By (0), ARηB. Therefore, Sη ⊆ Rη.

Lemma 5 (Existence Lemma for Proper Canonical Models). Let A ∈
At(Γ) and 〈s, η〉ϕ ∈ CFL. Then,

〈s, η〉ϕ ∈ A iff there exists B ∈ At(Γ) such that ARηB, s � M(A) and ϕ ∈ B.

Proof. ⇒: Suppose 〈s, η〉ϕ ∈ A. By the Existence Lemma for Canonical Mod-
els, Lemma 2, we have then there exists B ∈ At(Γ) such that ASηB and ϕ ∈ B.
As by Lemma 4, Sη ⊆ Rη. Thus, there exists B ∈ At(Γ) such that ARηB and
ϕ ∈ B.

2 For the sake of clarity we avoid using the Γ superscripts.

Propositional Dynamic Logic for Petri Nets With Iteration 453

⇐: Programs x, for x ∈ {π, π1 � · · · � πn, η}.
Suppose there exists B ∈ At(Γ) such that ARxB and ϕ ∈ B. The proof follows

by induction on the structure of x.

– x = π (Basic programs): this is straightforward once Rπ = Sπ and by the
existence Lemma 2 for canonical models 〈s, π〉ϕ ∈ A.

– x = η. By definition Rη� = (Rη)�

Suppose that for some B, AR�
ηB and ϕ ∈ B. Then, for some n,

A = A1Rη · · · RηAn = B. We can prove by sub-induction on 1 ≤ k ≤ n.
• k = 1: ARηB and A ∈ B. By induction hypothesis, 〈s, η〉ϕ ∈ A. From

axiom Rec, we know that � 〈s, η〉ϕ → 〈s, η�〉ϕ and by the definition of
CFL and maximality we have 〈s, η�〉ϕ ∈ A.

• k > 1: By the sub-induction hypothesis 〈s, η�〉ϕ ∈ A2 and
〈s, η〉〈s, η�〉ϕ ∈ A1. From axiom Rec, we know that
� 〈s, η〉〈s, η�〉ϕ → 〈s, η�〉ϕ and by the definition of CFL and maximality
we have 〈s, η�〉ϕ ∈ A.

– x = π1 � · · · � πn: ARπ1�···�πn
B and ϕ ∈ B iff

A(Rπ1 ◦ Rx∗) ∪ · · · ∪ (Rπn
◦ Rx∗)B and ϕ ∈ B. For some 1 ≤ i ≤ n

A(Rπi
◦ Rx∗)B and ϕ ∈ B. There exists a C such that ARπi

C and CRx∗B
and ϕ ∈ B. By the previuos case 〈si, x

�〉ϕ ∈ C (where si = f(s, πi)),
and by the induction hypothesis 〈s, πi〉〈si, x

�〉ϕ ∈ A. But this implies that
〈s, π1〉〈s1, x�〉ϕ ∨ ... ∨ 〈s, πn〉〈sn, x�〉ϕ ∧ ∧ A is consistent. By axiom PC,
〈s, π1 � · · · � πn〉ϕ ∧ ∧ A is consistent. By maximality,
〈s, π1 � · · · � πn〉ϕ ∈ A.

Lemma 6 (Truth Lemma for Proper Canonical Models). Let N =
(W,Rη,V) be a finite proper canonical model constructed over a formula φ. For
all atoms A and all ϕ ∈ CFL(φ), N ,A |= ϕ iff ϕ ∈ A.

Proof. The proof is by induction on the construction of ϕ.

– Atomic formulas and Boolean operators: the proof is straightforward from the
definition of V.

– Modality 〈x〉, for x ∈ {π, π1 � · · · � πn, η}.

⇒: Suppose M,A |= 〈s, x〉ϕ, then there exists A′ such that ASxA′ and
M,A′ |= ϕ. By the induction hypothesis we know that ϕ ∈ A′, and by
Lemma 2 we have 〈s, x〉ϕ ∈ A.
⇐: Suppose N ,A |= 〈s, x〉ϕ, by the definition of satisfaction we have
N ,A |= ¬〈s, x〉ϕ. Then for all A′, ARxA′ implies N ,A′ |= ϕ. By the induc-
tion hypothesis we know that ϕ ∈ A′, and by Lemma 5 we have 〈s, x〉ϕ ∈ A.

Theorem 1 (Completeness for Proper Canonical Models). Proposi-
tional Dynamic Logic for PetriNets Programs is complete with respect to the
class of Proper Canonical Models.

Proof. For every consistent formula A we can build a finite proper canonical
model N . By Lemma 3, there exist an atom A ∈ At(A) such that A ∈ A, and
by the truth Lemma 6 N ,A |= A. Therefore, our modal system is complete with
respect to the class of finite proper canonical models.

454 M.R.F. Benevides et al.

5 Some Usage Examples

This section, presents some examples of the application of our logic.

Example 1. We can prove that if we place a token at location b and leave the
location a empty, then after the execution of the network we cannot obtain a
configuration where there is a token at location c. This can be expressed by the
formula 〈(b), abt2c〉� → ¬〈(c), abt2c〉�.

We can use our proof system to prove this property.

a

b

c

t2

Fig. 4. A Petri Net where a and b have one token each one

Example 2. We illustrate the use of the iteration with the chocolate vending
machine. It works as follows: we turn it on (l) and put one coin (m) and then
it releases the chocolate (c).

Its behavior can be specified by the Petri Net of Fig. 5. The upper left place
(�) is the power button of a vending machine; the bottom left is the coin inserted
(m) and the bottom right is the chocolate output (c); if the vending machine is
powered on, always when a coin is inserted you will have a chocolate released.
This behavior must repeat forever and it is here that we need the iteration opera-
tor ()�. We can express that once we have tuned the machine on and put one coin
we can obtain a chocolate by the formula 〈(�,m), (�mt2x � xt3yc � yt1�)�〉� →
〈(�, c), (�mt2x � xt3yc � yt1�)�〉�.

In order to prove the above property we can use our proof system.

�

m

x

y

c

t2 t3

t1

Fig. 5. A Petri Net for a chocolate vending machine

Propositional Dynamic Logic for Petri Nets With Iteration 455

6 Conclusions and Further Work

The main contribution of this work is to extend the Propositional Dynamic
Logic for Petri Nets presented in [20] with the iteration operator. This new
operator allows for representing more general nets without loosing nice properties
like decidability, soundness and completeness. Using iteration operator we can
specify Petri Nets with loops and consequently, concurrent system with recursive
behavior.

We propose an axiomatization and a semantics and prove its soundness and
completeness and also prove the finite model property, which together with the
axiomatization yields decidability.

As future work, we would like to extend our approach to other Petri Nets,
like Timed and Stochastic Petri Nets (some initial work without the iteration
operator is presented in [21,22]). Finally we would like to study and extend issues
concerning Model Checking and Automatic Theorem Prover to Petri-PDL (some
initial work without the iteration operator is presented in [5]).

References

1. Abrahamson, K.R.: Decidability and expressiveness of logics of processes. Ph.D.
thesis, Department of Computer Science, University of Washington (1980)

2. Balbiani, P., Vakarelov, D.: PDL with intersection of programs: a complete axiom-
atization. J. Appl. Non-Classical Logics 13(3–4), 231–276 (2003)

3. Benevides, M.R.F., Schechter, L.M.: A propositional dynamic logic for CCS pro-
grams. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Information and
Computation. LNCS (LNAI), vol. 5110, pp. 83–97. Springer, Heidelberg (2008)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Theoretical Tracts in Com-
puter Science. Cambridge University Press, Cambridge (2001)

5. Braga, C., Lopes, B.: Towards reasoning in dynamic logics with rewriting logic:
the Petri-PDL case. In: Cornélio, M., Roscoe, B. (eds.) SBMF 2015. LNCS, vol.
9526, pp. 74–89. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29473-5 5

6. de Almeida, E.S., Haeusler, E.H.: Proving properties in ordinary Petri Nets using
LoRes logical language. Petri Net Newslett. 57, 23–36 (1999)

7. del Cerro, L.F., Orlowska, E.: DAL - a logic for data analysis. Theoretical Comput.
Sci. 36, 251–264 (1985)

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press, Cambridge (2004)

9. Gargov, G., Passy, S.: A note on boolean modal logic. In: Petkov, P.P. (ed.) Math-
ematical Logic, pp. 299–309. Springer, US, New York (1990)

10. Goldblatt, R.: Parallel action: concurrent dynamic logic with independent modal-
ities. Stud. Logica. 51, 551–558 (1992)

11. Harel, D., Kaminsky, M.: Strengthened results on nonregular PDL. Technical
Report MCS99-13, Faculty of Mathematics and Computer Science, Weizmann
Institute of Science (1999)

12. Harel, D., Raz, D.: Deciding properties of nonregular programs. SIAM J. Comput.
22(4), 857–874 (1993)

13. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing Series.
MIT Press, Cambridge (2000)

http://dx.doi.org/10.1007/978-3-319-29473-5_5

456 M.R.F. Benevides et al.

14. Hull, R.: Web services composition: a story of models, automata, and logics. In:
Proceedings of the 2005 IEEE International Conference on Web Services (2005)

15. Hull, R., Jianwen, S.: Tools for composite web services: a short overview. ACM
SIGMOD 34(2), 86–95 (2005)

16. Khosravifar, S.: Modeling multi agent communication activities with Petri Nets.
Int. J. Inf. Educ. Technol. 3(3), 310–314 (2013)

17. Kracht, M.: Synctatic codes and grammar refinement. J. Logic Lang. Inform. 4(1),
41–60 (1995)

18. Lenzerini, M.: Boosting the correspondence between description logics and propo-
sitional dynamic logics. In: Proceedings of the Twelfth National Conference on
Artificial Intelligence, pp. 205–212. AAAI Press (1994)

19. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive pro-
grams. J. Logic Algebraic Programm. 73(1–2), 51–69 (2007)

20. Lopes, B., Benevides, M., Haeusler, H.: Propositional dynamic logic for Petri nets.
Logic J. IGPL 22, 721–736 (2014)

21. Lopes, B., Benevides, M., Haeusler, E.H.: Extending propositional dynamic logic
for Petri Nets. Electronic Notes Theoretical Comput. Sci. 305(11), 67–83 (2014)

22. Lopes, B., Benevides, M., Haeusler, E.H.: Reasoning about multi-agent systems
using stochastic Petri Nets. In: Bajo, J., Hernández, J.Z., Mathieu, P., Campbell, A.,
Fernández-Caballero, A., Moreno, M.N., Julián, V., Alonso-Betanzos, A.,
Jiménez-López, M.D., Botti, V. (eds.) Trends in Practical Applications of Agents,
Multi-Agent Systems and Sustainability. AISC, vol. 372, pp. 75–86. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-19629-9 9

23. Meyer, J.-J.C.: A different approach to deontic logic: deontic logic viewed as a
variant of dynamic logic. Notre Dame J. Formal Logic 29(1), 109–136 (1987)

24. Mirkowska, G.: PAL - Propositional algorithmic logic. Fundam. Informaticæ 4,
675–760 (1981)

25. Peleg, D.: Concurrent dynamic logic. J. Assoc. Comput. Mach. 34(2), 450–479
(1897)

26. Peleg, D.: Communication in concurrent dynamic logic. J. Comput. Syst. Sci.
35(1), 23–58 (1987)

27. Petkov, A.: Propositional Dynamic Logic in Two and More Dimensions. Mathe-
matical Logic and its Applications. Plenum Press, New York (1987)

28. Petri, C.A.: Fundamentals of a theory of asynchronous information flow. Commun.
ACM 5(6), 319 (1962)

29. Tuominen, H.: Elementary net systems and dynamic logic. In: Rozenberg, G. (ed.)
Advances in Petri Nets 1989. LNCS, pp. 453–466. Springer, Berlin Heidelberg
(1990)

30. van Benthem, J.: Logic and Information Flow. Foundations of Computing. MIT
Press, Cambridge (1994)

31. Wolter, F., Zakharyaschev, M.: Dynamic description logics. In: Proceedings of
AiML1998, pp. 290–300. CSLI Publications (2000)

http://dx.doi.org/10.1007/978-3-319-19629-9_9

Tool and Short Papers

ML Pattern-Matching, Recursion,
and Rewriting: From FoCaLiZe to Dedukti

Raphaël Cauderlier1 and Catherine Dubois2(B)

1 Inria - Saclay and Cnam - Cedric, Paris, France
2 ENSIIE - Cedric and Samovar, Évry, France

catherine.dubois@ensiie.fr

Abstract. The programming environment FoCaLiZe allows the user to
specify, implement, and prove programs with the help of the theorem
prover Zenon. In the actual version, those proofs are verified by Coq. In
this paper we propose to extend the FoCaLiZe compiler by a backend
to the Dedukti language in order to benefit from Zenon Modulo, an
extension of Zenon for Deduction modulo. By doing so, FoCaLiZe can
benefit from a technique for finding and verifying proofs more quickly.
The paper focuses mainly on the process that overcomes the lack of local
pattern-matching and recursive definitions in Dedukti.

1 Introduction

FoCaLiZe [15] is an environment for certified programming which allows the user
to specify, implement, and prove. For implementation, FoCaLiZe provides an ML
like functional language. FoCaLiZe proofs are delegated to the first-order theo-
rem prover Zenon [3] which takes Coq problems as input and outputs proofs
in Coq format for independent checking. Zenon has recently been improved
to handle Deduction modulo [9], an efficient proof-search technique. However,
the Deduction modulo version of Zenon, Zenon Modulo, outputs proofs for the
Dedukti proof checker [17] instead of Coq [7].

In order to benefit from the advantages of Deduction modulo in FoCaLiZe,
we extend the FoCaLiZe compiler by a backend to Dedukti called Focalide1 (see
Fig. 1). This work is also a first step in the direction of interoperability between
FoCaLiZe and other proof languages translated to Dedukti [1,2,8].

This new compilation backend to Dedukti is based on the existing backend
to Coq. While the compilation of types and logical formulae is a straightforward
adaptation, the translation of FoCaLiZe terms to Dedukti is not trivial because
Dedukti lacks local pattern-matching and recursive definitions.

In the following, Sect. 2 contains a short presentation of Dedukti, Zenon Mod-
ulo, and FoCaLiZe. Then Sect. 3 presents the main features of the compilation to
Dedukti. In Sect. 4, the backend to Dedukti is evaluated on benchmarks. Section 5
discusses related work and Sect. 6 concludes the paper by pointing some future
work.
1 This work is available at http://deducteam.gforge.inria.fr/focalide.

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 459–468, 2016.
DOI: 10.1007/978-3-319-46750-4 26

http://deducteam.gforge.inria.fr/focalide

460 R. Cauderlier and C. Dubois

lexing parsing typing OO Focalide

Coq output

OCaml output

FoCaLiZe compiler

Compiler first passes
Zenon

Zenon Modulo

Coq

Dedukti

OCaml

Fig. 1. FoCaLiZe compilation scheme

2 Presentation of the Tools

2.1 Dedukti

Dedukti [17] is a type checker for the λΠ-calculus modulo, an extension of
a pure dependent type system, the λΠ-calculus, with rewriting. Through the
Curry-Howard correspondence, Dedukti can be used as a proof-checker for a
wide variety of logics [1,2,8]. It is commonly used to check proofs coming from
the Deduction modulo provers Iprover Modulo [4] and Zenon Modulo [7].

A Dedukti file consists of an interleaving of declarations (such as O : nat)
and rewrite rules (such as [n] plus O n --> n.).

Declarations and rewrite rules are type checked modulo the previously
defined rewrite rules. This mechanism can be used to perform proof by reflec-
tion, an example is given by the following proof of 2 + 2 = 4 (theorem
two plus two is four below):

nat : Type. O : nat. S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n --> n

[m,n] plus (S m) n --> S (plus m n).

equal : nat -> nat -> Type. refl : n : nat -> equal n n.

def two_plus_two_is_four :

equal (plus (S (S O)) (S (S O))) (S (S (S (S O)))).

[] two_plus_two_is_four --> refl (S (S (S (S O)))).

For correctness, Dedukti requires this rewrite system to be confluent. It does
not guarantee to terminate when the rewrite system is not terminating.

2.2 Zenon Modulo

Zenon [3] is a first-order theorem prover based on the tableaux method. It is
able to produce proof terms which can be checked independently by Coq.

Zenon Modulo [9] is an extension of Zenon for Deduction modulo, an exten-
sion of first-order logic distinguishing computation from reasoning. Computation
is defined by a rewrite system, it is part of the theory. Reasoning is defined by
a usual deduction system (Sequent Calculus in the case of Zenon Modulo) for
which syntactic comparison is replaced by the congruence induced by the rewrite
system. Computation steps are left implicit in the resulting proof which has to
be checked in Dedukti.

ML Pattern-Matching, Recursion, and Rewriting 461

Zenon (resp., Zenon Modulo) accepts input problems in Coq (resp., Dedukti)
format so that it can be seen as a term synthesizer: its input is a typing context
and a type to inhabit, its output is an inhabitant of this type. This is the mode
of operation used when interacting with FoCaLiZe because it limits ambiguities
and changes in naming schemes induced by translation tools between languages.

2.3 FoCaLiZe and its Compilation Process

This subsection presents briefly FoCaLiZe and its compilation process (for details
please see [15] and FoCaLiZe reference manual). More precisely we address here
the focalizec compiler that produces OCaml and Coq code.

The FoCaLiZe (http://focalize.inria.fr) environment provides a set of tools to
formally specify and implement functions and logical statements together with
their proofs. A FoCaLiZe specification is a set of algebraic properties describing
relations between input and output of the functions implemented in a FoCaLiZe
program. For implementing, FoCaLiZe offers a pure functional programming
language close to ML, featuring a polymorphic type system, recursive functions,
data types and pattern-matching. Statements belong to first-order logic. Proofs
are written in a declarative style and can be considered as a bunch of hints that
the automatic prover Zenon uses to produce proofs that can be verified by Coq
for more confidence [3].

FoCaLiZe developments are organized in program units called species. Species
in FoCaLiZe define types together with functions and properties applying to
them. At the beginning of a development, types are usually abstract. A species
may inherit one or several species and specify a function or a property or imple-
ment them by respectively providing a definition or a proof. The FoCaLiZe lan-
guage has an object oriented flavor allowing (multiple) inheritance, late binding
and redefinition. These characteristics are very helpful to reuse specifications,
implementations and proofs.

A FoCaLiZe source program is analyzed and translated into OCaml sources
for execution and Coq sources for certification. The compilation process between
both target languages is shared as much as possible. The architecture of the
FoCaLiZe compiler is shown in Fig. 1. The FoCaLiZe compiler integrates a type
checker, inheritance and late binding are resolved at compile-time (OO on Fig. 1),
relying on a dependency calculus described in [15]. The process for compiling
proofs towards Coq is achieved in two steps. First the statement is compiled with
a hole for the proof script. The goal and the context are transmitted to Zenon.
Then when the proof has been found, the hole is filled with the proof output by
Zenon.

3 From FoCaLiZe to Focalide

As said previously, Focalide is adapted from the Coq backend. In particular it
benefits from the early compilation steps. In this section, we briefly describe the
input language we have to consider and the main principles of the translation

http://focalize.inria.fr

462 R. Cauderlier and C. Dubois

and then focus on the compilation of pattern-matching and recursive functions.
A more detailed and formal description can be found in [5].

