
Chapter 2

Derivations and Proofs in the

Predicate Logic

2.1 Motivation

The propositional logic has several limitations for expressing ideas; mainly, it is not possible

to quantify over sets of individuals and reason about them. These limitations can be better

explained through examples:

“Every prime number bigger than 2 is odd”

“There exists a prime number greater than any given natural number”

In the language of the propositional logic this kind of properties can only be represented

by a propositional variable because there is no way to split this information into simpler

propositions joined by connectives and able to express the quantification over the natural

numbers. In fact, the information in these sentences includes observations about sets of

prime numbers, odd numbers, natural numbers, and quantification over them, and these

relations cannot be straightforwardly captured in the language of propositional logic.

In order to overcome these limitations of the expressive power of the propositional logic,

we extend its language with variables which range over individuals, and quantification over

these variables. Thus, in this chapter we present the predicate logic, also known as first-

order logic. In order to obtain a language with abilities to identify the required additional

65

66MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

information, we need to extend the propositional language and provide a more expressive

deductive calculus.

2.2 Syntax of the Predicate Logic

The language of the first-order predicate logic has two kinds of expressions: terms and for-

mulas. While in the language of propositional logic formulas are built up from propositional

variables, in the predicate logic they are built from atomic formulas, that are relational for-

mulas expressing properties of terms such as “prime(2)”, “prime(x)”, “x is bigger than 2”,

etc. Formulas are built from relational formulas using the logical connectives as in the case

of propositional logic, but in predicate logic also quantifiers over variables will be possible.

Terms and basic relational formulas are built out of variables and two sets of symbols F and

P. Each function symbol in F and each predicate symbol in P comes with its fixed arity (that

is, the number of its arguments). Constants can be seen as function symbols of arity zero.

No predicate symbols with arity zero are allowed. This is the part of the language that is

flexible since the sets F and P can be chosen arbitrarily.

Intuitively, predicates are functions that represent properties of terms. In order to define

predicate formulas, we first define terms, and to do so, we assume an enumerable set V of

term variables.

Definition 13 (Terms). A term t is defined inductively as follows:

1. Any variable x 2 V is a term;

2. If t1, t2, . . . , tn are terms, and f 2 F is a function symbol with arity n � 0 then

f(t1, t2, . . . , tn) is a term. A function of arity zero is a constant.

Notation 1. We follow the usual notational convention for terms. Constant symbols, func-

tion symbols, arbitrary terms and variables are denoted by Roman lower-case letters, respec-

tively, of the first, second, third and fourth quarters of the alphabet: a, b, . . ., for constant

symbols; f, g, . . ., for function symbols; s, t, . . . for arbitrary terms and; x, y, z, for variables.

2.2. SYNTAX OF THE PREDICATE LOGIC 67

Terms, as given in the previous definition, could be equivalently presented by the following

syntax:

t ::= x || f(t, . . . , t)

Definition 14 (Variable occurrence). The set of variables occurring in a term t, denoted by

var(t), is inductively defined as follows:

• If t = x then var(t) = {x}

• If t = f(t1, . . . , tn) then var(t) = var(t1) [· · · [var(tn)

We define the substitution of the term u for x in the term t, written t[x/u], as the replace-

ment of all occurrences of x in t by u. Formally, we have the following definition.

Definition 15 (Term Substitution). Let t, u be terms, and x, a variable. We define t[x/u]

inductively as follows:

• x[x/u] = u;

• y[x/u] = y, for y 6= x;

• f(t1, . . . , tn)[x/u] = f(t1[x/u], . . . , tn[x/u]) (n � 0).

Now we are a ready to define the formulas of the predicate logic:

Definition 16 (Formulas). The set of formulas of the first-order predicate logic over a vari-

able set V and a symbol set S = (F,P) is inductively defined as follows:

1. ? and > are formulas;

2. If p 2 P with arity n > 0, and t1, t2, . . . , tn are terms then p(t1, t2, . . . , tn) is a formula;

3. If ' is a formula then so is (¬');

4. If '1 and '2 are formulas then so are ('1 ^ '2), ('1 _ '2) and ('1 ! '2);

68MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

5. If x 2 V and ' is a formula then (8x') and (9x') are formulas.

The symbol 8x (resp. 9x) means “for all x” (resp. “there exists a x”), and the formula '

is the body of the formula (8x') (resp. (9x')). Since quantification is restricted to variable

terms, the defined language corresponds to a so called first-order language.

