1.6.2 Completeness of the Propositional Logic

Now, we will prove that the propositional calculus, as given by the rules of natural deduction presented in Table 1.3 is also complete; that is, each logical consequence can be effectively proved through application of rules of the propositional logic. As a preliminary result, we will prove that each valid formula is in fact a formally provable theorem: $\models \varphi$ implies $\vdash \varphi$. Then, we will prove that this holds in general: whenever $\Gamma \models \varphi$, there exists a deduction for the sequent $\Gamma \vdash \varphi$, being Γ a finite set of propositional formulas.

To prove that validity implies provability, an auxiliary lemma is necessary.

Lemma 3 (Truth-values, assignments and deductions). Let V be a set of propositional variables, φ be a propositional formula containing only the propositional variables v_1, \ldots, v_n in V and let d be an assignment. Additionally, let \hat{v}^d denote the formula v whenever d(v) = Tand the formula $\neg v$, whenever d(v) = F, for $v \in V$. Then, one has

• If φ is true under assignment d, then

$$\widehat{v_1}^d, \ldots, \widehat{v_n}^d \vdash \varphi$$

• Otherwise,

$$\widehat{v_1}^d, \ldots, \widehat{v_n}^d \vdash \neg \varphi$$

Proof. The proof is by induction on the structure of φ .

IB. The three possible cases are easily verified:

Case \perp for $\varphi = \perp, \vdash \neg \perp;$

Case \top for $\varphi = \top, \vdash \top;$

Case variable for $\varphi = v \in V$, since φ contains only variables in v_1, \ldots, v_n , then $\varphi = v_i$, for some $1 \leq i \leq n$. Two possibilities should be considered: if $d(v_i) = T$, one has $\widehat{v_i}^d \vdash v_i$, that is $v_i \vdash v_i$; if $d(v_i) = F$, one has $\widehat{v_i}^d \vdash \neg v_i$, that is $\neg v_i \vdash \neg v_i$.

IS. The analysis proceeds by cases according to the structure of φ .

Case $\varphi = (\neg \psi)$. Observe that the set of variables occurring in φ and ψ is the same. In

addition, by the semantics of negation, when φ is true under assignment d, ψ should be false and ψ is true under assignment d only if φ is false under this assignment.

By induction hypothesis, whenever ψ is false under assignment d it holds that

$$\widehat{v_1}^d, \dots, \widehat{v_n}^d \vdash (\neg \psi) = \varphi$$

that is what we need to prove in this case in which φ is true. Also, by induction hypothesis, whenever ψ is true under assignment d one has

$$\widehat{v_1}^d, \ldots, \widehat{v_n}^d \vdash \psi$$

which means that there is a deduction of ψ from the formulas $\hat{v}_1^{d}, \ldots, \hat{v}_n^{d}$. Thus, also a proof from this set of formulas of $\neg \varphi$ is obtained as below.

For the cases in which φ is a conjunction, disjunction or implication, of formulas ψ and ϕ , we will use the following notational convention: $\{u_1, \ldots, u_k\}$ and $\{w_1, \ldots, w_l\}$ are the sets of variables occurring in the formulas ψ and ϕ . Observe that these sets are not necessarily disjoint and that their union will give the set of variables $\{v_1, \ldots, v_n\}$ occurring in φ .

Case $\varphi = (\psi \lor \phi)$. On the one side, suppose, φ is false under assignment d. Then, by the semantics of disjunction, both ψ and ϕ are false too, and by induction hypothesis, there are proofs for the sequents

$$\widehat{u_1}^d, \dots, \widehat{u_k}^d \vdash \neg \psi \quad \text{and} \quad \widehat{w_1}^d, \dots, \widehat{w_l}^d \vdash \neg \phi$$

Thus, a proof of $\neg \varphi$, that is $\neg(\psi \lor \phi)$, is obtained combining proofs for these sequents as

follows.

On the other side, suppose that φ is true. Then, by the semantics of disjunction, either ψ or ϕ should be true under assignment d (both formulas can be true too). Suppose ψ is true, then by induction hypothesis, we have a derivation for the sequent

$$\widehat{u_1}^d, \ldots, \widehat{u_k}^d \vdash \psi$$

Using this proof we can obtain a proof of the sequent $\widehat{u_1}^d, \ldots, \widehat{u_k}^d \vdash \varphi$, which implies that the desired sequent also holds: $\widehat{v_1}^d, \ldots, \widehat{v_n}^d \vdash \varphi$. The proof is depicted below.

The case in which ψ is false and ϕ is true is done in the same manner, adding an application of rule (\vee_i) at the root of the derivation for the sequent

$$\widehat{w_1}^d, \ldots, \widehat{w_l}^d \vdash \phi$$

57

Case $\varphi = (\psi \land \phi)$. On the one side, suppose, φ is true under assignment *d*. Then, by the semantics of disjunction, both ψ and ϕ are true too, and by induction hypothesis, there are proofs for the sequents

$$\widehat{u_1}^d, \dots, \widehat{u_k}^d \vdash \psi \text{ and } \widehat{w_1}^d, \dots, \widehat{w_l}^d \vdash \phi$$

Thus, a proof of φ , that is $(\psi \wedge \phi)$, is obtained combining proofs for these sequents as follows.