3.1 Input Language

Focalide input language is simpler than FoCaLiZe, in particular because the
initial compilation steps get rid of object oriented features (see Fig. 1). So for
generating code to Dedukti, we can consider that a program is a list of type
definitions, well-typed function definitions and proved theorems. A type defini-
tion defines a type à la ML, in particular it can be the definition of an algebraic
datatype in which value constructors are listed together with their type. When
applied, a function must receive all its parameters. So partial application must
be named. FoCaLiZe supports the usual patterns found in functional languages
such as OCaml or Haskell. In particular patterns are linear and tried in the
order they are written. A logical formula is a regular first order formula where
an atomic formula is a Boolean expression. Its free variables correspond to the
functions and constants introduced in the program.

3.2 Translation

Basic types such as int are mapped to their counterpart in the target proof
checker. However there is no standard library in Dedukti, so we defined the
Dedukti counterpart for the different FoCaLiZe basic types. It means defining the
type and its basic operations together with the proofs of some basic properties.

The compilation of types is straightforward. It is also quite immediate for
most of the expressions, except for pattern-matching expressions and recursive
functions because Dedukti, contrary to Coq, lacks these two mechanisms. Thus
we have to use other Dedukti constructions to embed their semantics. The com-
pilation of pattern-matching expressions and recursive functions is detailed in
next sections. Other constructs of the language such as abstractions and appli-
cations are directly mapped to the same construct in Dedukti.

The statement of a theorem is compiled in the input format required by
Zenon Modulo, which is here Dedukti itself [7].

3.3 Compilation of Pattern-Matching

Pattern-matching is a useful feature in FoCaLiZe which is also present in
Dedukti. However pattern-matching in Dedukti is only available at toplevel
(rewrite rules cannot be introduced locally) and both semantics are different.
FoCaLiZe semantics of pattern-matching is the one of functional languages: only
values are matched and the first branch that applies is used. In Dedukti however,
reduction can be triggered on open terms and the order in which the rules are
applied should not matter since the rewrite system is supposed to be confluent.

To solve these issues, we define new symbols called destructors, using toplevel
rewrite rules and apply them locally.

ML Pattern-Matching, Recursion, and Rewriting 463

If C is a constructor of arity n for some datatype, the destructor associated
with C is λa, b, c. match a with | C(x1, . . . , xn) ⇒ b x1 . . . xn | ⇒ c. We
say that a pattern-matching has the shape of a destructor if it is a fully applied
destructor.

Each FoCaLiZe expression is translated into an expression where each
pattern-matching has the shape of a destructor. This shape is easy to trans-
late to Dedukti because we only need to define the destructor associated with
each constructor. It is done in two steps: we first serialize pattern-matching so
that each pattern-matching has exactly two branches and the second pattern is
a wildcard, and we then flatten patterns so that the only remaining patterns are
constructors applied to variables. Serialization and flattening terminate and are
linear; moreover they preserve the semantics of pattern-matching.

3.4 Compilation of Recursive Functions

Recursion is a powerful but subtle feature in FoCaLiZe. When certifying recur-
sive functions, we reach the limits of Zenon and Zenon Modulo because the
rewrite rules corresponding to recursive definitions have to be used with parsi-
mony otherwise Zenon Modulo could diverge.

In FoCaLiZe backend to Coq, termination of recursive functions is achieved
thanks to the high-level Function mechanism [10]. This mechanism is not avail-
able in Dedukti. Contrary to Coq, Dedukti does not require recursive functions
to be proved terminating a priori. We can postpone termination proofs.

As we did in a previous translation of a programming language in Dedukti [6],
we express the semantics of FoCaLiZe by a non-terminating Dedukti signature.

In FoCaLiZe, recursive functions can be defined by pattern-matching on alge-
braic types but also with regular conditional expressions. For example, if lists
are not defined but axiomatized, we might define list equality as follows:

let rec list_equal (l1 , l2) = (is_nil (l1) && is_nil (l2)) ||

(~ is_nil(l1) && ~ is_nil(l2) && head(l1) = head(l2) &&

list_equal(tail(l1), tail(l2)))

In Dedukti, defining a recursive function f by a rewrite rule of the form
[x] f x --> g (f (h x)) x. is not a viable option because it breaks termination
and no proof of statement involving f can be checked in finite time.

What makes recursive definitions (sometimes) terminate in FoCaLiZe is the
use of the call-by-value semantics. The idea is that we have to reduce any
argument of f to a value before unfolding the recursive definition.

For efficiency reasons, we approximate the semantics by only checking that
the argument starts with a constructor. This is done by defining a combinator
CBV of type A:Type -> B:Type -> (A -> B) -> A -> B which acts as appli-
cation when its last argument start with a constructor but does not reduce
otherwise. Its definition is extended when new datatypes are introduced by giv-
ing a rewrite rule for each constructor. Here is the definition for the algebraic
type nat whose constructors are O and S:

464 R. Cauderlier and C. Dubois

[B,f] CBV nat B f O --> f O.

[B,f,n] CBV nat B f (S n) --> f (S n).

Local recursion is then defined by introducing the fixpoint combinator Fix of
type A:Type -> B:Type -> ((A -> B) -> (A -> B)) -> A -> B defined by
the rewrite rule [A, B, F, x] Fix A B F x --> CBV A B (F (Fix A B F)) x. This does
not trivially diverge as before because the term Fix in the right-hand side is only
partially applied so it does not match the pattern Fix A B F x.

If f is a FoCaLiZe recursive function, we get the following reduction behav-
iour: f alone does not reduce, f v (where v is a value) is fully reduced, and f x
(where x is a variable or a non-value term) is unfolded once.

The size of the code produced by Focalide is linear wrt. the input, the oper-
ational semantics of FoCaLiZe is preserved and each reduction step in the input
language corresponds to a bounded number of rewriting steps in Dedukti, so the
execution time for the translated program is only increased by a linear factor.

4 Experimental Results

We have evaluated Focalide by running it on different available FoCaLiZe devel-
opments. When proofs required features which are not yet implemented in
Focalide, we commented the problematic lines and ran both backends on the
same input files; the coverage column of Fig. 2 indicates the percentage of remain-
ing lines.

FoCaLiZe ships with three libraries: the standard library (stdlib) which
defines a hierarchy of species for setoids, cartesian products, disjoint unions,
orderings and lattices, the external library (extlib) which defines mathemat-
ical structures (algebraic structures and polynomials) and the user contribu-
tions (contribs) which are a set of concrete applications. Unfortunately, none
of these libraries uses pattern-matching and recursion extensively. The other
developments are more interesting in this respect; they consist of a test suite for
termination proofs of recursive functions (term-proof), a pedagogical example
of FoCaLiZe features with several examples of functions defined by pattern-
matching (ejcp) and a specification of Java-like iterators together with a list
implementation of iterators using both recursion and pattern-matching.

Results2 in Figs. 2 and 3, show that on FoCaLiZe problems the user gets
a good speed-up by using Zenon Modulo and Dedukti instead of Zenon and
Coq. Proof-checking is way faster because Dedukti is a mere type-checker which
features almost no inference whereas FoCaLiZe asks Coq to infer type arguments
of polymorphic functions; this also explain why generated Dedukti files are bigger
than the corresponding Coq files. Moreover, each time Coq checks a file coming
from FoCaLiZe, it has to load a significant part of its standard library which
often takes the majority of the checking time (about a second per file). In the
end, finding a proof and checking it is usually faster when using Focalide.

These files have been developed prior to Focalide so they do not yet benefit
from Deduction modulo as much as they could. The Coq backend going through
2 The files can be obtained from http://deducteam.inria.fr/focalide.

http://deducteam.inria.fr/focalide

ML Pattern-Matching, Recursion, and Rewriting 465

Library FoCaLiZe Coverage Coq Dedukti

stdlib 163335 99.42% 1314934 4814011
extlib 158697 100% 162499 283939
contribs 126803 99.54% 966197 2557024
term-proof 24958 99.62% 227136 247559
ejcp 13979 95.16% 28095 239881
iterators 80312 88.33% 414282 972051

Fig. 2. Size (in bytes) comparison of Focalide with the Coq backend

Library Zenon ZMod Coq Dedukti Zenon + Coq ZMod + Dedukti

stdlib 11.73 32.87 17.41 1.46 29.14 34.33
extlib 9.48 26.50 19.45 1.64 28.93 28.14
contribs 5.38 9.96 26.92 1.17 32.30 11.13
term-proof 1.10 0.55 24.54 0.02 25.64 0.57
ejcp 0.44 0.86 11.13 0.06 11.57 0.92
iterators 2.58 3.85 6.59 0.27 9.17 4.12

Fig. 3. Time (in seconds) comparison of Focalide with the Coq backend

Zenon is not very efficient on proofs requiring computation because all reduction
steps are registered as proof steps in Zenon leading to huge proofs which take a
lot of time for Zenon to find and for Coq to check. For example, if we define a
polymorphic datatype type wrap (’a) = | Wrap (’a), we can define the iso-
morphism f : ’a -> wrap(’a) by let f (x) = Wrap(x) and its inverse g :
wrap(’a) -> ’a by let g(y) = match y with | Wrap (x) -> x. The time
taken for our tools to deal with the proof of (g ◦ f)n(x) = x for n from 10 to
19 is given in Fig. 4; as we can see, the Coq backend becomes quickly unusable
whereas Deduction modulo is so fast that it is even hard to measure it.

