Lógica Computacional 1 (2025-1)

Flávio L. C. de Moura*

27 de março de 2025

A Lógica Proposicional Minimal

Vamos estudar novos conectivos lógicos além da implicação. A nova gramática terá, além da implicação, uma constante (\bot) , a negação (\neg) , a conjunção (\land) e a disjunção (\lor) :

$$\varphi ::= p \mid \bot \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi)$$
 (1)

A constante \bot é utilizada para representar a negação: $\neg \varphi$ é o mesmo que $\varphi \to \bot$. Ou seja, temos duas maneiras distintas de escrever a negação, e portanto a gramática acima possui redundâncias. De fato, veremos que existem outras redundâncias na gramática (1), mas elas são úteis porque simplificam a escrita das fórmulas.

A gramática (1) define as fórmulas da LP, e a partir dela consideraremos 3 sublógicas da LP: a minimal, a intuicionista e a clássica. Nesta seção estudaremos a Lógica Proposicional Minimal (LPM), que assim como no fragmento implicacional visto anteriormente, possui uma regra de introdução e uma regra de eliminação para cada um dos conectivos lógicos. Ou seja, uma regra de introdução e uma de eliminação para cada um dos construtores recursivos da gramática (1).

Apesar da gramática apresentada acima não incluir a bi-implicação, este é um conectivo bastante utilizado, e pode ser escrito em função dos outros conectivos: $\varphi \leftrightarrow \psi$ é o mesmo que $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$.

As regras da negação são análogas às regras da implicação, uma vez que uma negação, digamos $(\neg \varphi)$ é definida como $(\varphi \to \bot)$.

$$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \; (\neg_i) \qquad \qquad \frac{\Gamma_1 \vdash \neg \varphi \qquad \Gamma_2 \vdash \varphi}{\Gamma_1 \cup \Gamma_2 \vdash \bot} \; (\neg_e)$$

^{*}flaviomoura@unb.br

Veremos posteriormente que apenas com a negação e implicação podemos expressar todos os outros conectivos apresentados na gramática (1), que portanto é uma gramática redundante. No entanto, esta redundância é interessante porque nos permite expressar fórmulas complexas de forma compacta.

A regra de introdução da conjunção, denotada por (\land_i) , nos diz o que precisamos fazer para construir uma prova de um sequente que possui uma conjunção na conclusão, isto é, um sequente da forma $\Gamma \vdash \varphi_1 \land \varphi_2$, onde Γ é um conjunto finito de fórmulas da LP, e φ_1 e φ_2 são fórmulas da LP. A regra (\land_i) é dada pela seguinte regra de inferência:

$$\frac{\Gamma_1 \vdash \varphi_1 \qquad \Gamma_2 \vdash \varphi_2}{\Gamma_1 \cup \Gamma_2 \vdash \varphi_1 \land \varphi_2} \ (\land_i)$$

ou seja, uma prova de $\Gamma \vdash \varphi_1 \land \varphi_2$ é construída a partir de uma prova de $\Gamma \vdash \varphi_1$ e de uma prova de $\Gamma \vdash \varphi_2$.

Existem duas regras de eliminação para a conjunção já que podemos extrair qualquer uma das componentes de uma conjunção:

$$\frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_1} \ (\land_{e_1}) \qquad \qquad \frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_2} \ (\land_{e_2})$$

Estas duas regras podem ser representadas de forma mais concisa da seguinte forma:

$$\frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_{i \in \{1,2\}}} \ (\land_e)$$

Usaremos o nome (\land_e) para designar a utilização da regra de eliminação da conjunção quando não quisermos especificar qual das regras (\land_{e_1}) ou (\land_{e_2}) foi utilizada.