On the other side, suppose that φ is false under assignment d. Then, some of the formulas ψ or ϕ should be false, by the semantical interpretation of conjunction. Suppose that ψ is false. The case in which ϕ is false is analogous. Then, by induction hypothesis, one has a derivation for the sequent

$$\widehat{u_1}^d, \ldots, \widehat{u_k}^d \vdash \neg \psi$$

and the derivation for $\neg(\psi \land \phi)$, that is for φ , is obtained as depicted below.

Case $\varphi = (\psi \to \phi)$. On the one side, suppose, φ is false under assignment *d*. Then, by the semantics of implication, ψ is true and ϕ false, and by induction hypothesis, there are

proofs for the sequents

$$\widehat{u_1}^d, \ldots, \widehat{u_k}^d \vdash \psi$$
 and $\widehat{w_1}^d, \ldots, \widehat{w_l}^d \vdash \neg \phi$

Thus, a proof of $\neg \varphi$, that is $\neg(\psi \rightarrow \phi)$, is obtained combining proofs for these sequents as follows.

On the other side, if φ is true under assignment d, two cases should be considered according to the semantics of implication. Firstly, if ϕ is true, a proof can be obtained from the one for the sequent $\widehat{w_1}^d, \ldots, \widehat{w_l}^d \vdash \phi$, adding an application of rule (\rightarrow_i) discharging an empty set of assumptions for ψ and concluding $\psi \rightarrow \phi$. Secondly, if ψ is false, a derivation can be built from the proof for the sequent $\widehat{w_1}^d, \ldots, \widehat{w_k}^d \vdash \neg \psi$ as depicted below.

Corollary 1 (Validity and provability for propositional formulas without variables). Suppose $\models \varphi$, for a formula φ without occurrences of variables. Then, $\vdash \varphi$.

Exercise 19. Prove the previous corollary.

Theorem 4 (Completeness: validity implies provability). For all formula of the propositional logic

$$\models \varphi \ implies \ \vdash \varphi$$

Proof. (Sketch) The proof is by an inductive argument on the variables occurring in φ : in each step of the inductive analysis we will get rid of the assumptions in the derivations of φ (built accordingly to Lemma 3) related with one variable of the initial set. Thus, the induction is specifically in the number of variables in φ minus the number of variables that are been eliminated from the assumptions until the current step of the process. In the end, a derivation for $\vdash \varphi$ without any assumption will be reached.

Suppose one has n variables occurring in φ , say $\{v_1, \ldots, v_n\}$. By the construction of the previous lemma, since $\models \varphi$, one has proofs for all of the 2^n possible designations for the n variables. Selecting a variable v_n one will have 2^{n-1} different proofs of φ with assumption v_n and other 2^{n-1} different proofs with assumption $\neg v_n$. Assembling these proofs with applications of (LEM) (for all formulas $v_i \lor \neg v_i$, for $i \neq n$) and rule (\lor_e) , as illustrated below, one obtains a derivation for $v_n \vdash \varphi$ and $\neg v_n \vdash \varphi$, from which a proof for $\vdash \varphi$ is also obtained using (LEM) (for $v_n \lor \neg v_n$) and (\lor_e) . The inductive sketch of the proof is as follows.

IB. The case in which φ has no occurrences of variables holds by the Corollary 1 Consider φ has only one variable v_1 , Then by a simple application of rule (\vee_e) , proofs for $v_1 \vdash \varphi$ and $\neg v_1 \vdash \varphi$, are assembled as below obtaining a derivation for $\vdash \varphi$. The existence of proofs for $v_1 \vdash \varphi$ and $\neg v_1 \vdash \varphi$ is guaranteed by Lemma 3.

IS. Suppose φ has n > 1 variables. Since $\models \varphi$, by Lemma 3 one has 2^{n-1} different derivations for $v_n, \hat{v_1}^d, \ldots, \hat{v_{n-1}}^d \vdash \varphi$ as well for $\neg v_n, \hat{v_1}^d, \ldots, \hat{v_n}^d \vdash \varphi$, for all possible designations d. To get rid of the variable v_n one can use these derivations and (LEM) as below.

In this manner, one builds, for each variable assignment d, a derivation for $\hat{v}_1^d, \ldots, \hat{v}_{n-1}^d \vdash \varphi$. Proceeding in this way, that is using (LEM) for other variables and assembling the proofs using the rule (\lor_e) one will be able to get rid of all other variables until a derivation for $\vdash \varphi$ is obtained.

To let things clearer to the reader, notice that the first step analyzed above implies that there are derivations ∇ and ∇' respectively for the sequents $\hat{v}_1^d, \ldots, \hat{v}_{n-2}^d, v_{n-1} \vdash \varphi$ and $\hat{v}_1^d, \ldots, \hat{v}_{n-2}^d, \neg v_{n-1} \vdash \varphi$. This is possible since in the previous analysis the assignment dis arbitrary; then, derivations as the one depicted above exist for assignments that map v_n either to true or false. Thus, a derivation for $\hat{v}_1^d, \ldots, \hat{v}_{n-2}^d \vdash \varphi$ is obtained using (LEM) for the formula $v_{n-1} \lor \neg v_{n-1}$, the derivations ∇ and ∇' , and the rule (\lor_e) , that will discharge the assumptions $[v_{n-1}]$ and $[\neg v_{n-1}]$ in the derivations ∇ and ∇' , respectively.