The set of formulas of the predicate logic have the following syntax:

' ::= p(t, . . . , t) || ? || > || (¬') || (' ^ ') || (' _ ') || ('!') || (8x') || (9x')

Formulas of the form p(t1,. . ., tn) are called atomic formulas because they cannot be de-

composed into simpler formulas. As usual, parenthesis are used to avoid ambiguities and the

external ones will be omitted. The quantifiers 8x and 9x bind the variable x in the body of

the formula. This idea is formalized by the notion of scope of a quantifier:

Definition 17 (Scope of quantifiers, free and bound variables). The scope of 8x (resp. 9x)

in the formula 8x' (resp. 9x') is the body of the quantified formula: '. An occurrence of a

variable x in the scope of 8x or 9x is called bound. An occurrence of a variable that is not

bound is called free.

Since the body of a quantified formula can have occurrences of other quantified formulas

that abstract the same variable symbol, it is necessary to provide more precise mechanisms to

build the sets of free and bound variables of a predicate formula. This can be done inductively

according to the following definitions.

Definition 18 (Construction of the set of free variable). Let ' be a formula of the predicate

logic. The set of free variables of ', denoted by fv('), is inductively defined as follows:

1. fv(?) = fv(>) = ;;

2. fv(p(t1, . . . , tn)) = var(t1) [. . . [var(tn);

3. fv(¬') = fv(');

4. fv('⇤) = fv(') [fv(), where ⇤ 2 {^,_,!};

2.2. SYNTAX OF THE PREDICATE LOGIC 69

5. fv(Qx') = fv(') \ {x}, where Q 2 {8, 9}.

A formula without occurrences of free variables is called a sentence.

Definition 19 (Construction of the set of bound variables). Let ' be a formula of the

predicate logic. The set of bound variables of ', denoted by bv('), is inductively defined as

follows:

1. bv(?) = bv(>) = ;;

2. bv(p(t1, . . . , tn)) = ;;

3. bv(¬') = bv(');

4. bv('⇤) = bv(') [bv(), where ⇤ 2 {^,_,!};

5. bv(Qx') = bv(') [{x}, where Q 2 {8, 9}.

Informally, the name of a bound variable is not important in the sense that it can be

renamed to any fresh name without changing the semantics of the term. For instance, the

formulas 8x(x  x), 8y(y  y) and 8z(z  z) represent the very same object. The sole

restriction that needs to be considered is that variable capture is forbidden, i.e. no free

variable can become bound after a renaming of a variable. For instance, if p denotes a binary

predicate then 8xp(x, y) is a renaming of 8zp(z, y), while 8yp(y, y) is not. The next definition

will formalize the notion of substitution. The capture of free variables by a substitution is

also forbidden, and we assume that a renaming of bound variables is always performed when

necessary to avoid capture.

Definition 20 (Substitution). Let ' be a formula of the predicate logic. The substitution of

x by t in ', written '[x/t], is inductively defined as follows:

1. ?[x/t] = ? and >[x/t] = >;

2. p(t1, . . . , tn)[x/t] = p(t1[x/t], . . . , tn[x/t]);

3. (¬)[x/t] = ¬([x/t]);

70MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

4. (⇤�)[x/t] = ([x/t])⇤(�[x/t]), where ⇤ 2 {^,_,!};

5. (Qy)[x/t] = Qy([x/t]), where Q 2 {9, 8}, and renaming of bound variables is as-

sumed to avoid capture of variables.

Example 6. Consider the following applications of substitution:

• (8xp(y))[y/x] = 8zp(y)[y/x] = 8zp(y[y/x]) = 8zp(x) and

• (8xp(x))[x/t] = 8yp(y)[x/t] = 8yp(y[x/t]) = 8yp(y).

Notice that in the second application, renaming x as y was necessary to avoid capture.