Exemplo 1. Com as regras da conjunção já podemos fazer um exercício interessante: provar a comutatividade da conjunção, isto é, queremos construir uma prova para o sequente $\varphi \land \psi \vdash \psi \land \varphi$, onde φ e ψ são fórmulas quaisquer da LP. A construção da prova é feita inicialmente de baixo para cima com a aplicação da regra (\land_i) :

$$\frac{?}{\varphi \wedge \psi \vdash \psi} \qquad \frac{?}{\varphi \wedge \psi \vdash \varphi} \\ \frac{}{\varphi \wedge \psi \vdash \psi \wedge \varphi} (\wedge_i)$$

Concluímos com a regra de eliminação da conjunção e o axioma:

$$\frac{\varphi \wedge \psi \vdash \varphi \wedge \psi}{\varphi \wedge \psi \vdash \psi} \stackrel{(Ax)}{(\land_e)} \qquad \frac{\varphi \wedge \psi \vdash \varphi \wedge \psi}{\varphi \wedge \psi \vdash \varphi} \stackrel{(Ax)}{(\land_e)} \\
\varphi \wedge \psi \vdash \psi \wedge \varphi$$

Exemplo 2. Sejam φ e ψ fórmulas quaisquer da LP. Considere o sequente $\psi \vdash \varphi \rightarrow \psi$. Queremos provar que a partir de uma prova de ψ podemos provar qualquer implicação que tenha ψ como conclusão:

$$\frac{\varphi \vdash \varphi}{\psi, \varphi \vdash \varphi \land \psi} (Ax) \frac{\varphi \vdash \psi}{\psi, \varphi \vdash \varphi \land \psi} (Ax) \frac{\varphi}{\psi, \varphi \vdash \psi} (Ax) \frac{\varphi}{\psi, \varphi \vdash \psi} (Ax)$$

$$\frac{\psi, \varphi \vdash \psi}{\psi \vdash \varphi \rightarrow \psi} (Ax) \frac{\varphi}{\psi} (Ax)$$

O sequente do exemplo anterior nos diz que podemos construir a prova de uma implicação a partir de uma prova do consequente desta implicação. Esta prova é utilizada com muita frequência em outras provas, e por esta razão promovemos este sequente ao *status* de regra derivada:

$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \to \psi} \ (\to_i) \emptyset$$

Uma vez que uma bi-implicação corresponde a uma conjunção de duas implicações, ela pode ser decomposta com a regra de eliminação da conjunção:

$$\frac{\Gamma \vdash \varphi_1 \leftrightarrow \varphi_2}{\Gamma \vdash \varphi_1 \to \varphi_2} \left(\wedge_{e_1} \right) \qquad \frac{\Gamma \vdash \varphi_1 \leftrightarrow \varphi_2}{\Gamma \vdash \varphi_2 \to \varphi_1} \left(\wedge_{e_2} \right)$$

Vejamos agora as regras para a disjunção. A regra de introdução da disjunção nos permite construir a prova de uma disjunção a partir da prova de qualquer uma das suas componentes:

$$\frac{\Gamma \vdash \varphi_1}{\Gamma \vdash \varphi_1 \lor \varphi_2} (\lor_{i_1}) \qquad \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash \varphi_1 \lor \varphi_2} (\lor_{i_2})$$

Como no caso da regra de eliminação da conjunção podemos representar estas duas regras de forma mais compacta:

$$\frac{\Gamma \vdash \varphi_{i \in \{1,2\}}}{\Gamma \vdash \varphi_1 \lor \varphi_2} \ (\lor_i)$$

A regra de eliminação da disjunção nos permite construir a prova de uma fórmula, digamos γ , a partir de uma disjunção. Para isto, precisamos de duas provas distintas de γ , cada uma assumindo uma das componentes da disjunção separadamente:

$$\frac{\Gamma_1 \vdash \varphi_1 \lor \varphi_2 \qquad \Gamma_2, \varphi_1 \vdash \gamma \qquad \Gamma_3, \varphi_2 \vdash \gamma}{\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \vdash \gamma} \ (\lor_e)$$

Observe como os contextos mudam em cada um dos sequentes que compõem esta regra.

Exemplo 3. Vamos mostrar que a disjunção é comutativa, ou seja, queremos construir uma prova para o sequente $\varphi \lor \psi \vdash \psi \lor \varphi$. A ideia aqui é utilizarmos a regra (\lor_e) . Para isto podemos instanciar Γ com o conjunto unitário contendo a fórmula $\varphi \lor \psi$. Em função da estrutura da regra (\lor_e) , precisamos construir duas provas distintas de $\psi \lor \varphi$: uma a partir de φ , e outra a partir de ψ . Podemos fazer isto com a ajuda da regra (\lor_i) :

$$(Ax) \ \frac{\varphi \lor \psi \vdash \varphi \lor \psi}{\varphi \lor \psi \vdash \varphi \lor \psi} \qquad \frac{\overline{\varphi \vdash \varphi}}{\varphi \vdash \psi \lor \varphi} (\lor_i) \ \frac{\overline{\psi \vdash \psi}}{\psi \vdash \psi \lor \varphi} (\lor_i) \ \frac{\overline{\psi \vdash \psi}}{\psi \vdash \psi \lor \varphi} (\lor_e)$$

