Projeto e Análise de Algoritmos (2025-2)

Flávio L. C. de Moura*

18 de agosto de 2025

Plano de Ensino

Objetivos

Compreender os fundamentos teóricos para a análise de algoritmos por meio de ferramentas matemáticas que permitam a construção de soluções eficientes para problemas usuais nas aplicações computacionais. Ao final do curso o aluno dever ser capaz de:

- 1. Analisar a complexidade, quanto aos recursos de tempo e espaço, de algoritmos utilizando a análise assintótica;
- 2. Provar a correção de algoritmos;
- 3. Conhecer os paradigmas de divisão e conquista, algoritmos gulosos e programação dinâmica para projetos de algoritmos;
- 4. Compreender os fundamentos da teoria de NP-completude.

Conteúdo programático

Indução;

•	Fundamentos	matemáticos	para a	análise	de a	lgoritmos;

- Crescimento de funções;
- Notação assintótica;

^{*}flaviomoura@unb.br

– Relações de recorrência	λ .
• Análise assintótica de algori	.tmos;
• Paradigmas de projeto de a	lgoritmos;
Projeto por indução;	
 Divisão e conquista; 	
 Programação dinâmica 	;
 Algoritmos gulosos. 	
• Fundamentos de complexida	ade computacional.
– Redução entre problem	nas;
– As classes P e NP;	
- Problemas NP-complet	cos.
Metodologia de ensino	
O conteúdo será abordado por me	eio de aulas expositivas estruturadas da seguinte forma:
1. Leituras dirigidas;	
2. Avaliações escritas;	
3. Atividades complementares;	
4. Projeto (opcional).	
• Todo o material do curso html.	estará disponível em https://flaviomoura.info/paa-2025-2.
• Na medida do possível as a	ılas serão gravadas e estarão disponíveis no Teams.

Avaliação

A avaliação será composta por duas avaliações escritas individuais e sem consulta:

- 1. Prova 1 (01/out/2025) 40 pontos
- 2. Prova 2 (03/dez/2025) 40 pontos
- 3. Atividades complementares 20 pontos
- 4. Projeto (opcional) 20 pontos

Para ser aprovado o aluno deve cumprir **simultaneamente** os seguintes itens:

- Frequência maior ou igual a 75%;
- Obter pelo menos 50 pontos no total.

A menção final é definida como a seguir:

Menção	Pontos
SS (Superior)	90 - 100
MS (Médio Superior)	70 - 89
MM (Médio)	50 - 69
MI (Médio Inferior)	30 - 49
II (Inferior)	01 - 29
SR (Sem Rendimento)	00ou mais de $25%$ de faltas

Bibliografia

- 1. Referência principal: [3]
- 2. Referências complementares: [1, 4, 5, 6, 8, 7, 10, 9, 2].

Referências

[1] S. Baase and A. V. Gelder. Computer Algorithms: Introduction to Design and Analysis. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

- [2] Gilles Brassard and Paul Bratley. Fundamentals of Algorithmics. Prentice-Hall, Inc., USA, 1996.
- [3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. MIT Press, Cambridge, MA, USA, 4 edition, April 2022.
- [4] A. V. Levitin. *Introduction to the Design and Analysis of Algorithms, Third Edition*. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2012.
- [5] Udi Manber. *Introduction to Algorithms: A Creative Approach*. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.
- [6] T. Roughgarden. Algorithms Illuminated (Part 1): The Basics. Algorithms Illuminated Series. Soundlikeyourself Publishing, LLC, 2017.
- [7] T. Roughgarden. Algorithms Illuminated (Part 3): Greedy Algorithms and Dynamic Programming. Algorithms Illuminated Series. Soundlikeyourself Publishing, LLC, 2019.
- [8] Tim Roughgarden. Algorithms Illuminated (Part 2): Graph Algorithms and Data Structures (Volume 2). Soundlikeyourself Publishing, LLC, 2018.
- [9] Michael Sipser. Introduction to the Theory of Computation. International Thomson Publishing, 1st edition, 1996.
- [10] Laira V. Toscani and Paulo A. S. Veloso. Complexidade de Algoritmos: Volume 13 Da Série Livros Didáticos Informática UFRGS, volume 13. Artmed Editora, 2012.