The necessary renamings to avoid capture of variables in substitutions can be implemented

in several ways. For instance, it can be done by modifying item 5 in the definition of

substitution in such a way that before propagating the substitution inside the scope of a

quantified formula of the form (Qx')[x/t], where Q 2 {8, 9}, it is checked whether x = y or

x 2 fv(t): whenever x = y or x 2 fv(t) renaming the quantified variable name x as a fresh

variable name z is applied, in other case no renaming is needed:

(Qx')[y/t] =

8
><

>:

(Qz'[x/z][y/t]), if x = y or x 2 fv(t),

(Qx'[y/t]), otherwise.

The size of predicate expressions (terms and formulas) is defined in the usual manner.

Definition 21 (Size of predicate expressions). Let t be a predicate term and ' a predicate

formula. The size of t, denoted as |t|, is recursively defined as below.

• |x| = 1, for x 2 V;

• |f(t1, . . . , tn)| = 1 + |t1|+ · · ·+ |tn|, for n � 0.

The size of ', denoted as |'|, is recursively defined as below.

• |?| = |>| = 1;

• |p(t1, . . . , tn)| = 1 + |t1|+ · · ·+ |tn|, for n � 1;

2.3. NATURAL DEDUCTION IN THE PREDICATE LOGIC 71

• |(¬)| = 1 + | |;

• |(⇤�)| = 1 + | |+ |�|, where ⇤ 2 {^,_,!};

• |(Qy)| = 1 + | |, where Q 2 {9, 8}.

Exercise 23.

a. Consider a predicate formula ' and a term t. Prove that there are no bound variables

in the new occurrences of t in the formula '[x/t]. For doing this use induction on the

structure of '. Of course, occurrences of the term t in the original formula ' might be

under the scope of quantifiers and consequently variables occurring in these subterms would

be bound.

b. Let k be the number of free occurrences of the variable x in the predicate formula '. Prove,

also by induction on ', that the size of the term '[x/t] is given by k|t|+ |'|� k.

c. For x 6= y, prove also that:

i. '[x/s][x/t] = '[x/s[x/t]];

ii. '[x/s][y/t] = '[x/s[y/t]][y/t], if y /2 var(t);

iii. '[x/s][y/t] = '[y/t][x/s], if x /2 var(t) and y /2 var(s).

2.3 Natural Deduction in the Predicate Logic

The set of rules of natural deduction for the predicate logic is an extension of the set presented

for the propositional logic. The rules for conjunction, disjunction, implication and negation

have the same shape, but note that now the formulas are the ones of predicate logic. In

this section, we also discuss the minimal, intuitionistic and classical predicate logic. Thus

the rules are those in Tables 1.2, without the rule (?e) for the minimal predicate logic and

with this rule for the intuitionistic predicate logic, and in Table 1.3 for the classical predicate

logic, plus four additional rules for dealing with quantified formulas.

72MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

We start by expanding the set of natural deduction rules with the ones for quantification.

The first one is the elimination rule for the universal quantifier:

8x'

'[x/t]
(8e)

The intuition behind this rule is that from a proof of 8x', we can conclude '[x/t], where t is

any term. This transformation is done by the substitution operator previously defined, that

replaces every free occurrence of x by an arbitrary term t in '. According to the substitution

operator, “every” occurrence of x in ' is replaced with the “same” term t. The following

example shows an application of (8e) in a derivation.

Example 7. 8xp(a, x), 8x8y(p(x, y) ! p(f(x), y)) ` p(f(a), f(a)).

8xp(a, x)

p(a, f(a))
(8e)

8x8y(p(x, y) ! p(f(x), y))

8yp(a, y) ! p(f(a), y)
(8e)

p(a, f(a)) ! p(f(a), f(a))
(8e)

p(f(a), f(a))
(!e)

Note that the application of (!e) is identical to what is done in the propositional calculus,

except from the fact that now it is applied to predicate formulas.

The introduction rule for the universal quantifier is more subtle. In order to prove 8x'

one needs first to prove '[x/x0] in such a way that no open assumption in the derivation

of '[x/x0] can contain occurrences of x0. This restriction is necessary to guarantee that

x0 is general enough and can be understood as “any” term, i.e. nothing has been assumed

concerning x0. The (8i) rule is given by:

2.3. NATURAL DEDUCTION IN THE PREDICATE LOGIC 73

'[x/x0]

8x'
(8i)

where x0 is a fresh variable not occurring in any open assumption in the derivation of '[x/x0].