Exemplo 4. Considere o sequente $\varphi \to \psi$, $\neg \psi \vdash \neg \varphi$. Como a fórmula do consequente é uma negação, vamos aplicar a regra de introdução da negação na construção de uma prova de baixo para cima, isto é, da raiz para as folhas da árvore:

$$\frac{?}{\varphi \to \psi, \neg \psi, \varphi \vdash \bot} (\neg_i)$$

$$\varphi \to \psi, \neg \psi \vdash \neg \varphi$$

Agora, precisamos construir uma prova do absurdo, e portanto podemos tentar utilizar a regra (\neg_e) . Para isto precisamos escolher uma fórmula do contexto para fazer o papel de φ da regra 8 da Tabela 1. A princípio temos três opções: $\varphi \to \psi$, $\neg \psi$ e φ . A boa escolha neste caso é $\neg \psi$ porque podemos facilmente provar ψ a partir deste contexto:

$$(\rightarrow_{e}) \frac{\overline{\varphi \rightarrow \psi \vdash \varphi \rightarrow \psi} (Ax) \overline{\varphi \vdash \varphi} (Ax)}{\varphi \rightarrow \psi, \varphi \vdash \psi} \frac{\neg \psi \vdash \neg \psi}{\neg \psi \vdash \neg \psi} (Ax)$$
$$\overline{\varphi \rightarrow \psi, \neg \psi, \varphi \vdash \bot} (\neg_{e})$$
$$\varphi \rightarrow \psi, \neg \psi \vdash \neg \varphi$$

Depois de concluída a prova é fácil entender o que queríamos dizer com boa escolha acima: Uma boa escolha é um caminho que vai nos permitir concluir uma prova. Mas como fazer uma boa escolha? Isto depende do problema a ser resolvido. Em alguns casos pode ser simples, mas em outros, bastante complicado. O ponto importante a compreender é que existem caminhos possíveis distintos na construção de provas da lógica proposicional, e muito deste processo depende da nossa criatividade.

O sequente que acabamos de provar ocorre com certa frequência em outras provas, assim como a regra derivada ($\neg\neg_i$). As regras que são obtidas a partir das regras da Tabela 1 são chamadas de regras derivadas. Este é o caso da regra conhecida como modus tollens (MT) obtida a partir do sequente do exemplo anterior, onde cada antecedente é generalizado como uma premissa da regra:

$$\frac{\Gamma_1 \vdash \varphi \to \psi \qquad \Gamma_2 \vdash \neg \psi}{\Gamma_1 \cup \Gamma_2 \vdash \neg \varphi}$$
 (MT)

Exemplo 5. Considere o sequente $\varphi \to \psi \vdash \neg \psi \to \neg \varphi$. Inicialmente, devemos observar que a fórmula que queremos provar é uma implicação, e portanto, o mais natural é tentar aplicar a regra (\to_i) , e em seguida aplicar (MT) (na construção de baixo para cima) para poder completar a prova:

$$(Ax) \frac{\varphi \to \psi \vdash \varphi \to \psi}{\varphi \to \psi, \neg \psi \vdash \neg \varphi} \frac{\neg \psi \vdash \neg \psi}{(MT)} \frac{(Ax)}{\varphi \to \psi, \neg \psi \vdash \neg \varphi} \frac{(Ax)}{(MT)}$$

A prova que acabamos de fazer é outro caso que aparece com frequência, e corresponde a uma regra conhecida como *contrapositiva*:

$$\frac{\Gamma \vdash \varphi \to \psi}{\Gamma \vdash \neg \psi \to \neg \varphi}$$
(CP)

A Tabela 1 resume todas as regras da LPM, isto é, as regras de introdução e eliminação dos conectivos lógicos apresentados na gramática 1. A Tabela 2 apresenta as regras derivadas provadas nos exemplos anteriores.

