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1.6.2 Completeness of the Propositional Logic

Now, we will prove that the propositional calculus, as given by the rules of natural deduction

presented in Table 1.3, is also complete; that is, each logical consequence can be e↵ectively

proved through application of rules of the propositional logic. As a preliminary result, we

will prove that each valid formula is in fact a formally provable theorem: |= ' implies ` '.

Then, we will prove that this holds in general: whenever � |= ', there exists a deduction for

the sequent � ` ', being � a finite set of propositional formulas.

To prove that validity implies provability, an auxiliary lemma is necessary.

Lemma 3 (Truth-values, assignments and deductions). Let V be a set of propositional vari-

ables, ' be a propositional formula containing only the propositional variables v1, . . . , vn in

V and let d be an assignment. Additionally, let bvd denote the formula v whenever d(v) = T

and the formula ¬v, whenever d(v) = F , for v 2 V . Then, one has

• If ' is true under assignment d, then

bv1d, . . . , bvnd ` '

• Otherwise,

bv1d, . . . , bvnd ` ¬'

Proof. The proof is by induction on the structure of '.

IB. The three possible cases are easily verified:

Case ? for ' = ?, ` ¬?;

Case > for ' = >, ` >;

Case variable for ' = v 2 V , since ' contains only variables in v1, . . . , vn, then ' = vi,

for some 1  i  n. Two possibilities should be considered: if d(vi) = T , one has bvid ` vi,

that is vi ` vi; if d(vi) = F , one has bvid ` ¬vi, that is ¬vi ` ¬vi.

IS. The analysis proceeds by cases according to the structure of '.

Case ' = (¬ ). Observe that the set of variables occurring in ' and  is the same. In
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addition, by the semantics of negation, when ' is true under assignment d,  should be false

and  is true under assignment d only if ' is false under this assignment.

By induction hypothesis, whenever  is false under assignment d it holds that

bv1d, . . . , bvnd ` (¬ ) = '

that is what we need to prove in this case in which ' is true. Also, by induction hypothesis,

whenever  is true under assignment d one has

bv1d, . . . , bvnd `  

which means that there is a deduction of  from the formulas bv1d, . . . , bvnd. Thus, also a proof

from this set of formulas of ¬' is obtained as below.

bv1d . . . cvnd

VVVV
VVVV

V
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hh

 

(¬¬i)

(¬¬ )

For the cases in which ' is a conjunction, disjunction or implication, of formulas  and

�, we will use the following notational convention: {u1, . . . , uk} and {w1, . . . , wl} are the sets

of variables occurring in the formulas  and �. Observe that these sets are not necessarily

disjoint and that their union will give the set of variables {v1, . . . , vn} occurring in '.

Case ' = ( _ �). On the one side, suppose, ' is false under assignment d. Then, by

the semantics of disjunction, both  and � are false too, and by induction hypothesis, there

are proofs for the sequents

bu1
d, . . . , buk

d ` ¬ and cw1
d, . . . , bwl

d ` ¬�

Thus, a proof of ¬', that is ¬( _ �), is obtained combining proofs for these sequents as
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follows.

cu1d . . . cukd cw1
d

. . . cwl

d
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TTTT
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[ ]y ¬ [�]z ¬�

(¬e) (¬e)

[ _ �]x ? ?

(_e) y, z

?
(¬i) x

¬( _ �)

On the other side, suppose that ' is true. Then, by the semantics of disjunction, either  

or � should be true under assignment d (both formulas can be true too). Suppose  is true,

then by induction hypothesis, we have a derivation for the sequent

bu1
d, . . . , buk

d `  

Using this proof we can obtain a proof of the sequent bu1
d, . . . , buk

d ` ', which implies that

the desired sequent also holds: bv1d, . . . , bvnd ` '. The proof is depicted below.

cu1d . . . cukd
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(_i)

( _ �)

The case in which  is false and � is true is done in the same manner, adding an application

of rule (_i) at the root of the derivation for the sequent

cw1
d, . . . , bwl

d ` �
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Case ' = ( ^ �). On the one side, suppose, ' is true under assignment d. Then, by the

semantics of disjunction, both  and � are true too, and by induction hypothesis, there are

proofs for the sequents

bu1
d, . . . , buk

d `  and cw1
d, . . . , bwl

d ` �

Thus, a proof of ', that is ( ^�), is obtained combining proofs for these sequents as follows.

cu1d . . . cukd cw1
d

. . . cwl

d

TTTT
TTTT

jjjj
jjjj TTTT

TTTT

jjjj
jjjj

 �

(^i)

 ^ �

On the other side, suppose that ' is false under assignment d. Then, some of the formulas

 or � should be false, by the semantical interpretation of conjunction. Suppose that  is

false. The case in which � is false is analogous. Then, by induction hypothesis, one has a

derivation for the sequent

bu1
d, . . . , buk

d ` ¬ 

and the derivation for ¬( ^ �), that is for ', is obtained as depicted below.