Value of n Zenon Coq Zenon Modulo Dedukti

10 31.48 4.63 0.04 0.00
11 63.05 11.04 0.04 0.00
12 99.55 7.55 0.05 0.00
13 197.80 10.97 0.04 0.00
14 348.87 1020.67 0.04 0.00
15 492.72 1087.13 0.04 0.00
16 724.46 > 2h 0.04 0.00
17 1111.10 1433.76 0.04 0.00
18 1589.10 > 2h 0.07 0.00
19 2310.48 > 2h 0.04 0.00

Fig. 4. Time comparison (in seconds) for computation-based proofs

466 R. Cauderlier and C. Dubois

5 Related Work

The closest related work is a translation from a fragment of Coq kernel to
Dedukti [1]. Pattern-matching is limited in Coq kernel to flat patterns so it
is possible to define a single match symbol for each inductive type, which simpli-
fies greatly the compilation of pattern-matching to Dedukti. To handle recursion,
filter functions playing the role of our CBV combinator are proposed. Because of
dependent typing, they need to duplicate their arguments. Moreover, we define
the CBV operator by ad-hoc polymorphism whereas filter functions are unrelated
to each other.

Compilation techniques for pattern-matching to enriched λ-calculi have been
proposed, see e.g. [12,13,16]. We differ mainly in the treatment of matching
failure.

A lot of work has also been done to compile programs (especially functional
recursive definitions [11,14]) to rewrite systems. The focus has often been on
termination preserving translations to prove termination of recursive functions
using termination checkers for term rewrite systems. However, these translations
do not preserve the semantics of the programs so they can hardly be adapted
for handling translations of correctness proofs.

6 Conclusion

We have extended the compiler of FoCaLiZe to a new output language: Dedukti.
Contrary to previously existing FoCaLiZe outputs OCaml and Coq, Dedukti is
not a functional programming language but an extension of a dependently-typed
λ-calculus with rewriting so pattern-matching and recursion are not trivial to
compile to Dedukti.

However, we have shown that ML pattern-matching can easily and efficiently
be translated to Dedukti using destructors. We plan to further optimize the com-
pilation of pattern-matching, in particular to limit the use of dynamic error han-
dling. For recursion, however, efficiency comes at a cost in term of normalization
because we can not fully enforce the use of the call-by-value strategy without
loosing linearity. Our treatment of recursive definitions generalizes directly to
mutual recursion but we have not implemented this generalization.

Our approach is general enough to be adapted to other functional languages
because FoCaLiZe language for implementing functions is an ML language with-
out specific features. FoCaLiZe originality comes from its object-oriented mech-
anisms which are invisible to Focalide because they are statically resolved in an
earlier compilation step. Moreover, it can also easily be adapted to other rewrit-
ing formalisms, especially untyped and polymorphic rewrite engines because fea-
tures specific to Dedukti (such as higher-order rewriting or dependent typing)
are not used.

We have tested Focalide on existing FoCaLiZe libraries and have found it a
decent alternative to the Coq backend whose adoption can enhance the usability
of FoCaLiZe to a new class of proofs based on computation.

ML Pattern-Matching, Recursion, and Rewriting 467

As Dedukti is used as the target language of a large variety of systems in
the hope of exchanging proofs; we want to experiment the import and export of
proofs between logical systems by using FoCaLiZe and Focalide as an interoper-
ability platform.

Acknowledgements. This work has been partially supported by the BWare project
(ANR-12-INSE-0010) funded by the INS programme of the French National Research
Agency (ANR).

References

1. Assaf, A.: A framework for defining computational higher-order logics. Ph.D. the-
sis, École Polytechnique (2015)

2. Assaf, A., Burel, G.: Translating HOL to Dedukti. In: Kaliszyk, C., Paskevich,
A. (eds.) Proceedings Fourth Workshop on Proof eXchange for Theorem Proving.
EPTCS, vol. 186, Berlin, Germany, pp. 74–88 (2015)

3. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: an extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-75560-9 13

4. Burel, G.: A shallow embedding of resolution and superposition proofs into the λΠ-
calculus modulo. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. 3rd Interna-
tional Workshop on Proof Exchange for Theorem Proving. EasyChair Proceedings
in Computing, vol. 14, Lake Placid, USA, pp. 43–57 (2013)

5. Cauderlier, R.: Object-oriented mechanisms for interoperability between proof sys-
tems. Ph.D. thesis, Conservatoire National des Arts et Métiers, Paris (draft)

6. Cauderlier, R., Dubois, C.: Objects and subtyping in the λΠ-calculus modulo.
In: Post-proceedings of the 20th International Conference on Types for Proofs
and Programs (TYPES 2014). Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl, Paris (2014)

7. Cauderlier, R., Halmagrand, P.: Checking Zenon Modulo proofs in Dedukti. In:
Kaliszyk, C., Paskevich, A. (eds.) Proceedings 4th Workshop on Proof eXchange
for Theorem Proving. EPTCS, vol. 186, Berlin, Germany, pp. 57–73 (2015)

8. Cousineau, D., Dowek, G.: Embedding pure type systems in the λΠ-calculus mod-
ulo. In: Rocca, S.R.D. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73228-0 9

9. Delahaye, D., Doligez, D., Gilbert, F., Halmagrand, P., Hermant, O.: Zenon Mod-
ulo: when Achilles outruns the tortoise using deduction modulo. In: McMillan,
K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19. LNCS, vol. 8312, pp. 274–290.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-45221-5 20

10. Dubois, C., Pessaux, F.: Termination proofs for recursive functions in FoCaLiZe.
In: Serrano, M., Hage, J. (eds.) TFP 2015. LNCS, vol. 9547, pp. 136–156. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-39110-6 8

11. Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Auto-
mated termination proofs for Haskell by term rewriting. ACM Trans. Program.
Lang. Syst. 33(2), 7:1–7:39 (2011)

12. Kahl, W.: Basic pattern matching calculi: a fresh view on matching failure. In:
Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 276–290.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24754-8 20

http://dx.doi.org/10.1007/978-3-540-75560-9_13
http://dx.doi.org/10.1007/978-3-540-75560-9_13
http://dx.doi.org/10.1007/978-3-540-73228-0_9
http://dx.doi.org/10.1007/978-3-642-45221-5_20
http://dx.doi.org/10.1007/978-3-319-39110-6_8
http://dx.doi.org/10.1007/978-3-540-24754-8_20

468 R. Cauderlier and C. Dubois

13. Klop, J.W., van Oostrom, V., de Vrijer, R.: Lambda calculus with patterns. Theo-
ret. Comput. Sci. 398(1–3), 16–31 (2008). Calculi, Types and Applications: Essays
in honour of M. Coppo, M. Dezani-Ciancaglini and S. Ronchi Della Rocca

14. Lucas, S., Peña, R.: Rewriting techniques for analysing termination and complexity
bounds of Safe programs. In: LOPSTR 2008, pp. 43–57 (2008)

15. Pessaux, F.: FoCaLiZe: inside an F-IDE. In: Dubois, C., Giannakopoulou, D., Méry,
D. (eds.) Proceedings 1st Workshop on Formal Integrated Development Environ-
ment, F-IDE 2014. EPTCS, vol. 149, Grenoble, France, pp. 64–78 (2014)

16. Peyton Jones, S.L.: The Implementation of Functional Programming Languages.
Prentice-Hall International Series in Computer Science. Prentice-Hall, Inc., Upper
Saddle River (1987)

17. Saillard, R.: Type checking in the λΠ-calculus modulo: theory and practice. Ph.D.
thesis, MINES Paritech (2015)

Parametric Deadlock-Freeness Checking
Timed Automata

Étienne André1,2(B)

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS,
UMR 7030, F-93430 Villetaneuse, France

ea.ndre13@lipn13.fr
2 École Centrale de Nantes, IRCCyN, CNRS, UMR 6597, Nantes, France

Abstract. Distributed real-time systems are notoriously difficult to
design, and must be verified, e. g., using model checking. In particu-
lar, deadlocks must be avoided as they either yield a system subject to
potential blocking, or denote an ill-formed model. Timed automata are a
powerful formalism to model and verify distributed systems with timing
constraints. In this work, we investigate synthesis of timing constants in
timed automata for which the model is guaranteed to be deadlock-free.

1 Introduction

Distributed real-time systems are notoriously difficult to design due to the intri-
cated use of concurrency and timing constraints, and must therefore be verified,
e. g., using model checking. Model checking is a set of techniques to formally ver-
ify that a system, described by a model, verifies some property, described using
formalisms such as reachability properties or more complex properties expressed
using, e. g., temporal logics.

Checking the absence of deadlocks in the model of a real-time system is of
utmost importance. First, deadlocks can lead the actual system to a blockade
when a component is not ready to receive any action (or synchronization label).
Second, a specificity of models of distributed systems involving time is that they
can be subject to situations where time cannot elapse. This situation denotes an
ill-formed model, as this situation of time blocking (“timelock”) cannot happen
in the actual system due to the uncontrollable nature of time.

Timed automata (TAs) [1] are a formalism dedicated to modeling and verify-
ing real-time systems where distributed components communicate via synchro-
nized actions. Despite a certain success in verifying models of actual distributed
systems (using e. g., Uppaal [10] or PAT [12]), TAs reach some limits when
verifying systems only partially specified (typically when the timing constants
are not yet known) or when timing constants are known with a limited preci-
sion only (although the robust semantics can help tackling some problems, see
e. g., [11]). Parametric timed automata (PTAs) [2] leverage these drawbacks by

This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

c© Springer International Publishing AG 2016
A. Sampaio and F. Wang (Eds.): ICTAC 2016, LNCS 9965, pp. 469–478, 2016.
DOI: 10.1007/978-3-319-46750-4 27

470 É. André

allowing the use of timing parameters, hence allowing for modeling constants
unknown or known with some imprecision.