Exercício 6. Sejam φ e ψ fórmulas da LP. Prove o sequente $\varphi, \psi \vdash \psi$.

A solução do exercício anterior nos permite trabalhar com uma versão mais flexível do axioma:

$$\overline{\varphi,\psi \vdash \psi}$$

Exercício 7. Prove o sequente $\vdash (p \rightarrow r) \rightarrow p \rightarrow q \rightarrow r$.

	Regras de introdução	Regras de eliminação
0	${\varphi \vdash \varphi} (Ax)$	
		$\frac{\Gamma \vdash \varphi_1 \land \varphi_2}{\Gamma \vdash \varphi_{i \in \{1,2\}}} \ (\land_e)$
1	$\Gamma_1 \cup \Gamma_2 \vdash \varphi_1 \wedge \varphi_2$	
	$\frac{\Gamma \vdash \varphi_{i \in \{1,2\}}}{\Gamma \vdash \varphi_1 \lor \varphi_2} \ (\lor_i)$	$\frac{\Gamma_1 \vdash \varphi_1 \lor \varphi_2 \qquad \Gamma_2, \varphi_1 \vdash \gamma \qquad \Gamma_3, \varphi_2 \vdash \gamma}{\Gamma_1 \dotplus \Gamma_2 \dotplus \Gamma_2$
2	$\Gamma \vdash \varphi_1 \lor \varphi_2 $ $(^{\vee_i})$	$\Gamma_1 \cup \Gamma_2 \cup \Gamma_3 \vdash \gamma$
	$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \ (\to_i)$	$\frac{\Gamma_1 \vdash \varphi \to \psi \qquad \Gamma_2 \vdash \varphi}{\Gamma_1 \cup \Gamma_2 \vdash \psi} \ (\to_e)$
3	$\frac{\Gamma \vdash \varphi \to \psi}{\Gamma \vdash \varphi \to \psi} \stackrel{(\to_i)}{\longrightarrow}$	$\Gamma_1 \cup \Gamma_2 \vdash \psi$ $(\vec{\neg}_e)$
4	$\frac{\Gamma, \varphi \vdash \bot}{\Gamma \vdash \neg \varphi} \; (\neg_i)$	$\frac{\Gamma_1 \vdash \neg \varphi \qquad \Gamma_2 \vdash \varphi}{\Gamma_1 \cup \Gamma_2 \vdash \bot} \ (\neg_e)$

Tabela 1: Regras da Lógica Proposicional Minimal

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \neg \neg \varphi} (\neg \neg_i) \quad \frac{\Gamma_1 \vdash \varphi \to \psi \quad \Gamma_2 \vdash \neg \psi}{\Gamma_1 \cup \Gamma_2 \vdash \neg \varphi} (MT) \quad \frac{\Gamma \vdash \psi}{\Gamma \vdash \varphi \to \psi} (\to_i) \emptyset \quad \frac{\Gamma \vdash \varphi \to \psi}{\Gamma \vdash \neg \psi \to \neg \varphi} (CP)$$

Tabela 2: Regras derivadas da Lógica Proposicional Minimal

Exercício 8. Seja φ uma fórmula da LP. Prove o sequente $\varphi \vdash \neg \neg \varphi$.

Exercício 9. Sejam φ e ψ fórmulas da LP. Prove o sequente $\varphi \to \psi \vdash (\neg \neg \varphi) \to (\neg \neg \psi)$.

Exercício 10. Sejam φ e ψ fórmulas da LP. Prove o sequente $\neg\neg(\varphi \to \psi) \vdash (\neg\neg\varphi) \to (\neg\neg\psi)$.

Exercício 11. Prove que a conjunção é associativa, isto é, prove o sequente $(\varphi \wedge \psi) \wedge \rho \vdash \varphi \wedge (\psi \wedge \rho)$ onde φ , ψ e ρ são fórmulas quaisquer da LP.

Exercício 12. Sejam φ e ψ fórmulas quaisquer da LP. Prove os sequentes $\neg\neg(\varphi \land \psi) \dashv \vdash (\neg\neg\varphi) \land (\neg\neg\psi)$.

Exercício 13. Sejam φ , ψ e ρ fórmulas quaisquer da LP. Prove que a disjunção é associativa, isto é, prove o sequente $(\varphi \lor \psi) \lor \rho \vdash \varphi \lor (\psi \lor \rho)$.