Example 8. 8x(p(x) ^ q(x)) ` 8x (p(x) ! q(x)).

8x(p(x) ^ q(x))

p(x0) ^ q(x0)
(8e)

q(x0)
(^e)

p(x0) ! q(x0)
(!i);

8x(p(x) ! q(x))
(8i)

Note that the formula p(x0) ! q(x0) depends only on the hypothesis 8x(p(x)^q(x)), which

does not contain x0. Thus x0 might be considered arbitrary, which allows the generalization

through application of rule (8i). In fact, note that the above proof of p(x0) ! q(x0) could be

done for any other term, say t instead x0, which explains the generality of x0 in the above

example.

The introduction rule for the existential quantifier is as follows:

'[x/t]

9x '
(9i)

where t is any term.

Example 9. 8x q(x) ` 9x q(x).

74MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

8x q(x)

q(x0)
(8e)

9x q(x)
(9i)

Similarly to (8i), the elimination rule for the existential quantifier is more subtle:

9x '

['[x/x0]]
u

...

�

�
(9e) u

This rule requires the variable x0 be a fresh variable neither occurring in any other open

assumption than in ['[x/x0]]u itself nor in the conclusion fv(�). The intuition of this rule

might be explained as follows: knowing that 9x ' holds, if assuming that an arbitrary x0

witnesses the property ', i.e., assuming ['[x/x0]]u, one can infer �, then � holds in general.

This kind of analysis is done, for instance, when properties about numbers are inferred from

the knowledge of the existence of prime numbers of arbitrary size, or (good/bad) properties

about institutions are inferred from the knowledge of the existence of the (good/bad) qualities

of some individuals in their sta↵s. These general properties are inferred without knowing

specific prime numbers or without knowing who are specifically the (good/bad) individuals

in the institutions.

Example 10. This example attempts to bring a little bit intuition about the use of these rules.

Let p, q and r be predicate symbols with the intended meanings: p(z) means “z is a planet

di↵erent from the earth with similar characteristics”; q(y) means “country y adopts action

to mitigate global warming” and r(x, y) means “x is a leader, who works in the ministry of

agriculture or environment of country y and who is worried about climate change”. Thus,

2.3. NATURAL DEDUCTION IN THE PREDICATE LOGIC 75

from the hypotheses 8y9xr(x, y), 8y8x(r(x, y) ! q(y)) and 8z(8yq(y) ! ¬p(z)), we can infer

that we do not need a “Planet B” as below.

8y9xr(x, y)

9xr(x, c0)
(8e)

[r(l0, c0)]
u

8y8x(r(x, y) ! q(y))

8x(r(x, c0) ! q(c0))
(8e)

r(l0, c0) ! q(c0)
(8e)

q(c0)
(!e)

q(c0)
(9e) u

8yq(y)
(8e)

8z(8yq(y) ! ¬p(z))

8yq(y) ! ¬p(B)
(8e)

¬p(B)
(!e)

Example 11. The use of substitution in natural deduction rules for quantifiers is illustrated

in this example. Initially, consider a unary predicate p. Below, it is depicted a derivation for

9x p(x) ` ¬8x ¬p(x).

9xp(x)

[p(x0)]
u

[8x¬p(x)]v

¬p(x0)
(8e)

?
(¬e)

¬8x¬p(x)
(¬i) v

¬8x¬p(x)
(9e) u

Now, consider a predicate formula ' and a variable x that might or might not occur free in

'. The next derivation, denoted as r3, proofs that ` 9x' ! ¬8x¬'. Despite the proof for

' appears to be the same than the one above for the unary predicate p, several subtle points

should be highlighted. In the application of rule (9e) in the derivation r3, it is forbidden the

selection of a witness variable “y”, to be used in the witness assumption ['[x/y]]w, such that

y belongs to the set of free variables occurring in '. Indeed, y should be a fresh variable. To

76MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

understand this restriction, consider ' = q(y, x) and suppose the intended meaning of q is

“x is the double of y”. If the existential formula is 9xp(y, x) the witness assumption cannot

be p(y, x)[x/y] = p(y, y), since this selection of “y” is not arbitrary.