We address here the problem of the deadlock-freeness, i. e., the fact that a
discrete transition must always be taken from any state, possibly after elapsing
some time. TAs and PTAs are both subject to deadlocks: hence, a property
proved correct on the model may not necessarily hold on the actual system if
the model is subject to deadlocks. Deadlock checking can be performed on TAs
(using e. g., Uppaal); however, if deadlocks are found, then there is often no
other choice than manually refining the model in order to remove them.

We recently showed that the existence of a parameter valuation in a PTA for
which a run leads to a deadlock is undecidable [4]; this result also holds for the
subclass of PTAs where parameters only appear as lower or upper bounds [8].
This result rules out the possibility to perform exact deadlock-freeness synthesis.

In this work, we propose an approach to automatically synthesize parameter
valuations in PTAs (in the form of a set of linear constraints) for which the sys-
tem is deadlock-free. If our procedure terminates, the result is exact. Otherwise,
when stopping after some bound (e. g., runtime limit, exploration depth limit),
it is an over-approximation of the actual result. In this latter case, we propose a
second approach to also synthesize an under-approximation: hence, the designer
is provided with a set of valuations that are deadlock-free, a set of valuations
for which there exist deadlocks, and an intermediate set of unsure valuations.
Our approach is of particular interest when intersected with a set of parame-
ter valuations ensuring some property: one obtains therefore a set of parameter
valuations for which that property is valid and the system is deadlock-free.

Outline. We briefly recall necessary definitions in Sect. 2. We introduce our app-
roach in Sect. 3, extend it to the synthesis of an under-approximated constraint
in Sect. 4, and validate it on benchmarks in Sect. 5. We discuss future works in
Sect. 6.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks. A clock
valuation is w : X → R+. We write 0 for the valuation that assigns 0 to each
clock. Given d ∈ R+, w + d denotes the valuation such that (w + d)(x) =
w(x) + d, for all x ∈ X. We assume a set P = {p1, . . . , pM} of parameters, i. e.,
unknown constants. A parameter valuation v is v : P → Q+. In the following,
we assume �� ∈ {<,≤,≥, >}. A constraint C (i. e., a convex polyhedron) over
X ∪ P is a conjunction of inequalities of the form lt �� 0, where lt denotes a
linear term of the form

∑
1≤i≤H αixi +

∑
1≤j≤M βjpj + d, with xi ∈ X, pi ∈ P ,

and αi, βj , d ∈ Z. Given a parameter valuation v, v(C) denotes the constraint
over X obtained by replacing each parameter p in C with v(p). Likewise, given
a clock valuation w, w(v(C)) denotes the expression obtained by replacing each
clock x in v(C) with w(x). We say that v satisfies C, denoted by v |= C, if the

Parametric Deadlock-Freeness Checking Timed Automata 471

set of clock valuations satisfying v(C) is nonempty. We say that C is satisfiable
if ∃w, v s.t. w(v(C)) evaluates to true. We define the time elapsing of C, denoted
by C↗, as the constraint over X and P obtained from C by delaying all clocks
by an arbitrary amount of time. We define the past of C, denoted by C↙, as
the constraint over X and P obtained from C by letting time pass backward
by an arbitrary amount of time (see e. g., [9]). Given R ⊆ X, we define the
reset of C, denoted by [C]R, as the constraint obtained from C by resetting the
clocks in R, and keeping the other clocks unchanged. We denote by C↓P the
projection of C onto P , i. e., obtained by eliminating the clock variables (e. g.,
using Fourier-Motzkin).

A guard g is a constraint defined by inequalities x �� z, where z is either a
parameter or a constant in Z. A parametric zone is a polyhedron in which all
constraints are of the form x �� plt or xi − xj �� plt , where xi ∈ X, xj ∈ X
and plt is a parametric linear term over P , i. e., a linear term without clocks
(αi = 0 for all i). Given a parameter constraint K, ¬K denotes the (possibly
non-convex) negation of K. We extend the notation v |= K to possibly non-
convex constraints in a natural manner.
 (resp. ⊥) denotes the constraint
corresponding to the set of all (resp. no) parameter valuations.

Definition 1. A PTA A is a tuple A = (Σ, L, l0,X, P, I, E), where: (i) Σ is
a finite set of actions, (ii) L is a finite set of locations, (iii) l0 ∈ L is the
initial location, (iv) X is a set of clocks, (v) P is a set of parameters, (vi) I is
the invariant, assigning to every l ∈ L a guard I(l), (vii) E is a set of edges
e = (l, g, a,R, l′) where l, l′ ∈ L are the source and target locations, a ∈ Σ,
R ⊆ X is a set of clocks to be reset, and g is a guard.

Given a parameter valuation v, we denote by v(A) the non-parametric timed
automaton where all occurrences of a parameter pi have been replaced by v(pi).

Definition 2 (Semantics of a TA). Given a PTA A = (Σ, L, l0,X, P, I, E), and
a parameter valuation v, the concrete semantics of v(A) is given by the timed
transition system (S, s0,→), with

– S = {(l, w) ∈ L × R
H
+ | w(v(I(l))) evaluates to true}, s0 = (l0,0)

– → consists of the discrete and (continuous) delay transition relations:
• discrete transitions: (l, w) e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists

e = (l, g, a,R, l′) ∈ E, ∀x ∈ X : w′(x) = 0 if x ∈ R and w′(x) = w(x)
otherwise, and w(v(g)) evaluates to true.

• delay transitions: (l, w) d→ (l, w + d), with d ∈ R+, if ∀d′ ∈ [0, d], (l, w +
d′) ∈ S.

Moreover we write (l, w) e→ (l′, w′) for a sequence of delay and discrete
transitions where ((l, w), e, (l′, w′)) ∈ → if ∃d,w′′ : (l, w) d→ (l, w′′) e→ (l′, w′).
Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states of S
as the concrete states of v(A). A concrete run (or simply a run) of v(A) is
an alternating sequence of concrete states of v(A) and edges starting from the
initial concrete state s0 of the form s0

e0→ s1
e1→ · · · em−1→ sm, such that for

472 É. André

l1 x ≤ p1 + 5

l2 x ≤ 10

x ≥ p2
aa

x := 0

(a) PTA deadlocked for some valuations

l1

l2

x ≤ p
a

a

(b) PTA deadlocked for all valuations

Fig. 1. Examples of PTAs with potential deadlocks

all i = 0, . . . , m − 1, ei ∈ E, and (si, ei, si+1) ∈ →. Given a state s = (l, w),
we say that this state has no successor (or is deadlocked) if, in the concrete
semantics of v(A), there exists no discrete transition from s of from a successor
of s obtained by taking exclusively continuous transition(s) from s. If no state
of v(A) is deadlocked, then v(A) is deadlock-free.

Example 1. Consider the PTA in Fig. 1a (invariants are boxed): deadlocks can
occur if the guard of the transition from l1 to l2 cannot be satisfied (when
p2 > p1 + 5) or if the invariant of l2 is not compatible with the guard (when
p2 > 10). In Fig. 1b, the system may risk a deadlock for any parameter valuation
as, if the guard is “missed” (if a run chooses to spend more than p time units
in l1), then no transition can be taken from l1.

3 Parametric Deadlock-Freeness Checking

Let us first recall the symbolic semantics of PTAs (from, e. g., [9]). A symbolic
state is a pair (l, C) where l ∈ L is a location, and C its associated parametric
zone. The initial symbolic state of A is sA

0 = (l0, (
∧

1≤i≤H xi = 0)↗ ∧ I(l0)).
The symbolic semantics relies on the Succ operation. Given a symbolic state

s = (l, C) and an edge e = (l, g, a,R, l′), the successor of s via e is the symbolic
state Succ(s, e) = (l′, C ′), with C ′ =

(
[(C ∧ g)]R

)↗ ∩ I(l′). We write Succ(s)
for ∪e∈ESucc(s, e). We write Pred for Succ−1. Given a set S of states, we write
Pred(S) for

⋃
s∈S Pred(s).

A symbolic run of a PTA is an alternating sequence of symbolic states and
edges starting from the initial symbolic state, of the form sA

0
e0⇒ s1

e1⇒ · · · em−1⇒
sm, such that for all i = 0, . . . , m − 1, ei ∈ E, and si+1 = Succ(si, ei). The
symbolic states with the Succ relation form a state space, i. e., a (possibly infinite)
directed graph, the nodes of which are the symbolic states, and there exists
an edge from si to sj labeled with ei iff sj = Succ(si, ei). Given a concrete
(respectively symbolic) run (l0,0) e0→ (l1, w1)

e1→ · · · em−1→ (lm, wm) (respectively
(l0, C0)

e0⇒ (l1, C1)
e1⇒ · · · em−1⇒ (lm, Cm)), its corresponding discrete sequence is

l0
e0⇒ l1

e1⇒ · · · em−1⇒ lm. Two runs (concrete or symbolic) are said to be equivalent
if their associated discrete sequences are equal.

Parametric Deadlock-Freeness Checking Timed Automata 473

Deadlock-Freeness Synthesis. We now introduce below our procedure PDFC,
that makes use of an intermediate, recursive procedure DSynth. Both are written
in a functional form in the spirit of, e. g., the reachability and unavoidability
synthesis algorithms in [9]. Given s = (l, C), we use sC to denote C. The notation
g(s, s′) denotes the guard of the edge from s to s′.

DSynth(s,Passed) =

⎧⎪⎨
⎪⎩

⊥ if s ∈ Passed(⋃
s′∈Succ(s) DSynth(s′,Passed ∪ {s}))

∪
(
sC \ (⋃s′∈Succ(s)

(
sC ∧ g(s, s′)

)↙ ∧ s′
C↓P)

))↓P otherwise

PDFC(A) = ¬DSynth(sA
0 , ∅)

First, we use a function DSynth(s,Passed) to recursively synthesize the para-
meter valuations for which a deadlock may occur. This function takes as argu-
ment the current state s together with the list Passed of passed states. If s
belongs to Passed (i. e., s was already met), then no parameter valuation is
returned. Otherwise, the first part of the second case computes the union over
all successors of s of DSynth recursively called over these successors; the second
part computes all parameter valuations for which a deadlock may occur, i. e., the
constraint characterizing s minus all clock and parameter valuations that allow
to exit s to some successor s′, all this expression being eventually projected
onto P .