Exercício 14. Sejam φ e ψ fórmulas da LP. Prove o sequente $\varphi \to \neg \psi \vdash \psi \to \neg \varphi$.

Exercício 15. Sejam φ e ψ fórmulas da LP. Prove o sequente $\vdash ((((\varphi \to \psi) \to \varphi) \to \varphi) \to \psi) \to \psi$.

Exercício 16. Sejam φ e ψ fórmulas da LP. Prove o sequente $\varphi, \neg \varphi \vdash \neg \psi$.

Exercício 17. Seja φ uma fórmula da LP. Construa uma prova para o sequente $\neg\neg\neg\varphi \vdash \neg\varphi$.

Exercício 18. Sejam φ e ψ fórmulas da LP. Construa uma prova para o sequente $\neg(\varphi \lor \psi) \vdash (\neg \varphi) \land (\neg \psi)$.

Exercício 19. Sejam φ e ψ fórmulas da LP. Construa uma prova para o sequente $(\neg \varphi) \wedge (\neg \psi) \vdash \neg (\varphi \vee \psi)$.

Exercício 20. Sejam φ, ψ e δ fórmulas da LP. Construa uma prova para o sequente $\varphi \to \psi \vdash (\delta \lor \varphi) \to (\delta \lor \psi)$.

Exercício 21. Sejam φ e ψ fórmulas da LP. Construa uma prova para o sequente $\varphi \to \psi \vdash \neg (\varphi \land \neg \psi)$.

Exercício 22. Sejam φ e ψ fórmulas da LP. Construa uma prova para o sequente $\varphi \wedge \psi \vdash \neg(\neg \varphi \vee \neg \psi)$.

Exercício 23. Sejam φ e γ fórmulas da LP. Construa uma prova para os sequentes $\neg(\varphi \lor \gamma) \vdash (\neg\varphi) \land (\neg\gamma) \ e \ (\neg\varphi) \land (\neg\gamma) \vdash \neg(\varphi \lor \gamma)$.

Exercício 24. Sejam φ e γ fórmulas da LP. Construa uma prova para o sequente $(\neg \varphi) \lor (\neg \gamma) \vdash \neg (\varphi \land \gamma)$.

Exercício 25. Sejam φ e γ fórmulas da LP. Construa uma prova para o sequente $\neg\neg(\varphi \land \gamma) \vdash (\neg\neg\varphi) \land (\neg\neg\gamma)$.

Exercício 26. Sejam φ e γ fórmulas da LP. Construa uma prova para o sequente $(\neg\neg\varphi) \wedge (\neg\neg\gamma) \vdash \neg\neg(\varphi \wedge \gamma)$.

Exercício 27. Sejam φ, ψ e γ fórmulas da LP. Prove o sequente $\varphi \lor (\psi \land \gamma) \vdash (\varphi \lor \psi) \land (\varphi \lor \gamma)$.

Exercício 28. Sejam φ, ψ e γ fórmulas da LP. Prove o sequente $(\varphi \lor \psi) \land (\varphi \lor \gamma) \vdash \varphi \lor (\psi \land \gamma)$.

Exercício 29. Sejam φ, ψ e γ fórmulas da LP. Prove o sequente $\varphi \land (\psi \lor \gamma) \vdash (\varphi \land \psi) \lor (\varphi \land \gamma)$.

Exercício 30. Sejam φ, ψ e γ fórmulas da LP. Prove o sequente $(\varphi \land \psi) \lor (\varphi \land \gamma) \vdash \varphi \land (\psi \lor \gamma)$.

Exercício 31. Seja φ uma fórmula da LP. Prove o sequente $\vdash \neg \neg (\varphi \lor \neg \varphi)$.

Exercício 32. Seja φ uma fórmula da LP. Prove o sequente $\vdash \neg(\varphi \land \neg \varphi)$.

Exercício 33. Sejam φ e γ fórmulas da LP. Construa uma prova para o sequente $(\varphi \to \gamma) \land \neg(\varphi \land \gamma) \vdash \neg\varphi$.

Exercício 34. Sejam φ, ψ e γ fórmulas da LP. Prove o sequente $\varphi \leftrightarrow \psi, \psi \rightarrow \gamma, \neg \gamma \vdash (\neg \varphi) \land (\neg \psi)$.