[9x']
u

['[x/y]]w

[8x¬']v

¬'[x/y]
(8e)

?
(¬e)

?
(9e) w

¬8x¬'
(¬i) v

9x'! ¬8x¬'
(!i) u

The rules for quantification discussed so far, are summarized in Table 2.1. These rules

together with the deduction rules for introduction and elimination of the connectives: ^,_,¬

and !, conform the set of natural deduction rules for the minimal predicate logic (that is,

rules in Tables 2.1 and 1.2 except rule (?e)) . If in addition, we include the intuitionistic

absurdity rule, we obtain the natural deduction calculus for the intuitionistic predicate logic

(that is all rules in Tables 2.1 and 1.2). The classical predicate calculus is obtained from the

intuitionistic one, changing the intuitionistic absurdity rule by the rule (PBC) (that is, rules

in Tables 2.1 and 1.3).

2.3. NATURAL DEDUCTION IN THE PREDICATE LOGIC 77

Table 2.1: Natural deduction rules for quantification

introduction rules elimination rules

'[x/x0]

8x'
(8i)

8x'

'[x/t]
(8e)

where x0 cannot occur free
in any open assumption.

'[x/t]

9x'
(9i) 9x'

['[x/x0]]u

...
�

� (9e) u

where x0 cannot occur free in any open
assumption on the right and in �.

Example 12. The sequent ` 9x¬'! ¬8x' has the following intuitionistic proof r1:

[9x¬']u

[8x']
v

'[x/y]
(8e)

[¬'[x/y]]w

?
(¬e)

?
(9e) w

¬8x'
(¬i) v

9x¬'! ¬8x '
(!i) u

The proof r1 can be used to prove the sequent ` 8x'! ¬9x¬' as follows:

r1
9x¬'! ¬8x' [9x¬']v

¬8x'
(!e)

[8x']
w

?
(¬e)

¬9x¬'
(¬i) v

8x'! ¬9x¬'
(!i) w

78MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

Exercise 24. Prove intuitionistically that ¬9x' a` 8x¬'.

Exercise 25. Prove that:

a. if x does not occur free in then prove that (9x�) ! ` 8x(�!); and

b. if x does not occur free in then prove that (8x�) ! ` 9x(�!).

Exercise 26. Prove that:

a. (8x�) ^ (8x) a` 8x(� ^); and

b. (9x�) _ (9x) a` 9x(� _).

Exercise 27. Prove that 8x(p(x) ! ¬q(x)) ` ¬(9x(p(x) ^ q(x))).

The interpretation of formulas in the classical logic is di↵erent from the one in the intu-

itionistic logic. While in the intuitionistic logic the goal is to “have a constructive proof” of

a formula ', in the classical logic the goal is to “establish a proof of the truth” of '. For

instance, a classical proof admits the truth of a formula of the form 9x' without having an

explicit witness for x. Such kind of proof (without an explicit witness for the existential) is

not accepted in the intuitionistic logic. As an example, suppose that one wants to prove that

there exists two irrational numbers x and y such that xy is rational. If r(x) means that “x

is a rational number” then one aims to prove the sequent ` 9x9y(¬r(x) ^ ¬r(y) ^ r(xy)). In

order to do so, we assume some obvious facts in algebra, such as ¬r(
p
2) and r((

p
2
p
2
)
p
2).

(LEM)

r(
p
2
p
2
) _ ¬r(

p
2
p
2
) r1 r2

9x9y(¬r(x) ^ ¬r(y) ^ r(xy))
(_e) a, b

2.3. NATURAL DEDUCTION IN THE PREDICATE LOGIC 79

where r1 is given by

¬r(
p
2)

¬r(
p
2) [r((

p
2)

p
2)]a

¬r(
p
2) ^ r((

p
2)

p
2)

(^i)

¬r(
p
2) ^ ¬r(

p
2) ^ r((

p
2)

p
2)

(^i)

9y(¬r(
p
2) ^ ¬r(y) ^ r((

p
2)y))

(9i)

9x9y(¬r(x) ^ ¬r(y) ^ r(xy))
(9i)

and r2 is given by

[¬r(
p
2
p
2
)]b

¬r(
p
2) r((

p
2
p
2
)
p
2)

¬r(
p
2) ^ r((

p
2
p
2
)
p
2)

(^i)

¬r(
p
2
p
2
) ^ ¬r(

p
2) ^ r((

p
2
p
2
)
p
2)