Finally, PDFC (“parametric deadlock-freeness checking”) returns the nega-
tion of the result of DSynth called with the initial state of A and an empty list
of passed states.

We show below that PDFC is sound and complete. Note however that, in the
general case, the algorithm may not terminate, as DSynth explores the set of
symbolic states, of which there may be an infinite number.

Proposition 1. Assume PDFC(A) terminates with result K. Let v |= K. Then
v(A) is deadlock-free.

Proof (sketch). Consider a run of v(A), and assume it reaches a state s = (l, w)
with no discrete successor. From [8], there exists an equivalent symbolic run in A
reaching a state (l, C). As DSynth explores all symbolic states, (l, C) was explored
in DSynth too; since s has no successor, then w belongs to the second part of
the second line of DSynth. Hence, the projection onto P was added to the result
of DSynth, and hence does not belong to the negation returned by PDFC. Hence
v �|= K, which contradicts the initial assumption.

Proposition 2. Assume PDFC(A) terminates with result K. Consider a valu-
ation v such that v(A) is deadlock-free. Then v |= K.

Proof (sketch). Following a reasoning dual to Proposition 1.

Finally, we show that PDFC outputs an over-approximation of the parameter
set when stopped before termination.

Proposition 3. Fix a maximum number of recursive calls in DSynth. Then
PDFC terminates and its result is an over-approximation of the set of parameter
valuations for which the system is deadlock-free.

474 É. André

Algorithm 1. BwUS(K,G)
input : result K of DSynth, parametric state space G
output: Constraint over the parameters guaranteeing deadlock-freeness

1 K+ ← K
2 Marked ← {s | s has unexplored successors in G}
3 Disabled ← ∅
4 while Marked �= ∅ do
5 foreach (l, C) ∈ Marked do K+ ← K+ ∪ C↓P ;
6 preds ← Pred(Marked) \ Disabled
7 Marked′ ← ∅
8 foreach s ∈ preds do

9 K+ ← K+ ∪
(
sC \ (⋃s′∈Succ(s)

(
sC ∧ g(s, s′)

)↙ ∧ s′
C↓P)

))↓P

10 if sC↓P ⊆ K+ then Marked′ ← Marked′ ∪ {s} ;

11 Disabled ← Disabled ∪ Marked ; Marked ← Marked′ \ Disabled

12 return ¬K+

Proof. Observe that, in DSynth, the deeper the algorithm goes in the state space
(i. e., the more recursive calls are performed), the more valuations it synthesizes.
Hence bounding the number of recursive calls yields an under-approximation of
its expected result. As PDFC returns the negation of DSynth, this yields an
over-approximation.

4 Under-approximated Synthesis

A limitation of PDFC is that either the result is exact, or it is an
over-approximation when stopped earlier than the actual fixpoint (from
Proposition 3). In the latter case, the result is not entirely satisfactory: if
deadlocks represent an undesired behavior, then an over-approximation may
also contain unsafe parameter valuations. More valuable would be an under-
approximation, as this result (although potentially incomplete) firmly guarantees
the absence of deadlocks in the model.

Our idea is as follows: after exploring a part of the state space in PDFC,
we obtain an over-approximation. In order to get an under-approximation, we
can consider that any unexplored state is unsafe, i. e., may lead to deadlocks.
Therefore, we first need to negate the parametric constraint associated with any
state that has unexplored successors. But this may not be sufficient: by removing
those unsafe states, their predecessors can themselves become deadlocked, and
so on. Hence, we will perform a backward-exploration of the state space by
iteratively removing unsafe states, until a fixpoint is reached.

We give our procedure BwUS (backward under-approximated synthesis) in
Algorithm 1. BwUS takes as input (1) the (under-approximated) result of DSynth,
i. e., a set of parameter valuations for which the system contains a deadlocked
run, and (2) the part of the symbolic state space explored while running DSynth.

Parametric Deadlock-Freeness Checking Timed Automata 475

s0

s1 s2

s3 s4

×× ×
(a) Partial state space

s0

s1 s2

s3 s4

×× ×
(b) Iteration 1

s0

s1 s2

s3 s4

×× ×
(c) Iteration 2

Fig. 2. Application of Algorithm 1

The algorithm maintains several variables. Marked denotes the states that
are potentially deadlocked, and the predecessors of which must be considered
iteratively. Disabled denotes the states marked in the past, which avoids to con-
sider several times the same state. K+ is an over-approximated constraint for
which there are deadlocks; since the negation of K+ is returned (line 12), then
the algorithm returns an under-approximation. Initially, K+ is set to the (under-
approximated) result of DSynth, and all states that have unexplored successors
in the state space (due to the early termination) are marked.

While there are marked states (line 4), we remove the marked states by
adding to K+ the negation of the constraint associated with these states (line 5).
Then, we compute the predecessors of these states, except those already disabled
(line 6). By definition, all these predecessors have at least one marked (and hence
potentially deadlocked) successor; as a consequence, we have to recompute the
constraint leading to a deadlock from each of these predecessors. This is the
purpose of line 9, where K+ is enriched with the recomputed valuations for which
a deadlock may occur from a given predecessor s, using the same computation
as in DSynth. Then, if the constraint associated with the current predecessor s is
included in K+, this means that s is unreachable for valuations in ¬K+ (recall
that we will return the negation of K+), and therefore s should be marked
at the next iteration, denoted by the local variable Marked′ (line 10). Finally,
all currently marked states become disabled, and the new marked states are
all the marked predecessors of the currently marked states with the exception
of the disabled states to ensure termination (line 11). The algorithm returns
eventually the negation of the over-approximated K+ (line 12), which yields an
under-approximation.

Example 2. Let us apply Algorithm 1 to a (fictional) example of a partial state
space, given in Fig. 2a. We only focus on the backward exploration, and rule
out the constraint update (constraints are not represented in Fig. 2a anyway).
s3 and s4 have unexplored successors (denoted by ×), and both states are
hence unsafe as they might lead to deadlocks along these unexplored branches.
Initially, Marked = {s3, s4} (depicted in yellow with a double circle in Fig. 2a),

476 É. André

and no states are disabled. First, we add s3C↓P ∪ s4C↓P to K+. Then, preds
is set to {s1, s2}. We recompute the deadlock constraint for both states (using
line 9 in Algorithm 1). For s2, it now has no successors anymore, and clearly
we will have s2C↓P ⊆ K+, hence s2 is marked. For s1, it depends on the actual
constraints; let us assume in this example that s1 is still not deadlocked for some
valuations, and s1 remains unmarked. At the end of this iteration, Marked = {s2}
and Disabled = {s3, s4}.

For the second iteration, we assume here (it actually depends on the con-
straints) that s1 will not be marked, leading to a fixpoint where s2, s3, s4 are
disabled, and the constraint ¬K+ therefore characterizes the deadlock-free runs
in Fig. 2c. (Alternatively, if s1 was marked, then s0 would be eventually marked
too, and the result would be ⊥.)

First note that BwUS necessarily terminates as it iterates on marked states,
and no state can be marked twice thanks to the set Disabled. In addition, the
result is an under-approximation of the valuation set yielding deadlock-freeness:
indeed, it only explores a part of state space, and considers states with unex-
plored successors as deadlocked by default, yielding a possibly too strong, hence
under-approximated, constraint.

5 Experiments

We implemented PDFC in IMITATOR [3] (which relies on PPL [5] for poly-
hedra operations), and synthesized constraints for which a set of models of
distributed systems are deadlock-free.1 Our benchmarks come from teaching
examples (coffee machines, nuclear plant, train controller), communication pro-
tocols (CSMA/CD, RCP), asynchronous circuits (and–or [7], flip-flop), a distrib-
uted networked automation system (SIMOP) and a Wireless Fire Alarm System
(WFAS) [6].

If an experiment has not finished within 300 s, the result is still a valid
over-approximation according to Proposition 3; in addition, IMITATOR then runs
Algorithm 1 to also obtain an under-approximation.

We give in Table 1 from left to right the numbers of PTA components,2 of
clocks, of parameters, and of symbolic states explored, the computation time in
seconds (TO denotes no termination within 300 s) for PDFC and BwUS (when
necessary), the type of constraint (nncc denotes a non-necessarily convex con-
straint different from
 or ⊥) and an evaluation of the result soundness.

Analyzing the experiments, several situations occur: the most interesting
result is when an nncc is derived and is exact; for example; the constraint syn-
thesized by IMITATOR for Fig. 1a is p1 + 5 ≥ p2 ∧ p2 ≤ 10, which is exactly the

1 Experiments were conducted on Linux Mint 17 64 bits, running on a Dell Intel Core
i7 CPU 2.67 GHz with 4GiB. Binaries, models and results are available at www.
imitator.fr/static/ICTAC16/.