cu1d . . . cukd [ ^ �]x

QQQ
QQQ

Q

lll
lll

l (^e)

¬  

(¬e)

?
(¬i) x

¬( ^ �)

Case ' = ( ! �). On the one side, suppose, ' is false under assignment d. Then, by

the semantics of implication,  is true and � false, and by induction hypothesis, there are
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proofs for the sequents

bu1
d, . . . , buk

d `  and cw1
d, . . . , bwl

d ` ¬�

Thus, a proof of ¬', that is ¬( ! �), is obtained combining proofs for these sequents as

follows.

cu1d . . . cukd

SSS
SSS

SS

hhhh
hhhh

hhh

[ ! �]x  cw1
d

. . . cwl

d

(!e)
SSS

SSS
SSS

jjj
jjj

jjj

� ¬�

(¬e)

?
(¬i) x

¬( ! �)

On the other side, if ' is true under assignment d, two cases should be considered according

to the semantics of implication. Firstly, if � is true, a proof can be obtained from the one for

the sequent cw1
d, . . . , bwl

d ` �, adding an application of rule (!i) discharging an empty set of

assumptions for  and concluding  ! �. Secondly, if  is false, a derivation can be built

from the proof for the sequent bu1
d, . . . , buk

d ` ¬ as depicted below.

cu1d . . . cukd

WWWW
WWWW

WW

gggg
gggg

gg

¬ 

(!i) ;

¬�! ¬ 

(CP2)

 ! �
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Corollary 1 (Validity and provability for propositional formulas without variables). Suppose

|= ', for a formula ' without occurrences of variables. Then, ` '.

Exercise 19. Prove the previous corollary.

Theorem 4 (Completeness: validity implies provability). For all formula of the propositional

logic

|= ' implies ` '

Proof. (Sketch) The proof is by an inductive argument on the variables occurring in ': in

each step of the inductive analysis we will get rid of the assumptions in the derivations of

' (built accordingly to Lemma 3) related with one variable of the initial set. Thus, the

induction is specifically in the number of variables in ' minus the number of variables that

are been eliminated from the assumptions until the current step of the process. In the end,

a derivation for ` ' without any assumption will be reached.

Suppose one has n variables occurring in ', say {v1, . . . , vn}. By the construction of the

previous lemma, since |= ', one has proofs for all of the 2n possible designations for the n

variables. Selecting a variable vn one will have 2n�1 di↵erent proofs of ' with assumption

vn and other 2n�1 di↵erent proofs with assumption ¬vn. Assembling these proofs with ap-

plications of (LEM) (for all formulas vi _ ¬vi, for i 6= n) and rule (_e), as illustrated below,

one obtains a derivation for vn ` ' and ¬vn ` ', from which a proof for ` ' is also obtained

using (LEM) (for vn _ ¬vn) and (_e). The inductive sketch of the proof is as follows.

IB. The case in which ' has no occurrences of variables holds by the Corollary 1. Consider

' has only one variable v1, Then by a simple application of rule (_e), proofs for v1 ` ' and

¬v1 ` ', are assembled as below obtaining a derivation for ` '. The existence of proofs for

v1 ` ' and ¬v1 ` ' is guaranteed by Lemma 3.

[v1]x [¬v1]y

SSS
SSS

S

jjjj
jjjj TTTT

TTTT

jjjj
jjjj

(v1 _ ¬v1) ' '

(_e) x, y

'
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IS. Suppose ' has n > 1 variables. Since |= ', by Lemma 3 one has 2n�1 di↵erent derivations

for vn, bv1d, . . . , dvn�1
d ` ' as well for ¬vn, bv1d, . . . , bvnd ` ', for all possible designations d. To

get rid of the variable vn one can use these derivations and (LEM) as below.

[ bv1d] . . . [ dvn�1
d][vn]x [ bv1d] . . . [ dvn�1

d][¬vn]y

WWWWW
WWWWW

WW

fffff
fffff

fff
XXXXX

XXXXX
XXX

fffff
fffff

fff

(vn _ ¬vn) ' '

(_e) x, y

'

In this manner, one builds, for each variable assignment d, a derivation for bv1d, . . . , dvn�1
d `

'. Proceeding in this way, that is using (LEM) for other variables and assembling the proofs

using the rule (_e) one will be able to get rid of all other variables until a derivation for ` '

is obtained.

To let things clearer to the reader, notice that the first step analyzed above implies that

there are derivations r and r0 respectively for the sequents bv1d, . . . , dvn�2
d, vn�1 ` ' and

bv1d, . . . , dvn�2
d,¬vn�1 ` '. This is possible since in the previous analysis the assignment d

is arbitrary; then, derivations as the one depicted above exist for assignments that map vn

either to true or false. Thus, a derivation for bv1d, . . . , dvn�2
d ` ' is obtained using (LEM) for

the formula vn�1 _ ¬vn�1, the derivations r and r0, and the rule (_e), that will discharge

the assumptions [vn�1] and [¬vn�1] in the derivations r and r0, respectively.