61

Remark 3. To clarify the way in which derivations are assembled in the previous inductive proof, let consider the case of a valid formula φ with three propositional variables p, q and r and for brevity let ∇_{000} , ∇_{001} ,..., ∇_{111} , denote derivations for $p, q, r \vdash \varphi$; $p, q, \neg r \vdash \varphi$; $\dots, \neg p, \neg q, \neg r \vdash \varphi$, respectively. Notice that the existence of derivations ∇_{ijk} , for $i, j, k = \{0, 1\}$ is guaranteed by Lemma 3.

Derivations, ∇_{00} for $p, q \vdash \varphi$ and ∇_{01} for $p, \neg q \vdash \varphi$ are obtained as illustrated below.

Combining the two previous derivations, a proof ∇_0 is obtained for $p \vdash \varphi$ as follows.

Analogously, combining proofs ∇_{100} and ∇_{101} one obtains derivations ∇_{10} and ∇_{11} respectively for $\neg p, q \vdash \varphi$ and $\neg p, \neg q \vdash \varphi$. From These two derivations it's possible to build a derivation ∇_1 for $\neg p \vdash \varphi$. Finally, from ∇_0 and ∇_1 , proofs for $p \vdash \varphi$ and $\neg p \vdash \varphi$, one obtains the desired derivation for $\vdash \varphi$.

The whole assemble, that is a derivation ∇ for $\vdash \varphi$, is depicted below. Notice the drawback of being exponential in the number of variables occurring in the valid formula φ .

Exercise 20. Build a derivation for the instance of Peirce's law in propositional variables p

and q according to the inductive construction of the proof of the completeness (Theorem]. That is, first build derivations for $p, q \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p, p, \neg q \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p, \neg p, q \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p \text{ and } \neg p, \neg q \vdash ((p \rightarrow q) \rightarrow p) \rightarrow p, and then assemble these proofs$ $to obtain a derivation for <math>\vdash ((p \rightarrow q) \rightarrow p) \rightarrow p.$

Finally, we proceed to prove the general version of the completeness of propositional logic, that is

$$\Gamma \models \varphi \text{ implies } \Gamma \vdash \varphi$$

Theorem 5 (Completeness of Propositional Logic). Let Γ be a finite set of propositional formulas, and φ be a propositional formula. If $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$.

Proof. Let $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$. Initially, notice that

$$\gamma_1, \ldots, \gamma_n \models \varphi \quad \text{implies} \models \gamma_1 \to (\gamma_2 \to (\cdots (\gamma_n \to \varphi) \cdots))$$

Indeed, by contraposition, $\gamma_1 \to (\gamma_2 \to (\cdots (\gamma_n \to \varphi) \cdots))$ can only be false if all formulas γ_i , for i = 1, ..., n are true and φ is false, which gives a contradiction to the assumption that φ is a logical consequence of Γ .

By, Theorem 4 the valid formula $\gamma_1 \to (\gamma_2 \to (\cdots (\gamma_n \to \varphi) \cdots))$ should be provable, that is, there exists a derivation, say ∇ , for

$$\vdash \gamma_1 \to (\gamma_2 \to (\cdots (\gamma_n \to \varphi) \cdots))$$

To conclude, a derivation ∇' for $\gamma_1, \ldots, \gamma_n \vdash \varphi$ can be built from the derivation ∇ by assuming $[\gamma_1]$, $[\gamma_2]$, etc and eliminating the premises of the implication γ_1 , γ_2 , etc by repeatedly applications the rule (\rightarrow_e) , as depicted below.

64 M Ayala-Rincón & FLC de Moura: Applied Logic for Computer Scientists, © Springer 2017. Authors' copy

Additional Exercise 21. As explained before, the classical propositional logic can be characterized by any of the equivalent rules (PBC), $(\neg \neg_e)$ or (LEM). Show that Peirce's law is also equivalent to any of these rules. In other words, build intuitionistic proofs for the rules (PBC), $(\neg \neg_e)$ and (LEM) assuming the rule:

$$\frac{1}{((\phi \to \psi) \to \phi) \to \phi}$$
(LP)

Next, prove (LP) in three different ways: each proof should be done in the intuitionistic logic assuming just one of (PBC), $(\neg \neg_e)$ and (LEM) at a time.

Additional Exercise 22. Prove the following sequents:

- $a. \ \phi \to (\psi \to \gamma), \phi \to \psi \vdash \phi \to \gamma$
- b. $(\phi \lor (\psi \to \phi)) \land \psi \vdash \phi$
- $c. \ \phi \to \psi \vdash ((\phi \land \psi) \to \phi) \land (\phi \to (\phi \land \psi))$
- $d. \vdash \psi \to (\phi \to (\phi \to (\psi \to \phi)))$