2 The synchronous product of several PTA components (using synchronized actions)
yields a PTA. IMITATOR performs this composition on-the-fly.

www.imitator.fr/static/ICTAC16/
www.imitator.fr/static/ICTAC16/

Parametric Deadlock-Freeness Checking Timed Automata 477

Table 1. Synthesizing parameter valuations ensuring deadlock-freeness

Case study |A| |X| |P | States PDFC BwUS K Soundness

Fig. 1a 1 1 2 3 0.012 - nncc exact

Fig. 1b 1 1 1 2 0.005 - ⊥ exact

and–or circuit 4 4 4 5,265 TO 171 [nncc−, nncc+] under/over-app

coffee machine 1 1 2 3 9,042 TO 8.4 [nncc−, nncc+] under/over-app

coffee machine 2 2 3 3 51 0.198 - nncc exact

CSMA/CD protocol 3 3 3 38 0.105 - ⊥ exact

flip-flop circuit 6 5 2 20 0.093 - ⊥ exact

nuclear plant 1 2 4 13 0.014 - nncc exact

RCP protocol 5 6 5 2,091 10.63 - ⊥ exact

SIMOP 5 8 2 22,894 TO 121 nncc over-app

Train controller 1 2 3 11 0.025 - nncc exact

WFAS 3 4 2 14,614 TO 69.1 [nncc−, nncc+] under/over-app

valuation set ensuring the absence of deadlocks. In several cases, the synthesized
constraint is ⊥, meaning that no parameter valuation is deadlock-free; this may
not always denote an ill-formed model, as some case studies are “finite” (no
infinite behavior), typically some of the hardware case studies (e. g., flip-flop);
this may also denote a modeling process purposely blocking the system (to limit
the state space explosion) after some property (typically reachability) is proved
correct or violated. When no exact result could be synthesized, our second proce-
dure BwUS allows to get both an under-approximated and an over-approximated
constraint (denoted by [nncc−,nncc+]). This is a valuable result, as it contains
valuations guaranteed to be deadlock-free, others guaranteed to be deadlocked,
and a third unsure set. An exception is SIMOP, where BwUS derives ⊥, leaving
the designer with only an over-approximation. This result remains valuable as
the parameter valuations not belonging to the synthesized constraint necessarily
lead to deadlocks, an information that will help the designer to refine its model,
or to rule out these valuations.

Concerning the performances of BwUS, its overhead is significant, and
depends on the number of dimensions (clocks and parameters) as well as the
number states in the state space. However, it still remains smaller than the
forward exploration (300 s) in all case studies, which therefore remains reason-
able to some extent. It seems the most expensive operation is the computation
of the deadlock constraint (line 9 in Algorithm1); this has been implemented
in a straightforward manner, but could benefit from optimizations (e. g., only
recompute the part corresponding to successor states that were disabled at the
previous iteration of BwUS).

6 Perspectives

We proposed here a procedure to synthesize timing parameter valuations ensuring
the absence of deadlocks in a real-time system; we implemented it in IMITATOR

478 É. André

and we have run experiments on a set of benchmarks. When terminating, our pro-
cedure yields an exact result. Otherwise, thanks to a second procedure, we get
both an under- and an over-approximation of the valuations for which the system
is deadlock-free.

Our definition of deadlock-freeness addresses discrete transitions; however, in
case of Zeno behaviors (an infinite number of discrete transition within a finite
time), a deadlock-free system can still correspond to an ill-formed model. Hence,
performing parametric Zeno-freeness checking is also on our agenda. Moreover,
we are very interested in proposing distributed procedures for deadlock-freeness
synthesis so as to take advantage of the power of clusters.

Finally, we believe our backward algorithm BwUS could be adapted to
obtained under-approximated results for other problems such as the unavoid-
ability synthesis in [9].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601 (1993)

3. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for ana-
lyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32759-9 6

4. André, É., Lime, D.: Liveness in L/U-parametric timed automata (2016, submit-
ted). https://hal.archives-ouvertes.fr/hal-01304232

5. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

6. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-
time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi,
N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-47666-6 6

7. Clarisó, R., Cortadella, J.: Verification of concurrent systems with parametric
delays using octahedra. In: ACSD, pp. 122–131. IEEE Computer Society (2005)

8. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002)

9. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

10. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools
Technol. Transf. 1(1–2), 134–152 (1997)

11. Markey, N.: Robustness in real-time systems. In: SIES, pp. 28–34. IEEE Computer
Society Press (2011)

12. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 59

http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-32759-9_6
https://hal.archives-ouvertes.fr/hal-01304232
http://dx.doi.org/10.1007/978-3-662-47666-6_6
http://dx.doi.org/10.1007/978-3-642-02658-4_59

Author Index

Amálio, Nuno 255
André, Étienne 469

Babari, Parvaneh 370
Barbosa, Luis S. 385, 422
Benevides, Mario R.F. 441
Brenas, Jon Haël 315

Cauderlier, Raphaël 459
Cavalcanti, Ana 255

Dang, Duc-Hanh 82
de Melo, Ana C.V. 158
de Moura, Flávio L.C. 179
Demaille, Akim 351
Droste, Manfred 370
Dubois, Catherine 459

Echahed, Rachid 315

Fleuriot, Jacques 333
Fontaine, Allyx 69
Foster, Simon 295
Fränzle, Martin 405

Given-Wilson, Thomas 139
Gleirscher, Mario 235
Guttmann, Walter 51
Guzmán, Michell 214

Haeusler, Edward Hermann 441
Halmagrand, Pierre 196
Hanazumi, Simone 158
Hennicker, Rolf 422
Hilscher, Martin 274

Kleijn, Jetty 103
Koutny, Maciej 103

Legay, Axel 139
Li, Yi 33
Lopes, Bruno 441

Madeira, Alexandre 422
Marmsoler, Diego 235
Martins, Manuel A. 422
McIver, Annabelle 121

Nazier Mosaad, Peter 405
Neves, Renato 385
Nguyen, Ngoc-Khai 82

Obua, Steven 333

Păsăreanu, Corina S. 158
Perchy, Salim 214
Perevoshchikov, Vitaly 370
Pietkiewicz-Koutny, Marta 103

Rabehaja, Tahiry 121
Rueda, Camilo 214

Schwammberger, Maike 274
Scott, Phil 333
Strecker, Martin 315
Struth, Georg 121

Travkin, Oleg 3
Truong, Anh-Hoang 82

Valencia, Frank D. 214
Van Hung, Dang 82

Wehrheim, Heike 3
Woodcock, Jim 255, 295

Xue, Bai 405

Yen, Hsu-Chun 25

Zemmari, Akka 69
Zeyda, Frank 295

	Preface
	Organization
	Invited Papers
	Verification of Concurrent Programs on Weak Memory Models
	Petri Nets and Semilinear Sets (Extended Abstract)
	The Lean Theorem Prover
	Contents
	Invited Papers
	Verification of Concurrent Programs on Weak Memory Models
	1 Introduction
	2 Memory Models -- TSO, PSO and SC
	3 Memory Model Semantics
	4 Program Transformation
	5 Weak2SC -- Tool
	6 Experiments
	7 Conclusion
	References

	Petri Nets and Semilinear Sets (Extended Abstract)
	References

	Program Verification
	Termination of Single-Path Polynomial Loop Programs
	1 Introduction
	2 Preliminaries
	2.1 Semi-Algebraic Systems
	2.2 Ranking Functions
	2.3 Polynomial Ideal and Groebner Basis

	3 Termination Analysis for SPLPs
	4 Conclusion
	References

	Relation-Algebraic Verification of Prim's Minimum Spanning Tree Algorithm
	1 Introduction
	2 Stone Relation Algebras
	3 Stone-Kleene Relation Algebras
	4 An Algebra for Minimising Weights
	5 Correctness of the Minimum Spanning Tree Algorithm
	6 Related Work
	7 Conclusion
	References

	Certified Impossibility Results and Analyses in Coq of Some Randomised Distributed Algorithms
	1 Introduction
	1.1 The Theoretical Model
	1.2 Our Contribution
	1.3 Related Works
	1.4 Preliminaries

	2 Our Formal Model
	2.1 Formal Distributed Systems
	2.2 Syntax and Semantics
	2.3 Randomised Distributed Algorithms

	3 General Results
	3.1 Validity of Our Model
	3.2 Tools to Prove Properties on Algorithms of Our Model

	4 Applications
	4.1 Correctness of an Handshake Solution
	4.2 The Handshake Algorithm in Coq
	4.3 The Maximal Matching Algorithm

	5 Conclusion
	References

	Calculating Statically Maximum Log Memory Used by Multi-threaded Transactional Programs
	1 Introduction
	2 Motivating Example
	3 Transactional Language
	3.1 Syntax
	3.2 Dynamic Semantics

	4 Type System
	4.1 Types
	4.2 Typing Rules

	5 Correctness
	6 Type Inference
	7 Conclusion
	References

	Design, Synthesis and Testing
	Synthesis of Petri Nets with Whole-Place Operations and Localities
	1 Introduction
	2 Preliminaries
	3 Nets with Whole-Place Operations
	4 Synthesis of WPOL-nets
	4.1 k-WPOL-nets and Their Net-Type
	4.2 Synthesising k-WPOL-nets as k-nets

	5 Synthesis with Known Whole-Places
	6 Conclusions
	References

	Schedulers and Finishers: On Generating the Behaviours of an Event Structure
	1 Introduction
	2 Bundle Event Structure
	2.1 Trace and Configuration
	2.2 Labelled Partially Ordered Set

	3 Behaviours, Schedulers and Finishers
	3.1 Prefix Relation on lposet
	3.2 Scheduling and Finishing Events

	4 Generating Lposets from Schedulers and Finishers
	5 Full Resolution of an Event Structure
	6 Using Finishers for Behaviour Filtering
	7 Related Works
	8 Conclusion
	A Proof of Proposition1
	B Proof of Proposition5
	C Proof of Proposition7
	D Proof of Theorem2
	References

	On the Expressiveness of Symmetric Communication
	1 Introduction
	2 Calculi
	3 Encodings
	4 Overview of Results
	5 Asymmetry and Exchange
	5.1 Exchange in Monadic Non-Intensional Languages
	5.2 Encoding Exchange into Asymmetry
	5.3 Other Relations with Bounded Matching Degree
	5.4 Equivalent Languages with Unbounded Matching Degree
	5.5 Concluding Relations