Remark 3. To clarify the way in which derivations are assembled in the previous inductive

proof, let consider the case of a valid formula ' with three propositional variables p, q and

r and for brevity let r000, r001, . . . ,r111, denote derivations for p, q, r ` '; p, q,¬r `

'; . . . , ¬p,¬q,¬r ` ', respectively. Notice that the existence of derivations rijk, for

i, j, k = {0, 1} is guaranteed by Lemma 3.

Derivations, r00 for p, q ` ' and r01 for p,¬q ` ' are obtained as illustrated below.
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r00 : r _ ¬r

[p]x[q]y[r]z

r000
'

[p]x[q]y[¬r]z0

r001
'

'
(_e) z, z0

r01 : r _ ¬r

[p]x[¬q]y0 [r]z
r010
'

[p]x[¬q]y0 [¬r]z0

r011
'

'
(_e) z, z0

Combining the two previous derivations, a proof r0 is obtained for p ` ' as follows.

r0 : q _ ¬q

[p]x[q]y

r00
'

[p]x[¬q]y0

r01
'

'
(_e) y, y0

Analogously, combining proofs r100 and r101 one obtains derivations r10 and r11 re-

spectively for ¬p, q ` ' and ¬p,¬q ` '. From These two derivations it’s possible to build

a derivation r1 for ¬p ` '. Finally, from r0 and r1, proofs for p ` ' and ¬p ` ', one

obtains the desired derivation for ` '.

The whole assemble, that is a derivation r for ` ', is depicted below. Notice the drawback

of being exponential in the number of variables occurring in the valid formula '.

r

r0

r00

r000
'

r001
'

'
r01

r010
'

r011
'

'

'
r1

r10

r100
'

r101
'

'
r11

r110
'

r111
'

'

'

'

Exercise 20. Build a derivation for the instance of Peirce’s law in propositional variables p
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and q according to the inductive construction of the proof of the completeness (Theorem 4).

That is, first build derivations for p, q ` ((p ! q) ! p) ! p, p,¬q ` ((p ! q) ! p) ! p,

¬p, q ` ((p ! q) ! p) ! p and ¬p,¬q ` ((p ! q) ! p) ! p, and then assemble these proofs

to obtain a derivation for ` ((p ! q) ! p) ! p.

Finally, we proceed to prove the general version of the completeness of propositional logic,

that is

� |= ' implies � ` '

Theorem 5 (Completeness of Propositional Logic). Let � be a finite set of propositional

formulas, and ' be a propositional formula. If � |= ' then � ` '.

Proof. Let � = {�1, . . . , �n}. Initially, notice that

�1, . . . , �n |= ' implies |= �1 ! (�2 ! (· · · (�n ! ') · · · ))

Indeed, by contraposition, �1 ! (�2 ! (· · · (�n ! ') · · · )) can only be false if all formulas

�i, for i = 1, ..., n are true and ' is false, which gives a contradiction to the assumption that

' is a logical consequence of �.

By, Theorem 4, the valid formula �1 ! (�2 ! (· · · (�n ! ') · · · )) should be provable, that

is, there exists a derivation, say r, for

` �1 ! (�2 ! (· · · (�n ! ') · · · ))

To conclude, a derivation r0 for �1, . . . , �n ` ' can be built from the derivation r
by assuming [�1], [�2], etc and eliminating the premises of the implication �1, �2, etc by

repeatedly applications the rule (!e), as depicted below.
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[�2]
u2

[�1]
u1

r
�1 ! (�2 ! (· · · (�n ! ') · · · ))

�2 ! (· · · (�n ! ') · · · )
(!e)

....

[�n]
un �n ! '

'
(!e)

(!e)

Additional Exercise 21. As explained before, the classical propositional logic can be char-

acterized by any of the equivalent rules (PBC), (¬¬e) or (LEM). Show that Peirce’s law is

also equivalent to any of these rules. In other words, build intuitionistic proofs for the rules

(PBC), (¬¬e) and (LEM) assuming the rule:

((�!  ) ! �) ! �
(LP)

Next, prove (LP) in three di↵erent ways: each proof should be done in the intuitionistic

logic assuming just one of (PBC), (¬¬e) and (LEM) at a time.

Additional Exercise 22. Prove the following sequents:

a. �! ( ! �),�!  ` �! �

b. (� _ ( ! �)) ^  ` �

c. �!  ` ((� ^  ) ! �) ^ (�! (� ^  ))

d. `  ! (�! (�! ( ! �)))