(^i)

9y(¬r(
p
2
p
2
) ^ ¬r(y) ^ r((

p
2
p
2
)y))

(9i)

9x9y(¬r(x) ^ ¬r(y) ^ r(xy))
(9i)

In the proof above, the witnesses depend on whether
p
2
p
2
is rational or not. In the

positive case, taking x = y =
p
2 allows us to conclude that xy is rational, and in the

negative case, this conclusion is achieved by taking x =
p
2
p
2
and y =

p
2. So we proved

the “existence” of an object without knowing explicitly the witnesses for x and y. This is

acceptable as a proof in the classical logic, but not in the intuitionistic one.

Analogously to the intuitionistic case, the rules of the classical predicate logic are given

by the rule schemes for the connectives (^,_,¬ and !), the classical absurdity rule (PBC) (

see Table 1.3) and the rules for the quantifiers (Table 2.1).

Example 13. While the sequents ` 9x' ! ¬8x¬' and ` 8x' ! ¬9x¬' have intuitionistic

(indeed minimal) proofs as shown in Examples 11 and 12, the sequents ` ¬9x¬'! 8x' and

` ¬8x¬'! 9x' have only classical proofs. A proof for the former is given below.

80MAyala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, c� Springer 2017. Authors’ copy

[¬9x¬']u

[¬'[x/y]]v

9x¬'
(9i)

?
(¬e)

'[x/y]
(PBC) v

8x'
(8i)

¬9x¬'! 8x'
(!i) u

Moreover, note that the above proof jointly with the one given in Example 11 shows that

8x' a` ¬9x¬'.

A proof of the sequent ` ¬8x¬'! 9x' is given below.

['[x/y]]v

9x'
(9i)

[¬9x']
u

?
(¬e)

¬'[x/y]
(¬i) v

8x¬'
(8i)

[¬8x¬']w

?
(¬e)

9x'
(PBC) u

¬8x¬'! 9x'
(!i) w

Finally, this proof jointly with the one given in Example 12 shows that 9x' a` ¬8x¬'.

To verify that there are no possible intuitionistic derivations, notice that ¬9x¬' ! 8x'

and ¬8x¬' ! 9x' together with the intuitionistic (indeed minimal) deduction rules allows

derivation of non intuitionistic theorems such as ¬¬' ` ' (see next Exercise 28).

Exercise 28. Prove that there exist derivations for ¬¬' ` ' using only the minimal natural

2.4. SEMANTICS OF THE PREDICATE LOGIC 81

deduction rules and each of the assumptions:

a. ¬9x¬'! 8x' and

b. ¬8x¬'! 9x'.

Hint: you can choose the variable x as any variable that does not occurs in '. Thus, the

application of rule (9e) over the existential formula 9x' has as witness assumption ['[x/x0]]w

that has no occurrences of x0.

In Exercise 24 we prove that there are intuitionistic derivations for ¬9x' a` 8x¬'. Also,

in Example 12 we give an intuitionistic derivation for 9x¬' ` ¬8x'. Indeed, one can obtain

minimal derivations for these three sequents.

Exercise 29. To complete ¬8x' a` 9x¬' (see Example 12), prove that ¬8x' ` 9x¬'.

2.4 Semantics of the Predicate Logic

As done for the propositional logic in Chapter 1, here we present the standard semantics

of first-order classical logic. The semantics of the predicate logic is not a direct extension

of the one of propositional logic. Although this is not surprising, since the predicate logic

has a richer language, there are some interesting points concerning the di↵erences between

propositional and predicate semantics that will be examined in this section. In fact, while

a propositional formula has only finitely many interpretations, a predicate formula can have

infinitely many ones.

We start with an example: let p be a unary predicate symbol, and consider the formula

8xp(x). The variable x ranges over a domain, say the set of natural numbers N. Is this

formula true or false? Certainly, it depends on how the predicate symbol p is interpreted. If

one interprets p(x) as “x is a prime number”, then it is false, but if p(x) means that “x is

a natural number” then it is true. Observe that the interpretation depends on the chosen

domain, and hence the latter interpretation of p will be false over the domain of integers Z.

This situation is similar in the propositional logic: according to the interpretation, some

formulas can be either true or false. So what do we need to determine the truth value of a