	6 Unification
	6.1 Unification Cannot Be Simulated
	6.2 On Monadic Non-Intensional Unification Languages
	6.3 Equally Expressive Unification Languages
	6.4 Encodings into Polyadic Non-Intensional Languages
	6.5 Intensional Unification Languages

	7 Conclusions and Discussion
	References

	Towards MC/DC Coverage of Properties Specification Patterns
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Regular Expressions
	2.2 Specification Pattern System (SPS)

	3 Unique First Positive Recognition
	4 Regular Expressions Decomposed into Test Cases
	5 Calculating SPS Subexpressions
	6 SPS Subexpressions in JPF
	6.1 Verification with JPF

	7 Concluding Remarks
	A Regular Expressions: Axioms and Definitions
	References

	Calculi
	Unification for -calculi Without Propagation Rules
	1 Introduction
	2 Explicit Substitutions Without Propagation Rules
	2.1 The Calculi with ES at a Distance
	2.2 Typing Rules

	3 Unification
	3.1 Unification Procedure

	4 Conclusion and Future Work
	References

	Soundly Proving B Method Formulæ Using Typed Sequent Calculus
	1 Introduction
	2 The B Set Theory
	2.1 Syntax, Proof System and Set Theory
	2.2 Type System
	2.3 Type Annotation
	2.4 The Annotated Set Theory
	2.5 Skolemization of Comprehension Sets
	2.6 Updated Syntax and Proof System

	3 LLproof: Typed Sequent Calculus of Zenon
	3.1 Polymorphic First-Order Logic
	3.2 The Typed Sequent Calculus Proof System LLproof

	4 Translation of B Formulæ into PFOL
	4.1 Type Signatures of Primitive Constructs
	4.2 Translating Formulæ from B to PFOL

	5 Translating LLproof Proofs into B Proofs
	6 Conclusion
	References

	Deriving Inverse Operators for Modal Logic
	1 Introduction
	2 Background: Spatial Constraint Systems
	3 Constraint Frames and Normal Self Maps
	4 Extrusion Problem for Kripke Constraint Systems
	4.1 KS and Kripke SCS
	4.2 Existence of Right Inverses
	4.3 Right Inverse Constructions
	4.4 Normal Right Inverses

	5 Applications
	6 Concluding Remarks and Related Work
	References

	Specifications
	Specifying Properties of Dynamic Architectures Using Configuration Traces
	1 Introduction
	2 Background and Related Work
	2.1 Architecture Description Languages
	2.2 Modeling Architectural Styles
	2.3 Specification of Constraints for Dynamic Architectures

	3 Running Example: Specifying Blackboard Architectures
	4 A Model of Dynamic Architectures
	4.1 Foundations
	4.2 Components and Interfaces
	4.3 Interface Specifications
	4.4 Architecture Configurations and Configuration Traces
	4.5 Running Example: Blackboard Interface Specification

	5 Specifying Properties of Dynamic Architectures
	5.1 Architecture Properties
	5.2 Behavior Properties
	5.3 Activation Properties
	5.4 Connection Properties
	5.5 Separable Architecture Properties
	5.6 Completeness
	5.7 Consistency

	6 Specifying Properties of Dynamic Architectures
	7 Discussion
	8 Conclusion
	References

	Behavioural Models for FMI Co-simulations
	1 Introduction
	2 FMI
	3 Circus
	4 A Model of FMI
	4.1 Master Algorithms
	4.2 FMU Interfaces
	4.3 Specific FMU Models

	5 Evaluation: Verification Applications
	5.1 Master Algorithms
	5.2 Co-simulations

	6 Conclusions
	References

	An Abstract Model for Proving Safety of Autonomous Urban Traffic
	1 Introduction
	2 Abstract Model
	2.1 Topology
	2.2 Traffic Snapshot
	2.3 Bended View and Virtual Lanes
	2.4 UMLSL Syntax and Semantics

	3 Controllers for Safe Crossing Manoeuvres
	3.1 Syntax of Automotive-Controlling Timed Automata
	3.2 Semantics of Automotive-Controlling Timed Automata
	3.3 Controller Construction

	4 Safe Crossing Manoeuvres
	5 Conclusion
	References

	Composition and Transformation
	Unifying Heterogeneous State-Spaces with Lenses
	1 Introduction
	2 Background and Related Work
	2.1 Unifying Theories of Programming
	2.2 Isabelle/HOL
	2.3 Mechanised State Spaces

	3 Lenses
	3.1 Lens Laws
	3.2 Concrete Lenses
	3.3 Lens Algebraic Operators

	4 Unifying State-Space Abstractions
	4.1 Alphabetised Predicate Calculus
	4.2 Meta-logical Operators
	4.3 Relational Laws of Programming
	4.4 Parallel-by-merge

	5 Conclusions
	References

	Ensuring Correctness of Model Transformations While Remaining Decidable
	1 Introduction
	2 Motivating Example
	3 A Model Transformation Framework
	4 General Logical Framework
	5 Instances of the Example
	5.1 Two-Variable Logic with Counting : C2
	5.2 Exist-Forall-Prefix

	6 Conclusions
	References

	ProofScript: Proof Scripting for the Masses
	1 Introduction
	2 The Programming Language
	2.1 Theories and Namespaces
	2.2 Types and Patterns
	2.3 Purely Functional Structured Programming
	2.4 Layout-Sensitive Syntax

	3 Logical Foundations
	3.1 Types and Terms
	3.2 Type Inference
	3.3 Contexts and Theorems
	3.4 Theories and Namespaces
	3.5 Lifting Between Contexts

	4 Structured Proof Scripting
	5 Conclusion
	References

	Automata
	Derived-Term Automata for Extended Weighted Rational Expressions
	1 Introduction
	2 Notations
	2.1 Rational Series
	2.2 Extended Weighted Rational Expressions
	2.3 Rational Polynomials
	2.4 Rational Expansions
	2.5 Weighted Automata

	3 Computing Expansions of Expressions
	3.1 Expansion of a Rational Expression
	3.2 Connection with Derivatives

	4 Expansion-Based Derived-Term Automaton
	4.1 Derived-Term Automaton Size
	4.2 Deterministic Automata
	4.3 The Case of Complement
	4.4 Complexity and Performances

	5 Related Work
	6 Conclusion
	References

	Weighted Register Automata and Weighted Logic on Data Words
	1 Introduction
	2 Register Automata
	3 Weighted Register Automata
	4 Weighted Existential MSO Logic for Data Words
	4.1 Weighted Existential MSO Logic
	4.2 Restricted wEMSO

	5 Determinizable Class of Register Automata
	6 Definability Equals Recognizability
	7 Discussion
	References

	Hybrid Automata as Coalgebras
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.3 Roadmap

	2 Background
	2.1 Hybrid Automata
	2.2 Coalgebras

	3 Deterministic Hybrid Automata as Coalgebras
	3.1 The Model
	3.2 Bisimulation in the Deterministic Case

	4 When Different Transition Types Come into Play
	4.1 The General Picture
	4.2 Reactive and Replicating Behaviour
	4.3 Nondeterministic and Probabilistic Behaviour
	4.4 Bisimulation and Observational Semantics
	4.5 A Hierarchy of Hybrid Automata

	5 Conclusions and Future Work
	References

	Temporal Logics
	Temporal Logic Verification for Delay Differential Equations
	1 Introduction
	2 Problem Formulation
	2.1 Metric Interval Temporal Logic

	3 Computing Enclosures for DDEs by Taylor Models
	3.1 Time-Wise Discretization of DDEs into Timed State Sequences
	3.2 Proving Continuous-Time Properties on the Time Discretization

	4 Solving MITL Formulae with Continuous Semantics Over Time-Discrete Taylor-Based Approximations
	4.1 Atomic Propositions
	4.2 Boolean Connectives
	4.3 Until Operator
	4.4 Verification Examples

	5 Conclusion and Future Work
	References

	Dynamic Logic with Binders and Its Application to the Development of Reactive Systems
	1 Introduction
	2 D"3223379 - A Dynamic Logic with Binders
	2.1 D"3223379 -logic: Syntax and Semantics
	2.2 Turning D"3223379 -logic into an Institution

	3 Formal Development á la Sannella and Tarlecki
	3.1 Simple Implementations
	3.2 Constructor Implementations
	3.3 Abstractor Implementations

	4 Reactive Systems Development with D"3223379
	4.1 Constructor Implementations in D"3223379 -logic
	4.2 Abstractor Implementations in D"3223379 -logic

	5 Conclusions and Future Work
	References

	Propositional Dynamic Logic for Petri Nets with Iteration
	1 Introduction
	2 Background
	2.1 Propositional Dynamic Logic
	2.2 Petri Nets

	3 Propositional Dynamic Logic for Petri Nets (Petri-PDL)
	3.1 Language and Semantics
	3.2 Axiomatic System

	4 Soundness and Completeness
	5 Some Usage Examples
	6 Conclusions and Further Work
	References

	Tool and Short Papers
	ML Pattern-Matching, Recursion, and Rewriting: From FoCaLiZe to Dedukti
	1 Introduction
	2 Presentation of the Tools
	2.1 Dedukti
	2.2 Zenon Modulo
	2.3 FoCaLiZe and its Compilation Process

	3 From FoCaLiZe to Focalide
	3.1 Input Language
	3.2 Translation
	3.3 Compilation of Pattern-Matching
	3.4 Compilation of Recursive Functions

	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	Parametric Deadlock-Freeness Checking Timed Automata
	1 Introduction
	2 Preliminaries
	3 Parametric Deadlock-Freeness Checking
	4 Under-approximated Synthesis
	5 Experiments
	6 Perspectives
	References

	Author Index

